Paper
10 September 2007 Strain-compensated quantum dots emitting at 1.5 micron: resonant nonlinear optical properties and exciton dynamics
Author Affiliations +
Abstract
The population and coherent dynamics of excitons in InAs quantum dots were investigated using transient pump-probe and four-wave mixing spectroscopies in the telecommunications wavelength range. The sample was fabricated on an InP(311)B substrate using strain compensation to control the emission wavelength. This technique also enabled us to stack over a hundred QD layers, which resulted in a significant enhancement of nonlinear signals. By controlling the polarization directions of incident pulses, we precisely estimated the radiative and non-radiative lifetimes, the transition dipole moment, and the dephasing time while taking into account their anisotropic properties. The measured radiative lifetime and dephasing time shows large anisotropies with respect to the crystal axes, which results from the anisotropic nature of the transition dipole moment. The anisotropy is larger than that for InAs quantum dots on a GaAs(100) substrate, which seems to reflect a lack of symmetry on an (311)B substrate. A quantitative comparison of these anisotropies demonstrates that nonradiative population relaxation and pure dephasing are quite small in our QDs.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Junko Ishi-Hayase, Kouichi Akahane, Naokatsu Yamamoto, Mamiko Kujiraoka, Kazuhiro Ema, and Masahide Sasaki "Strain-compensated quantum dots emitting at 1.5 micron: resonant nonlinear optical properties and exciton dynamics", Proc. SPIE 6779, Nanophotonics for Communication: Materials, Devices, and Systems IV, 677903 (10 September 2007); https://doi.org/10.1117/12.732348
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Excitons

Polarization

Anisotropy

Spectroscopy

Indium arsenide

Quantum dots

Telecommunications

Back to Top