Special Section on Organic Photovoltaics

Guest Editorial: Special Section on Organic Photovoltaics

[+] Author Affiliations
Christoph Brabec

Friedrich-Alexander-Universität Erlangen-Nürnberg and ZAE Bavaria, Division 3, Martenstrasse 7, Erlangen, 91058 Germany

Paul Lane

Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-0001

Zakya H. Kafafi

National Science Foundation, Division of Materials Research, 4201 Wilson Boulevard, Suite #1065, Arlington, Virginia 22230

J. Photon. Energy. 1(1), 011199 (March 30, 2011). doi:10.1117/1.3576111
History: Received March 22, 2011; Accepted March 22, 2011; Published March 30, 2011; Online March 30, 2011
Text Size: A A A

Open Access Open Access

Organic photovoltaics (OPVs) have a long history, stretching back three decades into the 1980s, when first studies were conducted on the photogeneration of charge carriers in organic solids. The breakthrough in this field was in 1995, when Heeger's group published the first efficient solution-processed solar cells based on a bulk heterojunction consisting of a polymer blend with C60, a new concept reported three years earlier by Sariciftci and Heeger.

Since then, many active research activities have been undertaken to develop highly efficient organic photovoltaic devices. The number of papers on organic solar cells has been rising exponentially, and the peak of publications has not yet been reached. Tremendous progress has been made in the synthesis and production of organic solar cells. Companies such as Merck, BASF, and Plextronics have started to commercialize organic semiconducting materials, while companies such as Konarka Technologies, Inc. and Heliatek have begun commercialization of organic solar modules.

Compared to inorganic solar cells, OPVs offer many advantages, such as low cost, high-throughput production, flexible devices, lightweight products, as well as custom-designed colors. On the downside, OPVs still have significantly lower efficiency values and lifetime expectations as compared to their inorganic counterparts. Nevertheless, the most recent National Renewable Energy Lab (NREL) certified power conversion of more than 8%, as reported by Konarka and Heliatek, positions OPVs as the next generation of solar cells and a follow-up technology for thin-film inorganic PVs.

In order to achieve higher efficiency and better lifetime, further development is necessary: stable and low-bandgap semiconductors with excellent charge carrier transport properties are required, concepts to control the microstructure in bulk heterojunction composites are essential, the development of efficient and environmentally stable interface materials has to take place, and, finally, strategies for a cost-efficient and long-time stable packaging process need to be developed. In addition, further fundamental understanding of the photophysical processes, including the different interfaces in organic solar cells, is essential to unravel device degradation mechanisms. For the final product release, light propagation and light management need to become integrated in organic solar modules.

In this special section of the Journal of Photonics for Energy, papers that address the above issues and challenges are presented. These papers are based on talks and posters given at the conference on Organic Photovoltaics XI at the SPIE Optics + Photonics meeting held in San Diego in August 2010. We believe that readers will find the results of the studies discussed in these manuscripts interesting, educational, and stimulating, and we hope that you will enjoy reading them.

© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)

Citation

Christoph Brabec ; Paul Lane and Zakya H. Kafafi
"Guest Editorial: Special Section on Organic Photovoltaics", J. Photon. Energy. 1(1), 011199 (March 30, 2011). ; http://dx.doi.org/10.1117/1.3576111


Figures

Tables

References

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

PubMed Articles
Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.