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Abstract. Organic light-emitting diodes (OLEDs) are a key technology in solid state lighting.
Without a long-lived phosphorescent blue emitter, a hybrid concept based on phosphorescent red
and green emitters and a fluorescent blue emitter in a white OLED stack is a promising approach
for pure-white emission. Several challenges such as exciton recombination on all emitters and
triplet diffusion, as well as quenching, have to be overcome. To address these issues, a mixed-host
phosphorescent emission layer is employed. The mixture ratio is locally varied in the emission
layer. An interlayer separates the phosphorescent and fluorescent emission layer. Strategies to
tune the color coordinates are presented. The lifetime and color stability versus luminance are
investigated. At Commission Internationale de I’Eclairage color coordinates of 0.44/0.44, a
current efficacy of 28.0 cd/A (at 1000 cd/m2), and a luminous efficacy of 20.6 lm/W can be
measured. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3545966]
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1 Introduction

Along with a growing demand for efficient and energy-saving but nevertheless stylish illumina-
tion, organic light-emitting diodes (OLEDs) will play a major role in solid state lighting. Large
in area, but nevertheless thin, light, and possibly even flexible and transparent, a whole new
range of illumination designs can be realized by OLEDs. However, basic properties such as a
high efficiency and a long lifetime, have to be competitive and compatible with cost-efficient
high-volume production.1 A self-evident approach to improve basic properties of OLEDs is to
optimize the design of the light emitting organic layer stacks.

By combining red, green, and blue fluorescent emitters, a white light emitting organic layer
stack can be realized.2 The drawback of full fluorescent devices is the limitation in internal
quantum efficiency (IQE) due to spin statistics to 25%.3 Their external quantum efficiency
(EQE) will therefore most likely not be sufficiently competitive in the future. This restriction
in IQE can be overcome with phosphorescent emitters having an IQE of up to 100% and in
consequence a much higher EQE. At present, only red and green phosphorescent emitters offer
an acceptably long lifetime. Until long-lived blue phosphorescent emitters are synthesized, the
combination of a red and a green phosphorescent and a blue fluorescent emitter is a promising
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strategy for highly efficient white OLEDs.4 The combination of fluorescent and phosphorescent
emitters is termed hybrid.

In contrast to state-of-the-art hybrid white OLEDs processed by vacuum thermal evaporation
(VTE), this work focuses on OLEDs realized by organic vapor phase deposition (OVPD).5,6

High-volume OVPD production offers additional degrees of freedom compared to VTE allowing
novel and sophisticated device concepts regarding the emission layer (EL) design.7 In high-
volume in-line VTE production tools, sophisticated device concepts with many layers require
an increasing number of deposition chambers. This increases the cost of production. With an
increasing number of materials per layer, the realization of in-line VTE tools becomes even
more complicated and expensive. In OVPD tools instead, all organic materials are transported
via a carrier gas and mixed prior to deposition. Thus, high-volume tools with only one deposition
chamber and a high material efficiency can be realized.

Previously, phosphorescent two-color yellow OVPD OLED based on a mixed-host emission
layer8 have been investigated in terms of efficacy and color stability. The emission color was
easily tunable from red to green while the EQE was constantly high over the whole color
range. A hybrid white OLED based on a single bipolar conducting host material was presented
thereafter.9 In this work, a mixed-host yellow phosphorescent emission layer is combined with a
fluorescent blue emission layer to form a mixed-host hybrid white OVPD OLED. The advantage
of a mixed-host emission and exciton blocking layer will be discussed in terms of efficiency as
well as exciton blocking and quenching mechanisms. Furthermore, different concepts to tune
the color coordinates are presented. The color coordinate stability at increasing luminance and
lifetime are investigated.

The most important requirements for a hybrid white OLED suitable for general illumination
are the following: The Commission Internationale de I’Eclairage (CIE) color coordinates should
be situated on or close to the Planckian locus. For example, color coordinates of 0.45/0.41 match
a warm-white color impression, while color coordinates of 0.38/0.38 generate a more cold-white
one. The luminous efficacy should be more than 20 lm/W at 1000 cd/m2 for warm-white. The
lifetime at the same luminance should be longer than 10,000 h. To allow dimming of the light
source, stable color coordinates with changing luminance are preferred. During the lifetime of
the device, the color coordinates should not shift significantly.

2 Experimental

All OLEDs are processed by OVPD in AIXTRON tools, which allows to control all important
growth parameters (substrate temperature, deposition chamber pressure, carrier gas flows) indi-
vidually and most importantly guarantees stable growth rates over a long period of time. Crucial
growth parameters, such as the substrate temperature and the deposition rate, have to be set
carefully to achieve a smooth layer growth.10 In these experiments, the substrate temperature
is kept constant at 20◦C. The deposition chamber pressure is set to 0.9 mbar. Glass substrates
covered with 150 nm indium tin oxide (ITO) anodes are precleaned and the ITO is oxygen
plasma activated before processing.

Photometric measurements are performed by a Minolta Luminance Meter LS-110 and cali-
brated photodiodes, while voltages and currents are supplied and measured by a Keithley 2400
Source Meter. Spectra are recorded by an Instrument Systems CAS 140CT spectrometer. Ex-
cept when stated otherwise, all efficacy figures are measured at a luminance of 1000 cd/m2.
Lambertian emission is assumed for photometric calculations.

All small-molecule notations are consistently abbreviated as follows. TMM004 (Ref. 11) is
a prevailing electron-conducting and TCTA (4,4′,4′′-tris(N-carbazolyl)-triphenylamine) a pre-
vailing hole-conducting host material. TER031 (Ref. 11) is a phosphorescent red and Irppy (tris-
(phenyl-pyridyl)-Ir) a phosphorescent green emitter. SMB013/SEB115 (Ref. 11) is a fluorescent
blue host/guest emitter system. NPB (N,N′-diphenyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-
4,4′-diamine) is employed as hole transporter, whereas ETM001 is used as electron-transporting
material.

Journal of Photonics for Energy 011013-2 Vol. 1, 2011



Lindla et al.: Hybrid white organic light-emitting diode with a mixed-host interlayer...

Fig. 1 Hybrid white OLED stack with a phosphorescent red and green mixed-host emission layer
zone and a fluorescent blue emission layer separated by an exciton blocking interlayer.

In Fig. 1, the basic organic layer stack of the investigated hybrid white OLED can be seen.
NPB is utilized as hole injection and transport material followed by the mixed-host phospho-
rescent emission layer. Therein, TCTA is the hole-conducting host material, whereas electrons
are conducted by TMM004. One part of the phosphorescent emission layer is doped with red
emitter molecules (TER031) while the other part is doped with green emitter molecules (Irppy).
Between the phosphorescent and adjacent fluorescent emitting layer, an undoped interlayer
consisting of a mixture of TMM004 and TCTA is inserted. The fluorescent blue emission layer
consists of the electron-conducting host SMB013 and the hole-conducting emitter SEB115. Fol-
lowing the blue emission layer, TMM004 is deposited as an electron-blocking layer followed
by an ETM001-based electron injection and transport layer (ETL).

The mixed-host phosphorescent emission layer is based on cross-fading, e.g., the TCTA to
TMM004 ratio is locally varied in the emission layer. The material curves in Fig. 1 symbolize
the fraction of each material at a certain position in the organic layer.

3 Results and Discussion

In Fig. 2, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) energies of the described material layers can be seen.

The energy level diagram generally illustrates the advantage of a mixed-host matrix. The
LUMO of TMM004 and the HOMO of TCTA enclose the emitters, resulting in a low voltage
drop. Excitons are formed by carrier trapping on the phosphorescent molecules. Each host
material component can be optimized in terms of mobility for a single type of charge carrier and
the mixture guarantees a high mobility for both. This was confirmed by single-carrier devices
consisting of pure TCTA, pure TMM004, and mixtures with a varying ratio of both.

Furthermore, by cross-fading the hole and electron-conducting host material in the phos-
phorescent emission layer, the charge carrier mobilities can be locally optimized. At the

Fig. 2 HOMO and LUMO energies of the employed organic materials with TCTA as hole and
TMM004 as electron conductor.
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Fig. 3 Triplet energy levels of the employed organic materials and possible triplet exciton diffusion
paths.

phosphorescent to fluorescent emission layer interface, the ratio between hole- and electron-
conducting host and thus hole and electron mobility can be tuned to shift the exciton recombi-
nation more in the direction of the phosphorescent or fluorescent emission layer. If alternatively
a constant mixture was used, the ratio of hole- to electron-conducting host would be the same
over the whole phosphorescent emission layer. But obviously, close to the anode and NPB
hole-transport layer, no electron-conducting host is necessary. By lowering the available states
for hopping transport, this would rather reduce the hole mobility unnecessarily. Therefore, the
closer to the anode, the more should the ratio between hole and electron-conducting host mate-
rial be shifted to the hole conductor. Moreover, a charge-balanced device based on a constant
mixture of host materials generally is very sensitive to the mixture ratio or other small process
variations. This issue can be avoided with cross-faded emission layers. The following investiga-
tions will be based on cross-faded devices. Further details about cross-fading can also be found
elsewhere.8

In Fig. 3, the triplet energy levels of the different organic materials and possible triplet
exciton diffusion paths are qualitatively shown. By short range (<1 nm) Dexter transfer,12

triplet excitons can diffuse from Irppy to TER031 molecules. Quenching at the TER031/NPB
interface is prevented due to the higher triplet energy level of NPB. The triplet levels of the blue
host (SMB013) and emitter (SEB115) are lower compared to that of Irppy and thus would quench
the green emission drastically. To prevent exciton quenching, an exciton blocking interlayer
(undoped mixed-host) is located between the phosphorescent and fluorescent emission layer.

The stack design of Fig. 1 shows a current efficacy of 28.0 cd/A and a luminous efficacy
of 20.6 lm/W at CIE color coordinates of 0.44/0.44. A hybrid white OLED9 based on a single
bipolar conducting phosphorescent host and interlayer material (without a mixed-host), shows
at color coordinates of 0.42/0.43 a current efficacy of 18.9 cd/A. This is 33% less compared
to the mixed-host/cross-faded OLED. The increase in current efficacy is assumed to be mainly
caused by less exciton quenching in the interlayer. Through the interlayer, holes and electrons
are interchanged between the yellow and blue emission layer. If a single species of molecules
has to transport these holes and electrons, it is much more likely that excited states (e.g.,
excitons) are created. The nonradiative decay of these states will reduce the current efficacy of
the device significantly. In the mixed-host interlayer, holes and electrons are transported by two
different species of molecules, each with a high mobility, so that the probability of unwanted
recombination is significantly reduced.

To tune the color coordinates between warm-white and cold-white, different concepts can
be applied. The amount of red to green emission can simply be controlled by the red to green
doped area (see Fig. 1). At arrow A in Fig. 4, the change in color coordinates can be seen.
The red to green doped area is varied by only 1 nm to tune the color coordinates effectively
toward green or red. This indicates a recombination zone which is situated in the middle of the
phosphorescent emission layer.

By changing the ratio between the hole- and electron-conducting host materials at the
phosphorescent to fluorescent emission layer interface and thereby the material fraction slopes
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Fig. 4 Change in color coordinates if the red to green doped area is changed (arrow A) and if the
TMM004 to TCTA ratio is varied at the phosphorescent to fluorescent emission layer interface
(arrow B).

in the phosphorescent emission layer and interlayer, the distribution of holes and electrons
between the emission layers can be controlled effectively. Arrow B in Fig. 4 illustrates how
the color coordinates change if the ratio TCTA:TMM004 is varied from 1:3 over 1:1 to 3:1. At
pure-white color coordinates of 0.39/0.40, a current efficacy of 22.8 cd/A, a luminous efficacy
of 16.1 lm/W, and an EQE of 10.3% can be measured.

To further tune the color coordinates toward cold-white, the electron-blocking layer thickness
between blue emission layer and electron-transport layer, as well as the blue emission layer
thickness can be varied. In Fig. 5 at arrow C, the TMM004 electron-blocking layer thickness
is varied from 0 to 3 nm, 5 nm, 7 nm, and 9 nm. SMB013, TMM004, and ETM001 are good
electron conductors and the energetic difference between the LUMO of SMB013, TMM004, and
ETM001 is small. But nevertheless, surprisingly the combination of the three materials creates
a strong electron barrier. Otherwise, the extreme blueshift in color coordinates with increasing
TMM004 layer thickness could not be explained. Independent investigations of monochrome
blue devices showed a driving voltage increase of 1.5 V upon introduction of a 5 nm TMM004
layer sandwiched between the EL and the ETL. TMM004 does not act as a hole blocker, which
was confirmed by monochrome blue devices as well. The same electron-blocking effect can
be observed if ETM001 is replaced by tris-(8-hydroxyquinoline) aluminum (Alq3), which is a
common electron conductor. In conclusion, it is assumed that an electron-blocking dipole layer
is created at the SMB013/TMM004 interface. Due to the accumulation of negative charges, holes

Fig. 5 Change in color coordinates if the electron-blocking layer thickness is increased
(arrow C) and if the blue emission layer thickness is decreased (arrow D).
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Table 1 CIE color coordinates at increasing luminance.

Luminance [cd/m2] CIEx CIEy

1,000 0.371 0.363
2,000 0.378 0.368
5,000 0.381 0.372
10,000 0.378 0.372

are attracted and forced to penetrate deeper in the blue emission layer increasing the amount of
blue emission. The color coordinates can be tuned over a wide range. Nevertheless, the effect
seems to saturate. This is an expected behavior, because the effect of charge accumulation
should not be thickness-dependent, but rather saturating as soon as a closed interface is formed.
At color coordinates of 0.34/0.35, a current efficacy of 16.1 cd/A and a luminous efficacy of
10.5 lm/W can be measured.

Another possibility to tune the color toward colder-white color coordinates is to decrease the
blue emission layer thickness. The TMM004 electron-blocking layer thickness is kept constant
at 5 nm. In Fig. 5 at arrow D, the change in color coordinates can be seen. The emission layer
thickness was varied from an initial 20 to 10 nm and 5 nm. Thus, a decrease in emission layer
thickness increases the amount of blue emission. More holes must enter the blue emission
layer to increase the amount of blue emission. Monochrome blue devices were investigated for
comparison, but the reason for this effect remained unclear.

The described mechanisms allow to tune the color coordinates over a wide range close to the
Planckian locus. Based on the stack design of Fig. 1, pure-white color coordinates can be realized
if the TCTA:TMM004 ratio is changed to 3:1 at the phosphorescent to fluorescent emission
layer interface. To measure the color coordinate stability versus luminance, the luminance is
increased from 1000 to 10000 cd/m2. The color coordinates change only slightly from 0.37/0.36
to 0.38/0.37 as shown in Table 1. This indicates an extreme stability and a well charge-balanced
device.

For lifetime measurements and to identify possible degradation mechanisms, an OLED with
color coordinates of 0.39/0.40 was stressed at 4.2 mA/cm2. This equals an initial 1000 cd/m2.
In Fig. 6, spectra taken after increasing duration of stress can be seen. Already after about 8 h
of device stressing, an intense blueshift of color coordinates can be observed. This is a result

Fig. 6 OLED spectra taken at 0, 8 and 24 h after device stressing with 4.2 mA/cm2 (initial
1000 cd/m2).
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Fig. 7 Luminance of different monochrome TER031 red OLED versus time of stressing at
5000 cd/m2.

of the decreasing TER031 red emission peak. Apart from a degradation of the red emitter, this
could also be caused by a shift of the recombination zone to the cathode side of the device or
the creation of nonradiative recombination centers. To further investigate these possibilities, the
lifetime of red monochrome TER031 devices with different hole-conducting host materials was
investigated separately.

In Fig. 7, the luminance of different TER031 devices versus time can be seen. The decrease
in luminance is by the order of 1 magnitude higher if TER031 is doped into TCTA as a
hole-conducting host instead of NPB. It is therefore concluded that TCTA and TER031 are an
unsuitable combination regarding device lifetime. Due to the triplet energy level of NPB between
those of TER031 and Irppy (see Fig. 3), TCTA cannot be replaced simply by NPB. In Ref. 13,
chemical transformations of the hole transport materials NPB and TCTA in phosphorescent
blue OLED were investigated. It was found that radical anions of TCTA can dissociate. It is
proposed that the reduction of TCTA molecules inside the mixed-host emission layer leads
to instable anionic TCTA species. Degradation fragments can react and products can act as
phosphorescence quenchers reducing the red emission. Whether TCTA fragments react with
TER031 molecules or only act as phosphorescence quenchers, cannot be answered. Compared
to the green emission the red emission decreases slightly faster, so that an additional degradation
of the red emitter is probable. Currently, it is investigated if a different high triplet energy host
can replace TCTA and if the combination TCTA:TER031 can be stabilized by preventing the
reduction of TCTA.

4 Summary and Outlook

In summary, hybrid white OVPD OLEDs with a mixed-host interlayer and an EQE of 12.1%
(28.0 cd/A, 20.6 lm/W) have been realized at color coordinates of 0.44/0.44 by employing a
mixed-host/cross-faded phosphorescent emission layer and exciton blocking interlayer. Com-
pared to an OLED based on a single bipolar conducting host material, the current efficacy could
be increased by 48%. Different concepts to tune the color coordinates on a wide range near the
Planckian locus were presented. The investigated devices are extremely color-stable with rising
luminance. Due to an unsuitable combination of the red emitter and the hole-conducting host
material, the lifetime was shown to be limited.

Journal of Photonics for Energy 011013-7 Vol. 1, 2011



Lindla et al.: Hybrid white organic light-emitting diode with a mixed-host interlayer...

Acknowledgments

Financial support by the German Bundesministerium für Bildung und Forschung (TOPAS 2012)
is gratefully acknowledged.

References

1. F. So, J. Kido, and P. Burrows, “Organic Light-Emitting Devices for Solid-State Lighting,”
MRS Bull. 33, 663–669 (2008).

2. Z. Zhang, Q. Wang, Y. Dai, Y. Liu, L. Wang, and D. Ma, “High efficiency fluorescent white
organic light-emitting diodes with red, green and blue separately monochromatic emission
layers,” Org. Electron. 10, 491–495 (2009).

3. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and
S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent
devices,” Nature (London) 395, 151–154 (1998).

4. G. Schwartz, K. Fehse, M. Pfeiffer, K. Walzer, and K. Leo, “Highly efficient white organic
light-emitting diodes comprising an interlayer to separate fluorescent and phosphorescent
regions,” Appl. Phys. Lett. 89, 083509 (2006).

5. M. A. Baldo, V. G. Kozlov, P. E. Burrows, and S. R. Forrest, “Low pressure organic vapor
phase deposition of small molecular weight organic light emitting device structures,” Appl.
Phys. Lett. 71, 3033–3035 (1997).

6. J. K. Mahon, T. Zhou, M. Shtein, S. R. Forrrest, M. Schwambera, and N. Meyer, “Organic
VPD shows promise for OLED volume production,” Solid State Technol. 45, 131 (2002).

7. M. Boesing, C. Zimmermann, F. Lindla, F. Jessen, P. van Gemmern, D. Bertram, D.
Keiper, N. Meyer, M. Heuken, H. Kalisch, and R. H. Jansen, “Introduction of innovative
dopant concentration profiles to broaden the recombination zone of phosphorescent OVPD-
processed organic light-emitting diodes,” Mater. Res. Soc. Symp. Proc. 1154, 1154-B11-05
(2009).

8. F. Lindla, M. Boesing, C. Zimmermann, F. Jessen, P. van Gemmern, D. Bertram, D. Keiper,
N. Meyer, M. Heuken, H. Kalisch, and R. H. Jansen, “Highly efficient yellow organic light-
emitting diode based on a layer-cross faded emission layer allowing easy color tuning,”
Appl. Phys. Lett. 95, 213305 (2009).

9. M. Boesing, C. Zimmermann, F. Lindla, P. van Gemmern, D. Bertram, D. Keiper, M.
Heuken, H. Kalisch, and R. H. Jansen, “Hybrid white organic light-emitting diodes (OLED)
processed by organic vapor phase deposition,” Mater. Res. Soc. Symp. Proc. 1212, 1212-
S03-08 (2009).

10. M. Boesing, A. Abdellah, C. Zimmermann, F. Lindla, F. Jessen, P. van Gemmern, D.
Bertram, D. Keiper, N. Meyer, M. Heuken, H. Kalisch, K. Meerholz, and R. H. Jansen,
“Influence of substrate temperature on multilayer thin film growth, charge carrier injection
and efficiency of OVPD processed organic light-emitting diodes,” Mater. Res. Soc. Symp.
Proc. 1115, 1115-H05-34 (2008).

11. Merck KGaA, Darmstadt, Germany, Material Datasheet.
12. W. Brütting, Physics of Organic Semiconductors, Wiley-VCH, Weinheim (2005).
13. V. Sivasubramaniam, F. Brodkorb, S. Hanning, O. Buttler, H.-P. Löbl, V. van Elsbergen,
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