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Abstract. A numerical self-consisted dynamic model of a silicon evanescent laser is presented.
This model allows us to calculate the laser output power as a function of drive current and mode
composition. Obtained results are in good agreement with published experimental data. Dynamic
processes in silicon evanescent lasers are also investigated, and self-modulation processes are
observed. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3523319]
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1 Introduction

Over the past few years silicon photonics has experienced tremendous growth.1–4 The main rea-
son is compatibility with CMOS technology, which allows one to use existing semiconductor
fabrication techniques and provides fabrication of low-cost optoelectronic devices. Significant
progress has been made in the fabrication of passive silicon-based devices such as modulators,5

photodetectors,6 and interconnects,7 but still it is difficult to achieve lasing in silicon because
of its indirect bandgap. Different approaches to fabricate silicon lasers have been demonstrated,
including nanocrystalline silicon structures,8 Si/Ge quantum cascade structures,9–11 and Raman
lasers,12 but the resulting efficiencies are very low. For example, the efficiency of a silicon
nanocrystal-based LED is 0.1% (Ref. 13) and the efficiency of a Raman silicon laser is 8.5%
(Ref. 12). The most successful approach to considerably increase silicon laser efficiency is
the hybrid integration of a III–V quantum-well heterostructure with a silicon waveguide.14–18

This type of laser is called a hybrid silicon evanescent laser (SEL). Thus, differential quan-
tum efficiencies of optical pumped and electrical pumped SELs are 15% (Ref. 19) and 46%
(Ref. 15), respectively. A great deal of experimental data can be found in the literature concern-
ing SELs, but there is still a need for theoretical research in this area. A numerical self-consistent
dynamic model of electrically pumped hybrid silicon evanescent lasers is presented in this work.

2 Numerical Simulation

A cross section of an electrically pumped SEL is schematically shown in Fig. 1 (Ref. 15).
The laser consists of two regions: a silicon-on-insulator (SOI) passive rib waveguide and a
InGaAlAs/InP active region that provides optical gain. The SOI waveguide width w is 2.5 μm,
height h is 0.69 μm, and rib etch depth d is 0.52 μm. The active region is based on AlGaInAs
quantum wells with photoluminescence peaks at 1303 nm. Optical radiation propagates mainly
through the silicon waveguide. Laser gain in such a structure is achieved due to the silicon
waveguide optical mode overlapping with an active layer.

We have developed a numerical self-consistent dynamic model of the SEL based on these
assumptions: quasi-stationary approximation, uniform distribution of light intensity and carrier
concentration in the z-y plane, and neglected carrier diffusion.
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Fig. 1 Silicon evanescent laser structure (Ref. 15).

Carrier concentration and photon density dynamics in the resonator are described by coupled
rate equations (for example, see Ref. 20). On the assumptions mentioned above, these equations
take on the form
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where Si(t) is the resonator volume-averaged i’th optical mode photon density, N(t) is the active
layer volume-averaged carrier concentration, J is the pump current density, e is the electron
charge, d is the active layer thickness, τ sp is the carrier spontaneous recombination time, τ p is
the photon lifetime in the resonator, β is the spontaneous recombination coefficient (fraction
of spontaneous radiation that is amplified), Gi(t) is the i’th mode optical gain, � and �̃i are
optical confinement factors, and m is the number of transversal optical modes that are taken into
account.

The first equation states that the speed of carrier concentration variations depends on spon-
taneous and stimulated recombination rates and electrical pumping. Second and subsequent
equations state that photon density variation speed depends on photon production rate, sponta-
neous recombination rate, and photon losses in the resonator.

Intensity evolution of the i’th optical mode can be described in terms of gain coefficients
Gi(t), which can be calculated as:

Gi(t) = −2 Im ωi(t), (4)

where Im represents the imaginary part of a complex number.
These gain coefficients are time dependent, because the i’th optical mode complex frequency

ωi (complex eigenvalue of wave equation) varies with time. To obtain Gi(t), resonant frequencies
ωi are calculated in the first stage from resonator parameters by solving a scalar wave equation.
Then, gain coefficients are used to calculate carrier concentrations at the next time step from
Eqs. (1)–(4). Carrier concentration variations lead to active layer refractive index variation; thus,
it is necessary to recalculate resonant frequencies at which laser generation occurs and optical
modes gain coefficients at every time step in a finite-difference algorithm. Total computational
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Fig. 2 Hybrid laser structure optical mode profiles: (a) TE0 and (b) TE0, where |ψ | is the magni-
tude of the normalized nonzero electrical field component and n is the profile of the real part of
the refractive index.

time directly depends on the time required for resonant frequency calculation. To decrease this
time and enhance computational efficiency of the algorithm, we used a special computational
technique that was proposed earlier in Ref. 21.

3 Results and Discussion

Two lower order optical mode profiles calculated at the beginning of the simulation are shown
in Fig. 2. Spatial intensity distribution was calculated at every time step during the simulation,
with resonator optical property variations taken into account. The confinement factor, defined
as the ratio of the average value of electromagnetic field intensity in the active region to its
average value in the resonator, was calculated for each optical mode:

�̃i =
∫
Vact

|ψi(x)|2dV/Vact∫
Vcav

|ψi(x)|2dV/Vcav
,

where ψ i(x) is the i’th optical mode profile, Vact is the active region volume, and Vcav is the
cavity volume. Confinement factor � is defined as the ration of the active region volume to the
volume of the whole resonator: � = Vact/Vcav.

Fig. 3 SEL’s output power P as a function of drive current I. Experimental data (Ref. 15) and
obtained numerical results are presented.
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Fig. 4 Self-modulation in an SEL at 1.22 times the threshold pump current, where N is the carrier
concentration in the active region and S is the photon density in the resonator.

The proposed algorithm was used to determine laser structure mode composition. As follows
from Fig. 2, the first-order mode overlapping with an active region is considerably higher than
that for the fundamental mode. Therefore, laser generation is expected only for the first-order
mode. This result is confirmed by experimental data.15 Thus, spatial separation between the
active region and silicon waveguide leads to laser single-mode operation.

Output radiation intensity as a function of time for a given pump current value was calculated.
After the transient processes finished, output radiation power could be evaluated. Implementa-
tion of this procedure to several pump current values allows us to obtain laser P–I characteristics.
These characteristics and corresponding experimental data15 are shown in Fig. 3. Approxima-
tions for linear sections of P–I characteristics are also presented. Calculated values of threshold
current and curve slope—31 mA and 0.57 W/A, correspondingly—are in good agreement with
experimental data of a threshold pump current of 29 mA and linear section slope of 0.42 W/A.

Dynamic properties of SELs were also investigated. It was shown that the laser current-step
response is the typical inversion population and photon density relaxation oscillation process.
When the pump current reaches some critical value, the laser response takes the form of periodical
self-sustained pulses. An example of such a self-modulation process at 1.22 times the threshold
pump current is shown in Fig. 4. The oscillation frequency is ∼1 GHz. Self-modulation in SELs
is of great interest because it provides a higher signal-to-noise ratio in optical communication
and optical storage read-write systems.

4 Conclusion

A self-consisted dynamic model of a silicon evanescent laser based on the numerical solution
of a scalar wave equation and coupled rate equations is developed. In order to enhance the
computational efficiency of the proposed method, a special technique for resonant frequency
calculation from the resonator parameters is utilized.

The SEL’s output power as a function of drive current and its mode composition are obtained.
These results are in good agreement with published experimental data. The proposed model also
allows us to investigate dynamic processes in hybrid lasers. It is shown that the SEL’s current-step
response is the typical inversion population and photon density relaxation oscillation process.
Under certain conditions, periodical self-sustained pulses are observed.
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