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Abstract. The dye-sensitized nanocrystalline solar cell (DSC) offers potential opportunities in
the area of renewable energy sources mainly due to its simple fabrication procedure and use of
low cost materials. A theoretical model based on the thermionic emission theory was developed
to determine the interfacial effect of ZnO/TCO on the performance of DSC. It was found that
under conditions where thermionic emission is valid, photoelectric outputs are affected by tem-
perature and Schottky barrier height (ϕb). The model can be used to facilitate better selection of
suitable TCO material. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10
.1117/1.JPE.2.027003]
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1 Introduction

Dye-sensitized solar cells (DSC) are basically photo electrochemical solar cells that are currently
being subject to intense research in the framework of renewable energies as low cost photovoltaic
devices. The DSC is composed of photoactive electrode, which is generally made of mesopor-
ous, nanostructured metal oxide film (TiO2, ZnO, SnO2, etc). The photoelectrode is sensitized to
visible light by adsorbing a molecular dye. When the photon is absorbed, dye gets to the excited
state. This leads to the injection of electrons into the metal oxide substrate. The injected electrons
move through the nanostructured film to the transparent conducting oxide (TCO). The electron
donor in the electrolyte solution regenerates the dye, which in turn gets regenerated by accepting
the electron coming from the counter electrode. The power conversion efficiency of the DSC has
reached up to 11.5%.1 The movement of electrons through nanostructured network is a com-
plicated process because of the large surface-area-to-volume ratio of the concerned nanomaterial.
Efficient electron injection from excited dye to nanostructured metal oxide film plays a crucial
role in the performance of DSC.2,3 The injected electron gets transported through nanostructured
film mainly due to diffusion.4,5 The transport kinetics of flow of injected electrons is influenced
by the incident intensity and trapping-detrapping mechanism.6,7 The electric potential distribu-
tion plays a vital role in the functioning of dye-sensitized solar cells. Ruhle et al. proposed a
model based on a built-in electric field and the possibility of a Schottky barrier at the interface of
the mesoporous semiconductor (TiO2) and the TCO (usually F-doped tin oxide, FTO).8 Kron et
al. investigated the influence of front contact barrier by using different front contact materials to
the nanoporous TiO2 layer.

9 Most of the research in DSC has been centered on TiO2 as a nano-
structured film as a photo electrode. The best-suited alternative material to TiO2 is ZnO,10–12

which has a similar band gap (3.2 eV) and band edge position to TiO2.
13 ZnO nanoparticles

and nanowires are repeatedly used to fabricate DSC electrodes.14,15 Branched ZnO nanowire
structure has recently been used in DSC.16 In this study, a theoretical model was developed
by taking a thermionic emission model into consideration and investigating the ZnO/TCO inter-
facial effects on the performance of DSC. TCO substrate can be considered to be metal as it is
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heavily doped (e.g., doped SnO2) and has high electrical conductivity.
8 A Schottky barrier model

can then be used for simulation of ZnO/TCO interface.17–19 The details of theoretical modeling
are discussed in the following sections.

2 Theoretical Modeling

There is a flow of injected electrons through the porous nanostructured ZnO thin film toward the
TCO. Subsequently the electrons reach the counter electrode by the external circuit. There is a
regeneration of oxidized dye by redox madiators followed by the transportation of the oxidized
redox mediators (I3− ) to the counter electrode where they are regenerated to complete the cycle.

The electron density inside mesoporous layer rises with the injection of electrons in which
the quasi-Fermi level (EF) comes near to conduction band edge (Ec). The difference between EF

and the electrolyte redox potential is considered to be the photovoltage.20,21 However, under
maximum power operating conditions the potential differences due to two interfaces should
also come into the picture (i.e., photoelectrode/TCO and electrolyte/counter electrode interface).
There has been various efforts to study the influence of counter electrode,22–24 but the effect of
ZnO/TCO interface has not been effectively studied.

Under irradiation, photo injection of electrons results in a rise in quasi-Fermi levels of
ZnO and TCO as shown in Fig. 1. As the ZnO/TCO interface effect is under study, the loss of
voltage due to counter electrode/electrolyte interface in not considered. The photovoltage can be
rewritten as

V ¼ V0 − V1; (1)

where V0 is the potential difference between the ZnO Fermi level (EF) and redox potential of
electrolyte (Eredox), and V1 is the voltage loss at the ZnO/TCO interface. This voltage loss,
derived from the Schottky barrier height, appears at the ZnO/TCO interface, resulting in the
internal resistance.

Two mechanisms that control electron transfer at the interface are thermionic emission and
electron tunneling as described by metal semiconductor contact theory.17,18 But electron tunnel-
ing can be neglected as ZnO is lightly doped,19,20 and cell operates at a high temperature (300 K);
under such circumstances thermionic emission dominates the electron transfer. It should be men-
tioned here that when ZnO is heavily doped or the operating temperature is low, electron tunnel-
ing becomes significant, which minimizes the interfacial effect. It should be noted that due to
small size of ZnO particles (∼15 nm) as well as the strong screening effect of electrolyte, there
is negligible macroscopic electric field in the porous ZnO thin film. Therefore, under such
conditions, the proposed thermionic emission model may not be valid.

However, here we treat DSC as a series connection of a Schottky diode with a certain barrier
height representing the metal/n-type semiconductor interface and the main diode, which corre-
sponds with the injection of electrons from semiconductor film into the electrolyte. J is the
current density corresponding to the applied voltage V, including the voltage loss V1 at the
ZnO/TCO interface.

Fig. 1 Potential diagram of DSC under illumination.
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The following expression correlates the voltage loss at the ZnO/TCO interface with reference
to thermionic emission theory.18,25

J ¼ AT2 expð−qϕb∕kTÞ½expðqV1∕kTÞ − 1� (2)

where A is the effective Richardson constant equal to 3.2 × 106 Am−2 K−2 for ZnO, T is the
temperature, k is the Boltzmann constant equal to 1.38066 × 10−23 JK−1 and q is the charge
of an electron equal to 1.60218 × 10−19 C. Equation (2) can be rearranged to

V1 ¼ ðkT∕qÞ ln½1þ J∕fAT2 expð−qϕb∕kTÞg�: (3)

3 Results and Discussion

According to Eq. (3), the voltage loss V1 due to ZnO/TCO interface depends upon Schottky
barrier height, temperature, and recombination current at the TCO/electrolyte interface.

Cameron et al. estimated that the current density due to recombination of electrons with
electrolyte via TCO substrate lie in the range from 10−5 to 10−4 Am−2 (Ref. 26). Figure 2
shows the variation of V1 with ϕb, for different values of J. There exists a critical value of
ϕb below V1. An increase in J results in decrease in this critical ϕb.

Fig. 2 Variation of voltage loss at ZnO/TCO interface with Schottky barrier height and
temperature.

Fig. 3 Variation of voltage loss at ZnO/TCO interface with Schottky barrier height and current
density.
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Taking current density to be 0.0015 Am−2, the theoretical analysis was done, and the result
showing the effect of ϕb, on V1 at different T are plotted in Fig. 3. Again there exists a critical
value of ϕb below, which V1 is negligible. Above this critical value, V1 increases with increase in
Schottky barrier height. As temperature increases there is a rise in the critical value. It is evident
that for values of ϕb ≤ 0.6, the voltage loss V1 is negligible. It can be predicted that FTO and Al
can be good candidates for TCO material.

4 Conclusions

Investigation of ZnO/TCO interfacial effect on DSC was done on the basis of a Schottky barrier
model derived from thermionic emission theory. The effect of the interface depends on the cur-
rent density, temperature, and Schottky barrier height. At low Schottky barrier height, there is
negligible voltage loss that leads to almost unaffected DSC performance. The interfacial effect
becomes significant as the Schottky barrier height increases beyond critical value. The results
are important: by considering the voltage loss at the ZnO/TCO interface, the accuracy in the
prediction of J-V characteristics of the DSC can also be improved. The modeling can be
used to assist selection of appropriate TCO material for high ZnO-based DSC efficiency.
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