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1 Introduction

Quantum metrology investigates the ultimate limits that quantum physics places on the accuracy
of the measurement of any magnitude, such as length, time, frequency, temperature, population,
etc., referred to in general as the signal. Roughly speaking, the structure of detection schemes
is quite universal. The signal modifies the state of a suitably prepared input probe state. This
change is then detected by performing a measurement on the output probe state, whose outcome
serves to estimate the value of the signal. By focusing on quantum limits, it is assumed that all
sources of technical noise have been removed.

In standard metrology the signal induces linear transformations, so that previously known
quantum limits heavily depend on the assumption of linearity. Thus, a new frontier arises if we
consider that the signal can be imprinted in the probe via nonlinear processes. The key point
is that nonlinear schemes allow us to reach larger resolutions than the linear ones. This leads
to new quantum limits, new experiments, and eventually new devices. The improvement holds
even when using probes in classical states, which is very relevant concerning robustness against
practical imperfections.

Nonlinear transformations have played a distinguished role in quantum metrology, being
extensively used for the preparation of nonclassical probe states (typically squeezed states),
while signal transformation was always assumed to be linear. Nonlinear detection schemes
change this perspective by showing that it is more advantageous to use nonlinear transformations
to imprint the signal on the probe.

The objective of this review is to examine the work exploring this possibility [1–25]. Also,
we hope to provide a quick start on the subject for newly interested readers. Technical details
are deferred to appendices in Secs. 6, 7, and 8.

2 Quantum Metrology

Every quantum detection scheme contains five ingredients (see Fig. 1): the system, the input
probe state, the transformation induced by the signal, the measurement performed on the output
probe state, and the data analysis of the measurement outcomes.
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Fig. 1 Detection schemes.

2.1 System

The first step is to identify elementary physical systems sensitive enough to changes induced by
the signal. Two main possibilities have been considered in the bibliography: quantum light and
atoms, usually in Bose-Einstein condensates (for more details, see the proposals reviewed in
Sec. 4.1). Fortunately, the quantum theory allows us to describe them in a unified fashion. When
the system is made of identical particles (light and Bose-Einstein condensates), we use bosonic
annihilation operators aj representing the complex amplitude of the allowed modes (i.e., the
degrees of freedom of the particles). Usually just two modes are considered, in which case the
angular-momentum operators J are very useful (see Appendix A in Sec. 6). These are Stokes
operators for light beams or collective spin operators for atoms. They allow us also to represent
collections of distinguishable particles. For more details, see Appendix A in Sec. 6.

2.2 Input Probe State

The system is prepared in a probe state |ψ〉 (assumed pure for simplicity) that undergoes the
transformation caused by the signal. The probe can be either in a classical or nonclassical state,
usually entangled (see Appendix B in Sec. 7). The main advantage of nonclassical states is that
they can provide better accuracy. The main advantage of classical states is that they are more
robust against practical imperfections. Throughout this work probe realizations are assumed as
statistically independent.

2.3 Transformation

Information about the signal χ is imprinted in the probe state by letting it experience a signal-
dependent transformation |ψ〉 → |ψχ 〉. For simplicity we assume that the transformation is
unitary

|ψχ 〉 = exp (iχG) |ψ〉, (1)

where the generator G is Hermitian. A key point of this work is to distinguish between linear
and nonlinear transformations.

2.3.1 Linear transformations

By linear transformations, we mean that the output complex amplitudes exp(−iχG)aj exp(iχG)

are linear functions of the input ones aj, maybe including their Hermitian conjugates a
†
j . In such

a case the generators G are at most quadratic polynomials of aj, a
†
k . Typical examples are phase

shifts, generated by the number operator n̂ = a†a, and rotations of the angular-momentum
operators J, generated by a J component, say Jz. For two-level atoms this is Jz ∝ �kσ

(k)
z , where
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Fig. 2 Linear versus nonlinear schemes.

k indexes atoms and σ (k) are the Pauli matrices acting on the two-level space of each particle.
Linear transformations correspond to free evolution, light propagation through optically linear
media, beamsplitting, phase shifting, the most common interferometers, and atoms driven by
external fields. Thus, most detection processes in interferometry and spectroscopy are linear.

2.3.2 Nonlinear transformations

By nonlinear transformations, we mean that the output complex amplitudes are not linear
functions of the input ones. Their generators contain combinations of aj , a

†
k with powers above

the second. The most simple examples are G = n̂2 and G = J 2
z . For light, this corresponds to

propagation through optically nonlinear media (such as the Kerr effect). In terms of single-atom
operators, J 2

z ∝ �k,�σ
(k)
z σ

(�)
z includes two-body interactions (see Sec. 4.1).

Roughly speaking, in linear transformations each particle experiences the same transfor-
mation independent of the presence of other particles, irrespectively of whether the particles
are prepared in independent or collective states (see Fig. 2). This can be exemplified by the
famous saying that each photon interferes with itself [26]. In nonlinear schemes, particles inter-
act among themselves during the imprinting of the signal, so that they experience a collective
transformation.

2.4 Measurement

The signal information encoded in the output probe state |ψχ 〉 must be disclosed by a measure-
ment M with statistics

P (m|χ ) = ∣∣〈m|ψχ 〉∣∣2
, (2)

where P(m|χ ) is the conditional probability of obtaining the outcome m when the true but
unknown value of the signal is χ , and we have assumed for simplicity projection on pure
states |m〉, usually the eigenstates of the measured observable M|m〉 = m|m〉. In practical
terms this is always a counting of atoms or photons per mode; this is M = n̂j , Jz. This is
usually done after a linear coupling so that output populations depend via interference on the
signal-induced phase shifts. The only exceptions seem to be the measurement of field quadra-
tures X ∝ a + a† [4, 5], J 2

z [to avoid the vanishing of 〈Jz〉 for strong SU(2) squeezed probes]
[4,9], parity [8], and phase difference [9]. Nevertheless, more or less directly these are also
always particle-counting measurements.

2.5 Inference

The last goal is to obtain the best hypothesis χ̃ about χ along with its uncertainty �χ̃ . Both
should be derived from the statistics P(m|χ ) of the measurement. In this work we are mainly
interested in �χ̃ , since this allows us to compare the performance of different schemes. The
estimation of the uncertainty can be done in many different ways. The most popular are recalled
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in Appendix C in Sec. 8. This subject is not trivial, since different data analysis can lead to
different, or even contradictory, conclusions.

Nevertheless, for the purpose of this work it is enough to mention that most approaches lead
essentially to a minimal signal uncertainty of the form

�χ̃ = 1

2
√

ν�G
, (�G)2 = 〈ψ |G2|ψ〉 − 〈ψ |G|ψ〉2, (3)

and ν is the number of independent repetitions of the measurement. Leaving aside the statistical
factor ν, this recalls a Heisenberg-kind of uncertainty relation �χ̃�G ≥ 1/2, although �χ̃ is
not necessarily the variance of an operator.

3 Quantum Limits

The idea of precise detection is to have �χ̃ be as small as possible; this is �G as large as
possible. If no further restrictions are placed, nothing would prevent acquiring �G as large as
desired, so there would be no limit to accuracy [27]. Quantum limits can only emerge when
we impose constraints. The most popular is to consider a fixed number of particles, although
time limitations might also be considered [14,28] (see also Sec. 4.3). This is reasonable, since
the number of available photons and atoms during the duration of the measurement seems
to be always limited, for example, because of the maximum output power of lasers at hand.
Nevertheless, this constraint is not trivial, since, for example, the quadrature coherent states
have by definition an unbounded number of particles. Thus, there is the ambiguity of whether
we refer to constraints in the total number or in the mean number. Because of this it can be
advantageous to split the analysis for bounded and unbounded numbers of particles.

3.1 Bounded Number of Particles

Let us say that we have just N particles. This is tantamount to say that the Hilbert space of
the problem is of finite dimension, and thus G is bounded. In such a case the maximum �G
is reached by a 50% coherent superposition of the eigenstates of G, |Gmax,min〉, with maximum
and minimum eigenvalues Gmax,min [28]

�G = 1

2
(Gmax − Gmin) , |ψ〉 = 1√

2
(|Gmax〉 + |Gmin〉) . (4)

Let us particularize this to linear and nonlinear schemes.

3.1.1 Linear schemes

To be more specific, let us consider G = Jz as the generator so that (see Appendix A in Sec. 6
for more details)

Gmax = −Gmin = N

2
, �G = N

2
, (5)

where the optimum probe state (in the angular-momentum basis |j, m〉) and the optimum
resolution are

|ψ〉 = 1√
2

(|j, j 〉 + |j,−j 〉) , �χ̃ = 1√
νN

. (6)

This can be compared with the maximum �G and minimum �χ̃ achievable when the probe
is in a classical state. This is an equatorial SU(2) coherent state with polar angle θ = π /2,
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leading to

�G =
√

N

2
, �χ̃ = 1√

νN
. (7)

Let us draw some conclusions.

1. According to Eq. (6), the minimum uncertainty �χ̃ scales as the inverse of the number
of particles N. This is usually referred to as the Heisenberg limit [28–40], considered the
best that can be done with linear schemes. Nevertheless, other schemes where the probe
state |ψ〉 may be different for different repetitions can achieve a better use of resources,
leading to uncertainties �χ̃ scaling as 1/(ν N) [40–43].

2. The optimum resolution requires the probe to be prepared in a maximally entan-
gled state (i.e., it cannot be expressed as a product of states in the corresponding
modes) |ψ〉 ∝ |j, j 〉 + |j,−j 〉 in the angular-momentum basis, equivalent to |ψ〉 ∝
|N〉1|0〉2 + |0〉1|N〉2 in the particle-number basis. This is a coherent superposition of
extreme distinguishable states, with all particles in one mode or the other (Schrödinger
cat states or N00N states) [28,29,42–50].

3. As an alternative to the N00N states, the Heisenberg limit can also be approached by
probes prepared in SU(2) squeezed states [9,51–59].

4. When using probes in coherent states (this is often regarded as equivalent to unentangled
particles), the uncertainty in Eq. (7) scales as the inverse of the square root of the number
of particles. This uncertainty is much larger than the Heisenberg limit in Eq. (6), referred
to as the standard quantum limit [29,60].

5. Some approaches to quantum linear metrology propose to reach the Heisenberg limit with
classical states [14,28,42,43,61,62] by using multiround or sequential protocols, where
the same probe experiences the same signal-induced transformation several times. As
stated in Ref. 14, the number of interactions is a discrete version of the evolution time τ .
Increasing evolution time generally improves sensitivity, since χ ∝ τ . As pointed out in
Ref. 28, multiround protocols are an example of the frequent interplay between time and
entanglement in quantum information. From a different perspective, this can be regarded
as signal amplification with gain given by the number of rounds. Incidentally, nonlinear
schemes might be regarded also as operating via signal amplification, as discussed in
detail in Sec. 4.3.

In any case, it seems that a proper comparison between different schemes (this is with
different |ψ〉 and G) should be done on an equal-time basis, considering the same number
of applications of the transformation. When this is done it arises that for linear schemes,
resolution beyond coherent states requires nonclassical probes [21].

3.1.2 Nonlinear schemes

To be more specific, we consider G = J 2
z so that, for N � 1,

Gmax = N2

4
� Gmin, (8)

and

�G = N2

8
, �χ̃ = 4√

νN2
. (9)

Thus, with the same number of particles N, the uncertainty in nonlinear schemes can be
much smaller than in linear schemes, so we can say that nonlinear schemes provide resolution
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beyond the Heisenberg limit. It might be argued that for different generators the Heisenberg
limit should be different [24]. Leaving aside terminology, we stress that the key point is the
different dependence on the number of particles N in Eqs. (6) and (9).

Also, for nonlinear schemes optimum resolution requires entangled probes, perhaps with the
only exception of the scheme proposed in Ref. 12. The optimum uncertainty can be approached
also using SU(2) squeezed states [9].

When considering probes prepared in SU(2) coherent states, the maximum variance for J 2
z

is obtained for θ = π/4, leading to [10]

�G = N3/2

4
, �χ̃ = 2√

νN3/2
. (10)

This uncertainty is larger than Eq. (9), although this is still
√

N times smaller than the
Heisenberg limit in Eq. (6). We emphasize that this is perhaps the key point of nonlinear
detection schemes: improvement of resolution by robust classical states.

3.2 Unbounded Number of Particles

When there is no restriction on the total number of particles, we have that G is usually unbounded,
so there is no way to establish an upperbound on �G, even for a fixed mean number of
particles [27,38–40]. As a very simple example let us consider the variance of the number
operator G = n̂ in the probe state (in the photon-number basis)

|ψ〉 =
√

1 − p|0〉 + √
p|n/p〉, (11)

where 1 ≥ p > 0. It should be understood that n/p is an integer. The mean number of photons is
〈n̂〉 = n for all p, while its uncertainty is

�n̂ = n

√
1 − p

p
. (12)

Therefore, when p → 0, we have �n̂ → ∞. It seems that we would have arbitrarily high
resolution �χ̃ → 0 with any fixed mean number of photons 〈n̂〉 = n, in contradiction with the
usual idea of quantum limit. In a similar approach, Ref. 63 claims to beat the Heisenberg limit
in a linear scheme with G = Jx if the probe is prepared in the mixed state (in the photon-number
basis)

ρ = (1 − p)|0, 0〉〈0, 0| + p|n/p, n/p〉〈n/p, n/p|, (13)

where |n1, n2〉 = |n1〉1|n2〉2 and n/p is an integer, leading to

(�Jx)2 = 1

2

(
n2

p
+ n

)
, 〈N̂〉 = 2n, (14)

so that again �Jx → ∞ when p → 0 for a constant mean number of photons.
This seems paradoxical, since in both examples for p → 0 the probe tends to be in the vacuum

state, which is fully insensitive to phase changes. This recalls a similar difficulty when using
reciprocal peak likelihood [27,64,65]. Perhaps the reason for this behavior is the nonlinearity of
Fisher information and variance that overestimates the contribution of large photon numbers,
even if their probabilities are small. This has prompted the investigation of other measures of
fluctuations [66–79]. We do not discuss to what extent Eqs. (12) and (14) are meaningful results.
In particular, this would affect equally linear and nonlinear schemes, so this is not crucial for the
objectives of this work. Thus, cum granum salis, perhaps we should refer to Heisenberg scaling
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rather than to the Heisenberg limit to emphasize the dependence with the number of particles,
rather than claim the existence of an absolute lower bound.

Leaving aside these details, most analyses assume that the same limits of the bounded case
hold simply by replacing the total number N by the mean number of particles 〈N̂〉 or 〈n̂〉.
Concerning nonlinear schemes, the most simple example in the single-mode case is G = n̂k .
Variance scaling as �G ∝ 〈n̂〉k can be reached by quadrature squeezed states, while quadrature
coherent states lead to �G ∝ 〈n̂〉k−1/2 [7,10,16].

Within this same framework, it has been shown that in nonlinear schemes, mixed classical
states can lead to larger resolution than quadrature coherent states [21], which are pure states,
contrary to what happens in linear schemes. This is revealed by the following probe state with
density matrix

ρ = (1 − p)|0〉〈0| + p|α/
√

p〉〈α/
√

p|, (15)

where |α/
√

p〉 is a coherent state, |0〉 is the vacuum, and 1 ≥ p > 0, which includes the coherent
state |α〉 for p = 1. The mean number of photons is the same 〈n̂〉 = |α|2 for every p. For G = n̂2

and |α| � 1, it holds that

�G = 2
〈n̂〉3/2

p
, �χ̃ = p

4
√

ν〈n̂〉3/2
, (16)

so that �χ̃ → 0 as p → 0, always with the same fixed mean number of particles. By contrast,
in the linear scheme G = n̂ for the same probe in Eq. (15) we get that �χ̃ does not depend on p.

This recalls the prior paradox around Eqs. (12) and (14). However, in this case there is a
simple reasoning showing that this is a fully meaningful result. The ν times repetition of the
measurement with the probe in Eq. (15) is equivalent to νp repetitions with probe |α/

√
p〉.

Since nonlinearity greatly benefits large photon numbers, the best strategy is to put as many
photons as possible together, even at the price of getting fewer useful runs, say up to νp ∼ 1.
This behavior cannot be attributed to variance features, since it does not hold in the linear case.

4 Nonlinear Detection Schemes

Next we provide a more detailed account of the material published on quantum limits of nonlinear
detection schemes, commenting on some specific items.

4.1 Practical Implementations

Essentially three basic schemes have been considered: atom-light interaction, light-light coupling
via nonlinear optics, and atom-atom interactions, typically in Bose-Einstein condensates. Only
the proposal in Ref. 14 dealing with nanomechanical resonators is somewhat out of this scope,
although it can be clearly pictured as a nonlinear interferometer.

4.1.1 Atom-light interaction

Most proposals based on atom-light interactions are nonresonant, with a typical generator
G = n̂Jz, where Jz refers to a component of the collective atomic spin [1–3]. This is essentially
the same transformations arising in Faraday rotation [80–82] and the basis of signal amplification
further discussed in Sec. 4.3. In Ref. 3 there is a slight variation in the form G = X Jz, where
X ∝ a + a† is a field quadrature, that can be obtained from G = n̂Jz by a large displacement
of the field complex amplitude a.

Reference 12 proposes a generalized resonant Jaynes-Cummings model, where a light mode
of frequency Nω interacts with a molecule made of N two-level atoms of internal energies �ω,
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via a coupling of the form

G ∝ a
N⊗

k=1

[
σ (k)

x + iσ (k)
y

] + HC, (17)

where σ
(k)
x,y are the Pauli matrices for the k’th atom, and HC means Hermitian conjugated. This

coupling produces the following evolution when the initial atomic state is |j, m = j 〉 (i.e., all
particles in the same mode),

eiχG|j, j 〉 → cos
(
2N−1χ

) |j, j 〉 − i sin
(
2N−1χ

) |j,−j 〉. (18)

As pointed out in Ref. 6, in this case the generator depends on N, so that when the number
of atom changes, the interaction changes, which is somewhat peculiar. This might be the reason
why this scheme reaches a resolution scaling exponentially �χ̃ = 1/2N instead of the most
typical polynomial form.

Within this same framework we can place the proposals of the magnetometer in Refs. 17 and
18, where a far-detuned laser beam passes twice through an atomic sample as it undergoes the
Larmor precession, continuously observing the polarization of the light beam using techniques
of quantum filtering. As stated by the authors, this double-pass scheme mimics a nonlinear
magnetic interaction, although it is not trivial to explain the emergence of nonlinearity from
effective linear couplings and formulate it resembling more typical nonlinear or multibody
interactions.

Finally, the approach in Refs. 22 and 25 considers a near-resonant atom-light interaction
leading to coupling terms of the form G ∝ S�Jk + S2

mJn, where S� are field Stokes operators
and Jk are components of the collective atomic spin, with the possibility of tuning the linear
and nonlinear parts. Within this scheme, Ref. 25 presents an experimental demonstration of
the sensitivity scaling in Eq. (10) obtained by letting pulses of polarized light interact with an
ensemble of 106 cold 87Rb atoms in a dipole trap, and probing one component of the collective
angular momentum via measurements of the polarization changes in the light.

4.1.2 Nonlinear optics

Typical effective generators for light propagation in nonresonant nonlinear media are given by
powers and products of photon-number operators of the form G = n̂k in a single-mode approach
[4,5,7,8,16,24], G = J 2

z in a two-mode scheme [4], G = ⊗k
j n̂j in a multimode configuration [7],

or even G = �j n̂
k
j [23].

4.1.3 Bose-Einstein condensates

Most of the proposals based on atomic systems focus on two-mode Bose-Einstein condensates
[6,9–11,13,15,19], where each mode corresponds to a different internal atomic state, typically
two hyperfine levels. The most common generator is of the form G = J 2

z , arising from two-body
collisions. Nevertheless, under some specific circumstances nonlinear terms of the form J 2

z can
be negligible, and the relevant leading term can be of the form G = N̂Jz [13,15,19], which is
extremely interesting concerning the role of entanglement and amplification, as shown later. The
signal χ is the strength of the two-body interaction being proportional to the scattering lengths.
They can be tuned by varying an external magnetic field, and depend on the electron-to-proton
mass ratio [9]. In Refs. 13,15, and 19, there are complete analyses of potential problems and
challenges of such implementation, including the dependence of the nonlinear coupling with
the number of atoms. In Refs. 6 and 10, there are very general analyses in terms of generators
involving symmetric k-body terms. In Ref. 9, the implementation via fermionic atoms in an
optical lattice loaded with one atom per site is discussed, with the advantage that losses are
suppressed.
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4.2 Role of Entanglement

Entanglement enters at two stages: entanglement carried by the probe and entanglement caused
by the nonlinear transformation during detection.

4.2.1 Entangled probes

As we have shown in Sec. 3.1, optimum probes are usually entangled [28,29,83,84]. The only
exception is in the proposal in Ref. 12, where the optimum resolution is seemingly reached by
a separable probe.

For linear schemes, improved resolution beyond the one provided by coherent states requires
first and foremost nonclassicality of the probe [21,85] (the situation is different for nonlinear
schemes, as shown in Sec. 3.2 [21]). In turn, for distinguishable two-level particles, nonclassical-
ity is equivalent to entanglement, because all states in 2-D spaces are classical [59]. For identical
particles such as photons or Bose-Einstein condensates, the role of entanglement is much more
obscure. On the one hand, entanglement plays no role in single-mode schemes. On the other
hand, for two-mode schemes there are mode-factorized nonclassical states |ψ1〉|ψ2〉, where |ψj 〉
is in the mode with complex amplitude aj (such as the product of quadrature squeezed states)
that reach Heisenberg scaling [86]. Thus, it seems that the key point for improved resolution is
nonclassicality rather than entanglement.

From a more practical perspective, most analyses focus on the resolution achievable with
classical or separable probes. Actually, there are few works considering in some detail nonclas-
sical or entangled probes. In Ref. 9, the probe is prepared in an SU(2) squeezed state reaching
maximum resolution for G = J 2

z , while in Ref. 16, quadrature squeezed probes are considered
in a single-mode configuration with G = n̂k , showing that they can reach maximum resolution
with the same amount of squeezing for all k.

4.2.2 Signal-induced entanglement

It has been debated whether the improved resolution provided by nonlinear schemes is due
to entanglement caused by the signal-induced nonlinear transformation during the detection
process, as more or less directly suggested in Refs. 6,9, and 12. In fact, the same nonlinear
generators considered here for the signal transformation were proposed previously to produce
the nonclassical probes reaching optimum resolution in linear schemes.

However, there are some conclusive arguments showing that entanglement plays no role, and
even might be counterproductive [7,10,11,13,15,23]. A very first proof is provided by the single-
mode schemes in quantum optics [1–5,8,16], since for single-mode photons there is no room
for entanglement. Moreover, in Ref. 7 there is a simple comparison between single-mode and
multimode configurations showing that, ceteris paribus, single-mode transformations provide
better performance than multimode entangling ones. A similar conclusion has been reached in
Ref. 23, showing that for nonlinear generators the best strategy is to concentrate all resources in
a single mode instead of splitting them over many modes.

Further conclusive proofs are provided in Refs. 10 and 13. In Ref. 10 there is a very
illustrative model showing that signal-generated entanglement becomes negligible (see the
linearization in Sec. 4.3). An even more convincing argument is presented in Ref. 13, where a
generator G = N̂Jz is suitably engineered, where N̂ is the total number operator, so that the
signal-induced transformation does not produce entanglement at all. Moreover, it is argued in
Refs. 11,13, and 15 that entanglement may lead to phase dispersion that, far from being an aid,
prevents reaching optimum resolution.

Next we discuss that built-in signal amplification, rather than entanglement, serves to account
for the improved performance of nonlinear schemes.
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4.3 Phase Amplification

Here we present an intuitive picture of the enhancement of resolution caused by nonlinear
processes. Let us consider the simplest single-mode situation, comparing the linear G = n̂ and
nonlinear schemes G = n̂2, with a probe in a coherent state |α〉 in both cases. In the linear
arrangement, the mean value of the complex amplitude in the transformed state is

〈ψχ |a|ψχ 〉 = αeiχ , |ψχ 〉 = exp(iχG)|α〉, (19)

where |ψχ 〉 = exp(iχn̂)|α〉 = |αeiχ 〉 is a coherent state with complex amplitude α exp(i χ ). On
the other hand, in the nonlinear case with G = n̂2, we have

〈ψχ |a|ψχ 〉 = αeiχ 〈α|αei2χ 〉 = αeiχe−2|α|2 sin2 χei|α|2 sin(2χ), (20)

where we have used af (n̂) = f (n̂ + 1)a. This can be simplified if χ � 1 and |α|χ � 1

〈ψχ |a|ψχ 〉  αei2〈n̂〉χ , (21)

with 〈n̂〉 = |α|2. Comparing Eqs. (19) and (21), we see that in the nonlinear case there is an
effective and noiseless amplification of the signal χ → 2〈n̂〉χ [1,2,13], which is referred to as
increased or enhanced rotation in Refs. 10 and 15. The signal amplification is also very clear in
Ref. 12 [see Eq. (18)]. Moreover, in Refs. 17 and 18, it is explicitly stated that the improvement
arises from amplification of the Larmor precession.

A different approximation leading to an equivalent conclusion for our purposes considers,
prior to performing any transformation, the linearization of n̂2 around its mean value (roughly
speaking valid provided that �n̂ � 〈n̂〉),

n̂2  〈n̂〉2 + 2〈n̂〉 (n̂ − 〈n̂〉) → 2〈n̂〉n̂, (22)

where the constant terms 〈n̂〉2 can be ignored, since they lead to global phases that play no
essential role. This is the uniform-fringe approximation J 2

z → 2〈Jz〉Jz considered in Refs. 10
and 15. Within this limit both phase dispersion and signal-induced entanglement disappear, and
an initial coherent probe state remains always coherent |ψχ 〉  |α exp(i2〈n̂〉χ )〉.

4.3.1 Phase ambiguity

Phase-shift amplification unavoidably implies signal ambiguity, since in the previous example
in Eq. (21) we have that χ and χ + π/〈n̂〉 produce the same effects. This parallels the free
spectral range in spectroscopic measurements using Fabry-Perot interferometers or diffraction
gratings. It can be avoided by suitably distributing the measurement into several steps of different
precision [10,40–43,61,62]. Otherwise, the signal must be known with a prior uncertainty of the
order of 1/〈n̂〉. The posterior resolution after ν repetitions of the measurement with the probe in
a coherent state is of the order of 1/(

√
ν〈n̂〉3/2), so even in such a case there is an improvement

of resolution by a factor
√

ν〈n̂〉 from the prior to posterior situations.

4.4 Robustness Against Practical Imperfections

A relevant feature of nonlinear detection is the possibility of reducing uncertainty with classical
probe states. This is an interesting property, because nonclassical states tend to be fragile against
practical imperfections [87–90]. Thus, unlike other applications of quantum theory, quantum
metrology might not face formidable problems fighting decoherence [12]. The robustness of
nonlinear schemes against photon and atom losses, inefficient detectors, damping, and atomic
decoherence has been addressed in most of the proposals [2,3,5,9,10,14–16].

The conclusion is that for classical probes, practical imperfections lead to a reduction of
sensitivity without affecting scaling with the number of particles [10]. In this context, there are
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some differences between the conclusions of the analyses in Refs. 9 and 10, perhaps due to the
different optimum probe considered.

5 Conclusions

We hope to have included all proposals introduced so far in the new area of quantum nonlinear
metrology. These works confirm that nonlinear schemes allow us to put quantum limits farther
than linear schemes. Much remains to be done, especially concerning experimental confirmations
and applications, and extending its usefulness to a wider range of signals. To this end, a key
point is the possibility of using classical probes because of their robustness against practical
imperfections. In any case, we think that this issue provides a deeper understanding of quantum
metrology.

6 Appendix A: Atom-Photon Equivalence

Bose-Einstein condensates and photons can be described alike in terms of annihilation operators
or complex amplitude operators ak with commutation relation [ak, a

†
�] = δk,�. The index k

typically represents internal energies, minima of trapping potentials, spin or polarization states,
frequency, or spatial distributions, such as input, internal, or output arms of interferometers.

For two-mode situations, the following operators are especially useful [91,92]

N̂ = a
†
1a1 + a

†
2a2, Jx = 1

2

(
a
†
2a1 + a

†
1a2

)
,

Jy = i
2

(
a
†
2a1 − a

†
1a2

)
, Jz = 1

2

(
a
†
1a1 − a

†
2a2

)
,

(23)

satisfying the angular-momentum commutation relations

[Jk, J�] = i
∑

n=x,y,z

εk,�,nJn, [N̂, J] = 0, (24)

with

J 2 = N̂

2

(
N̂

2
+ 1

)
, (25)

where εk,�,n is the fully antisymmetric tensor with εx,y,z = 1. The operator N̂ is the total number
of particles, while Jz is proportional to the difference of the number of particles in the two
modes. There is the following useful correspondence

|j,m〉 = |n1 = j + m〉|n2 = j − m〉, (26)

between the standard angular-momentum basis |j,m〉 of simultaneous eigenvectors of Jz and
J 2, i. e., Jz| j,m〉 = m| j,m〉, J 2| j,m〉 = j (j + 1)| j,m〉, and the product of number states in
the two modes |n1〉1|n2〉2 with a

†
j aj |nj 〉j = nj |nj 〉j .

For N two-level atoms, we can consider also the collective spin picture

N̂ =
N∑

k=1

σ
(k)
0 , J = 1

2

N∑
k=1

σ (k), (27)

where σ (k) are the Pauli matrices acting on the two-level space of the k’th particle spanned by
| ↑,↓〉k

σ
(k)
0 = | ↑〉k〈↑ | + | ↓〉k〈↓ |, σ (k)

x = 1
2 (| ↓〉k〈↑ | + | ↑〉k〈↓ |) ,

σ
(k)
y = i

2 (| ↓〉k〈↑ | − | ↑〉k〈↓ |) , σ
(k)
z = 1

2 (| ↑〉k〈↑ | − | ↓〉k〈↓ |) .
(28)
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7 Appendix B: Classical and Nonclassical States

Nonclassicality is a relevant issue in quantum metrology. The common wisdom is that the
ultimate quantum limits can be approached exclusively by nonclassical or entangled states, this
being a paradigm of practical applications of quantum physics.

7.1 Classical States

The most famous classical states, and the only ones that are pure states, are quadrature coherent
states |α〉, which are eigenstates of the complex amplitude operator a|α〉 = α|α〉 [93–96]. In the
number basis read

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉. (29)

The most general classical state is given by a random distribution of coherent states |α〉,
where the random amplitude α follows any real, positive, and normalized distribution P(α).
Nevertheless, the classical/nonclassical frontier is somewhat misty [97–103].

Two-mode coherent states |α1〉|α2〉 define the SU(2) coherent states |N,�〉 as [104,105]

|α1〉|α2〉 = e−r2/2
∞∑

N=0

rNeiNδ

√
N !

| j = N/2,�〉, (30)

with (up to a global phase)

| j,�〉 =
j∑

m=−j

⎛
⎝ 2j

j + m

⎞
⎠

1/2 (
sin

θ

2

)j+m (
cos

θ

2

)j−m

e−imφ|j,m〉, (31)

where � represents the pair of state parameters θ, φ. The quadrature and SU(2) state parameters
are connected by the relations

α1 = r sin
θ

2
eiδe−iφ, α2 = r cos

θ

2
eiδ. (32)

SU(2) coherent states are considered classical concerning just angular-momentum variables
[106], but they are nonclassical from a wider two-mode perspective. For example, the polar
SU(2) coherent states θ = 0, π, are the product of number states |n〉1|0〉2, |0〉1|n〉2, and therefore
nonclassical.

For distinguishable particles, the SU(2) coherent states factorize as the product of identical
single-particle states

| j = N/2,�〉 = N⊗
k=1

|j = 1/2,�〉k, (33)

where | j = N/2,�〉k are SU(2) coherent states for j = 1/2

| j = 1/2,�〉 = sin
θ

2
e−iφ/2| ↑〉k + cos

θ

2
eiφ/2| ↓〉k, (34)

and it can be appreciated that for j = 1/2, every pure state is an SU(2) coherent state. This
relation supports the general understanding of coherent states as unentangled, and accordingly,
nonclassical states as entangled. In this regard, note that SU(2) coherent states are in general
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mode-entangled in the sense that | j,�〉 �= |ψ1〉1|ψ2〉2, where |ψj 〉j are arbitrary states in the
corresponding mode aj.

7.2 Nonclassical States

Most famous nonclassical states related to precision metrology are as follows.

1. Two-mode number states |n1〉1|n2〉2, with n1n2 �= 0, this is to say |j,m �= ±j 〉, especially
cases with the same number of photons in each mode |n〉1|n〉2 = | j = n,m = 0〉 [107–
109], which can be regarded as the limit of SU(2) squeezed states [36,37,51–58].

2. Quadrature squeezed states: these are states with fluctuations of a rotated quadrature
Xϕ = eiϕa + e−iϕa† smaller than for quadrature coherent states [93–95].

3. SU(2) squeezed states: there are several definitions of SU(2) or spin squeezing [36,37,
51–58]. The most meaningful criteria are based on the angular-momentum components
J⊥ orthogonal to the average vector 〈J〉, so that by definition 〈J⊥〉 = 0. The general idea
is that �J⊥, or a suitable function of �J⊥ and |〈J〉|, should be smaller than its value
for SU(2) coherent states with 〈J⊥〉 = 0. From the single-particle perspective discussed
before, SU(2) squeezing would imply entanglement.

4. Schrödinger cat states or N00N states [44–50]: these are coherent superpositions of
distinguishable states of the form (in the number and spin bases)

1√
2

(|n〉1|0〉2 + |0〉1|n〉2) = 1√
2

(|j, j 〉 + |j,−j 〉) . (35)

5. Phase states [92]: deep down, interferometry is related with phase-difference statistics.
The states that represent this variable in the quantum domain are the phase-difference
states

|j, φ〉 = 1√
2j + 1

j∑
m=−j

e−imφ|j,m〉. (36)

There are no simple procedures of generating or measuring these states, so that sometimes
they are replaced by equatorial SU(2) coherent states | j,�〉 with θ = π/2 [110–112].

8 Appendix C: Data Analysis

In our context, our main interest is placed in the estimation of the signal uncertainty �χ̃ , since
this allows us to compare schemes with different generators and determine optimum probes
and measurements. Throughout we assume that the signal χ is small enough to simplify some
expressions by series expansions on powers of χ retaining just the lower one. This is justified,
since quantum limits are usually concerned with the detection of very weak signals.

8.1 Signal-to-Noise Ratio

A convenient performance measure is the signal-to-noise ratio (see Fig. 3)

S

N
= √

ν

∣∣〈M〉χ − 〈M〉0

∣∣
�M

 χ
√

ν

∣∣∣ ∂〈M〉χ
∂χ

∣∣∣
χ=0

�M
, (37)
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m

P(m )
P(m )0

M

Fig. 3 Signal-induced shift χ of the statistics of the observable M.

where �M is the variance of M in the probe state |ψ〉, ν is the number of repetitions of the
measurement (assumed independent), and we considered the weak-signal approximation

〈M〉χ = 〈ψχ |M|ψχ 〉  〈M〉0 + χ
∂〈M〉χ

∂χ

∣∣∣∣
χ=0

, (38)

being

∣∣∣∣∂〈M〉χ
∂χ

∣∣∣∣
χ=0

= |〈ψ |[M,G]|ψ〉|. (39)

The minimum signal that can be detected (referred to as �χ̃ ) can be estimated as the signal
leading to unit signal-to-noise ratio

S

N
= 1 → �χ̃ = �M

√
ν

∣∣∣ ∂〈M〉χ
∂χ

∣∣∣
χ=0

≥ 1

2
√

ν�G
, (40)

where the Heisenberg uncertainty relation has been used,

�G�M ≥ 1

2
|〈[M,G]〉| = 1

2

∣∣∣∣∂〈M〉χ
∂χ

∣∣∣∣ . (41)

Equation (40) is essentially an error propagation in the inversion of Eq. (38),

χ̃ = 〈M〉χ − 〈M〉0

∂〈M〉χ
∂χ

∣∣∣
χ=0

. (42)

In principle, from Eqs. (40) and (41) it seems that optimum resolution requires both equality
in the uncertainty relation in Eq. (41) and maximum �G. However, these two conditions may
be not compatible [16].

The main advantage of the signal-to-noise ratio is simplicity, allowing meaningful conclu-
sions with very simple calculus. Nevertheless, relevant situations are excluded. For example, it
may happen that 〈M〉χ = 0 for all χ . This holds in linear schemes for relevant probes such as
|j, 0〉 and |j, j 〉 + | j,−j 〉. This might be avoided by considering that 〈Mk〉χ �= 0 for a suitable
integer k (otherwise, the measurement would be useless). Moreover, 〈M〉χ may be a periodic
function of χ , so that no single χ̃ can be inferred from Eqs. (38) or (42), for example (see Sec.
4.3).
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8.2 Fisher Information

A more powerful analysis considers a Bayesian strategy to get a probability distribution rep-
resenting our knowledge about the signal after the outcome m in the measurement of M
as [65,113–120]

P (χ |m) ∝ P (m|χ )P (χ ), (43)

where P(χ ) is the prior information about χ that may include the outcomes of previous mea-
surements. The posterior distribution P(χ |m) can be used to infer the best value for χ and its
uncertainty, for example via a maximum likelihood strategy.

In any case, the minimum uncertainty of any unbiased and efficient estimator χ̃ is given by
the Cramer-Rao lower bound [65,113–118]

�χ̃ = 1√
νF

, F =
∑
m

1

P (m|χ )

(
∂P (m|χ )

∂χ

)2

, (44)

where F is the Fisher information. This is a measure of the information that m provides about χ .
In particular, the Cramer-Rao lower bound coincides with the signal-to-noise ratio in Eq. (40)
when P (m|χ ) is a Gaussian with a width independent of χ (assuming for simplicity that m is a
continuous variable)

P (m|χ ) = 1√
2π�M

exp

[
−

(
m − 〈M〉χ

)2

2 (�M)2

]
, (45)

while in general [35]

�M∣∣∣ ∂〈M〉χ
∂χ

∣∣∣ ≥ 1√
F

, (46)

where equality is reached for the minimum uncertainty states of Eq. (41) [see Eq. (52)].
The signal-to-noise ratio in Eq. (37) is a measure of how close 〈M〉χ and 〈M〉0 are. Equiva-

lently, the Fisher information is a measure of how close P (m|χ ) and P (m|χ = 0) are. For small
enough χ

1

2

∑
m

[√
P (m|χ ) −

√
P (m|0)

]2
= 1 −

∑
m

√
P (m|χ )P (m|0)  1

8
χ2F. (47)

8.3 Quantum Fisher Information and Intrinsic Resolution

The two previous performance measures naturally depend on the actual measurement M per-
formed. It can be also interesting to use assessments independent of M, representing the optimum
results that can be obtained with any measurement. This can be addressed by considering the
distance between the input |ψ〉 and output |ψχ 〉 probe states. For example, in terms of the
corresponding density matrices ρ and ρχ , the Bures distance gives [119,120]

D2 = 1 − tr
(√

ρρχ

√
ρ
)1/2  1

8
χ2FQ, FQ = 2

∑
k,�

(pk − p�)2

pk + p�

|〈ψk|G|ψ�〉|2 , (48)

where pk, |ψk〉 are the eigenvalues and eigenvectors, respectively, of ρ (for a simpler alternative
via the Hilbert-Schmidt distance, see Ref. 85). It is worth noting that in general, FQ does not
depend on χ [121].

SPIE Reviews 018006-15 Vol. 1, 2010



Luis: Quantum-limited metrology with nonlinear detection schemes. . .

FQ is the maximum F over all possible measurements M, so that F ≤ FQ [119], and the
following quantum Cramer-Rao minimum uncertainty holds [79,117–119]

�χ̃ = 1√
νFQ

. (49)

Since

FQ ≤ 4 (�G)2 , (50)

where the equality holds for pure states, the minimum uncertainty scales as [119,120]

�χ̃ = 1

2
√

ν�G
, (51)

so that the quantum Cramer-Rao lower bound seemingly leads to the same conclusion of the
signal-to-noise ratio in Eq. (40), but without involving the uncertainty relation in Eq. (41).

Finally, the previous performance measures satisfy the following chain of inequalities [35]

�M∣∣∣ ∂〈M〉χ
∂χ

∣∣∣ ≥ 1√
F

≥ 1√
FQ

≥ 1

2�G
, (52)

where all equalities are satisfied simultaneously for the minimum uncertainty states of Eq. (41).
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[84] P. Hyllus, L. Pezzé, and A. Smerzi, “Entanglement and sensitivity in precision measure-

ments with states of a fluctuating number of particles,” e-print arXiv:quant-ph/1003.0649.
[85] A. Rivas and A. Luis, “Intrinsic metrological resolution as a distance measure and

nonclassical light,” Phys. Rev. A 77, 063813 (2008).

SPIE Reviews 018006-19 Vol. 1, 2010

http://dx.doi.org/10.1103/PhysRevLett.95.120502
http://dx.doi.org/10.1103/PhysRevLett.45.75
http://dx.doi.org/10.1103/PhysRevLett.91.217905
http://dx.doi.org/10.1103/PhysRevA.72.042301
http://dx.doi.org/10.1103/PhysRevLett.104.103602
http://dx.doi.org/10.1088/0954-8998/4/1/004
http://dx.doi.org/10.1103/PhysRevLett.69.2153
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1103/PhysRevLett.50.631
http://dx.doi.org/10.1103/PhysRevD.35.3070
http://dx.doi.org/10.1103/PhysRevLett.60.1103
http://dx.doi.org/10.1103/PhysRevLett.60.1103
http://dx.doi.org/10.1088/0305-4470/23/7/013
http://dx.doi.org/10.1103/PhysRevA.59.2602
http://dx.doi.org/10.1119/1.1503380
http://dx.doi.org/10.1080/09500340410001663954
http://dx.doi.org/10.1103/PhysRevA.74.052101
http://dx.doi.org/10.1364/OL.31.003644
http://dx.doi.org/10.1103/PhysRevA.75.052115
http://dx.doi.org/10.1016/j.physa.2008.04.010
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1209/epl/i1998-00277-9
http://dx.doi.org/10.1103/PhysRevLett.85.1594
http://dx.doi.org/10.1103/PhysRevLett.104.013602
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevA.77.063813


Luis: Quantum-limited metrology with nonlinear detection schemes. . .

[86] A. Rivas and A. Luis, private communication (2010).
[87] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac,

“Improvement of frequency standards with quantum entanglement,” Phys. Rev. Lett. 79,
3865–3868 (1997).

[88] M. A. Rubin and S. Kaushik, “Loss-induced limits to phase measurement precision with
maximally entangled states,” Phys. Rev. A 75, 053805 (2007).

[89] G. Gilbert, M. Hamrick, and Y. S. Weinstein, “Use of maximally entangled N-photon
states for practical quantum interferometry,” J. Opt. Soc. Am. B 25, 1336–1340 (2008).

[90] U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K.
Banaszek, and I. A. Walmsley, “Optimal quantum phase estimation,” Phys. Rev. Lett.
102, 040403 (2009).

[91] J. Schwinger, Quantum Theory of Angular Momentum, Academic Press, New York
(1965).

[92] A. Luis and L. L. Sánchez-Soto, “Quantum phase difference, phase measurements and
Stokes operators,” in Prog. Opt. 41, 421–481 (2000).

[93] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University
Press, Cambridge, England (1995).

[94] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cam-
bridge, England (1997).

[95] C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University Press,
Cambridge, England (2005).

[96] J. R. Klauder and B.S. Skagerstam, Coherent States: Applications in Physics and Math-
ematical Physics, World Scientific, Singapore (1985).

[97] J. A. Vaccaro, “New Wigner function for number and phase,” Opt. Commun. 113,
421–426 (1995).

[98] J. A. Vaccaro, “Number-phase Wigner function on Fock space,” Phys. Rev. A 52,
3474–3488 (1995).

[99] J. A. Vaccaro and D. T. Pegg, “Wigner function for number and phase,” Phys. Rev. A 41,
5156–5163 (1990).

[100] L. M. Johansen, “Nonclassical properties of coherent states,” Phys. Lett. A 329, 184–187
(2004).

[101] L. M. Johansen, “Nonclassicality of thermal radiation,” J. Opt. B: Quantum Semiclassical
Opt. 6, L21-L24 (2004).

[102] L. M. Johansen and A. Luis, “Nonclassicality in weak measurements,” Phys. Rev. A 70,
052115 (2004).

[103] A. Luis, “Nonclassical polarization states,” Phys. Rev. A 73, 063806 (2006).
[104] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, “Atomic coherent states in

quantum optics,” Phys. Rev. A 6, 2211–2237 (1972).
[105] P. W. Atkins and J. C. Dobson, “Angular momentum coherent states,” Proc. R. Soc.

London Ser. A 321, 321–340 (1971).
[106] O. Giraud, P. Braun, and D. Braun, “Classicality of spin states,” Phys. Rev. A 78, 042112

(2008).
[107] J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. A. Campos, M. C. Teich, and B.

E. A. Saleh, “Two-photon interference in a Mach-Zehnder interferometer,” Phys. Rev.
Lett. 65, 1348–1351 (1990).

[108] M. J. Holland and K. Burnett, “Interferometric detection of optical phase shifts at the
Heisenberg limit,” Phys. Rev. Lett. 71, 1355–1358 (1993).

[109] P. Bouyer and M. A. Kasevich, “Heisenberg-limited spectroscopy with degenerate Bose-
Einstein gases,” Phys. Rev. A 56, R1083-R1086 (1997).

[110] A. J. Leggett and F. Sols, “On the concept of spontaneously broken gauge symmetry in
condensed matter physics,” Found. Phys. 21, 353–364 (1991).

[111] Y. Castin and J. Dalibard, “Relative phase of two Bose-Einstein condensates,” Phys. Rev.
A 55, 4330–4337 (1997).

SPIE Reviews 018006-20 Vol. 1, 2010

http://dx.doi.org/10.1103/PhysRevLett.79.3865
http://dx.doi.org/10.1103/PhysRevA.75.053805
http://dx.doi.org/10.1364/JOSAB.25.001336
http://dx.doi.org/10.1103/PhysRevLett.102.040403
http://dx.doi.org/10.1016/0030-4018(94)00620-A
http://dx.doi.org/10.1103/PhysRevA.52.3474
http://dx.doi.org/10.1103/PhysRevA.41.5156
http://dx.doi.org/10.1016/j.physleta.2004.07.003
http://dx.doi.org/10.1088/1464-4266/6/12/L01
http://dx.doi.org/10.1088/1464-4266/6/12/L01
http://dx.doi.org/10.1103/PhysRevA.70.052115 ignorespaces 
http://dx.doi.org/10.1103/PhysRevA.73.064303
http://dx.doi.org/10.1103/PhysRevA.6.2211
http://dx.doi.org/10.1098/rspa.1971.0035
http://dx.doi.org/10.1098/rspa.1971.0035
http://dx.doi.org/10.1103/PhysRevA.78.025802
http://dx.doi.org/10.1103/PhysRevLett.65.1348
http://dx.doi.org/10.1103/PhysRevLett.65.1348
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevA.56.2390
http://dx.doi.org/10.1007/BF01883640
http://dx.doi.org/10.1103/PhysRevA.55.4330
http://dx.doi.org/10.1103/PhysRevA.55.4330


Luis: Quantum-limited metrology with nonlinear detection schemes. . .

[112] A. Sinatra and Y. Castin, “Phase dynamics of Bose-Einstein condensates: losses versus
revivals,” Eur. Phys. J. D 4, 247–260 (1998).

[113] S. L. Braunstein, “Quantum limits on precision measurements of phase,” Phys. Rev. Lett.
69, 3598–3601 (1992).

[114] B. R. Frieden, “Fisher information and uncertainty complementarity,” Phys. Lett. A 169,
123–130 (1992).

[115] B. R. Frieden, Physics from Fisher Information: A Unification, Cambridge University
Press, Cambridge, England (1998).
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