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Abstract. We propose an invariant description method based on Zernike moments to classify hand vein pat-
terns from raw infrared (IR) images. Orthogonal moments provide linearly independent descriptors and are
invariant to affine transformations, such as translation, rotation, and scaling. A mathematical expression is given
to derive a set of moment invariants. The obtained features have all the properties of moment invariants with the
additional feature of image contrast invariance. For dorsal hand vein pattern acquisition, an IR imaging system is
implemented. Also, a public database is used for a palm vein recognition task. A correct rate classification (CRC)
above 99.9% is achieved using a set of rotation, scale, and intensity Zernike moment invariants. Additionally,
multilayer perceptron and K-nearest neighbors are used as classifiers having as input data the Zernike normal-
ized moments. A discriminative feature evaluation of the image moments allows the reduction of the number of
descriptors while maintaining a high classification rate of 99%. The efficiency of the moment descriptors is evalu-
ated in terms of accuracy and reduced computational cost by (a) avoiding the necessity of a preprocessing stage
and (b) reducing the feature vector dimension. Experimental results show that Zernike moment invariants are
able to achieve hand vein recognition without image preprocessing or image normalization with respect to
change of size, rotation, and intensity. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JEI.28.5.053019]
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1 Introduction
Biometric technology has been used in the accurate determi-
nation of an individual’s identity based on physical, chemi-
cal, or behavioral attributes.1 Human identification through
hand vein patterns is a technique that appeared in 1990 and
has been studied since then by several researchers. Typically,
the vein pattern images used for people recognition include
zones of interest like fingers,2–4 palmar region,5–7 dorsum of
hand,8–11 forearm, and wrist.12,13 Most of the hand vein rec-
ognition systems4,6,8–14 require four steps: (1) image acquis-
ition, (2) preprocessing of digital images that define the
region of interest (RoI), (3) feature extraction of hand pat-
tern, and (4) classification/matching, as shown in Fig. 1.

To extract vein features, reference points15 such as bifur-
cations and end-points of veins have been computed from a
segmented and improved image using morphological oper-
ators and contrast enhancement techniques, respectively.
Under ideal imaging conditions and preprocessing, reference
points can easily be extracted from the image skeleton.
However, image skeletons extracted from vein images are
often unstable because the raw vein images suffer from low
contrast. Usually, the feature extraction methods like histo-
gram of oriented gradients16 and scale-invariant feature
transform17 are often used as descriptors of orientation, scale,
and intensity for vein patterns. However, they are not robust
to noise presence and are partially invariant to translation,
rotation, scale, and intensity (TRSI). Also, the vector

descriptors are large with variable size, which complicates
classification. Moreover, both techniques require high com-
putational time.18 On the other hand, the local binary pattern
(LBP)14,19 algorithm has been used for vein recognition, but
whenever there are spatial and contrast changes during image
acquisition, the performance of this description technique
decreases.19

Moment invariants also have been implemented for vein
pattern description. Xueyan et al.2 extract finger-vein pattern
features with modified Hu moment invariants, which are
computed from reconstructed images by dyadic wavelet
transform. Li et al.3 use Zernike moments to describe shape
features of preprocessed finger-vein images. In these last
works, a preprocessing stage is carried out to deal with spa-
tial distortions and contrast changes in the input images.
These procedures can be time consuming and require com-
puting resources during the image geometric corrections
related to scale, translation, rotation, and the radiometric
normalization.

In this paper, we describe the hand vein pattern images by
a set of feature invariants to TRSI transformations. Zernike
orthogonal moments defined in polar coordinates20 are used
for invariant feature extraction from raw biometric data,
following the bottom stream, as is shown in Fig. 1. The per-
formance through Zernike moments technique has a higher
accuracy because it does not require a preprocessing stage.
The main advantage of this approach is that the vein features
based on Zernike orthogonal moments have a minimum
amount of redundant information, which are invariant to
spatial and radiometric transformations and also robust to
noise.21
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In this work, each input raw biometric image is described
by a pattern vector ψ1;ψ2; : : : ;ψχ obtained from the selected
TRSI moment invariants. The classification step is done
in the feature space. This results in a stable CRC curve.
Furthermore, four different types of classifiers are used:
K-nearest neighbors (KNN), multilayer perceptron (MP),22

Bayesian (BN),22 and naive Bayesian (NB) networks.22

These classifiers have shown to perform well, obtaining
a CRC over 99%.

In this paper, sections are organized as follows: Sec. 2
shows a scheme of the implemented infrared (IR) imaging
system for vein pattern image acquisition. The public data-
base used is also described. Section 3 defines a set of TRSI
invariant descriptors based on Zernike orthogonal moments.
Experimental results of four different classifiers that use a
discriminative metric to select invariant descriptors are given
in Sec. 4. Finally, the conclusions are presented in Sec. 5.

2 Infrared Imaging System

2.1 Home Database
The hand vein pattern is an interconnected network of
blood vessels located underneath human skin. Vein pattern

structure is approximately located at 2.5 to 3.0 mm in the
subcutaneous layer. From 700 to 900 nm, IR light can pen-
etrate the skin deeply, reaching the blood vessels located in
subcutaneous tissue.23,24 Vein detection through near-IR
(NIR) light is based on the absorption principle of IR radi-
ation by principal blood components like oxyhemoglobin,
deoxyhemoglobin, and water.24–26 Through IR radiation,
we obtain an image in which veins appear darker than the
surrounding tissue in response to IR radiation exposure.

For vein pattern image acquisition, a JAI progressive
scanning multispectral 2CCD camera was used, which can
capture information in visible and IR channels simultaneously
by means of a dichroic prism along the same optical axis.27

Visible and NIR sensors’ size are 4.76 mm × 3.57 mm. The
spatial resolution of acquired images is 1024 × 768 pixels.
Wavelengths for the visible channels are approximately
450, 550, and 630 nm, whereas for it IR channel is around
880 nm. Illumination source has a maximum emission peak
of about 880 nm; this IR source contains 60 light emission
diodes distributed in a concentric circle. Figure 2 shows the
implemented image acquisition system.28 The field of view
of the camera is β ¼ 2 arctan½hs∕ð2fÞ� ¼ 16.38 deg, where
ho ¼ 20 cm and hs ¼ 3.57 mm denote target and sensor’s

Fig. 1 Flowchart of a hand vein recognition system: traditional approach (top stream) and the proposed
approach (bottom stream). As the sensed image Dðf ðx; yÞÞ is a degraded version of the original scene
f ðx; yÞ, then the invariant vector ψ1;ψ2; : : : ;ψχ satisfies that jψðf Þ − ψðDðf ðx; yÞÞÞj ≈ 0.

Fig. 2 Infrared hand vein acquisition system.
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size, respectively, s0 ¼ 53 cm indicates the distance between
target and camera lens, and fl ¼ 25 mm represents the focal
distance.

For the home database, volunteers were informed how to
put their hands on the base in front of a uniform-colored
background so that their knuckles coincided with the edge
of the base. During the image capturing, we allowed a certain
degree of variations of hand pose. This was done in order to
increase intraclass diversity and simulate a real environment
application.

The UPT database consists of 576 vascular pattern images
obtained from 36 volunteers, 19 females, and 17 males aged
20 to 25, from which 8 images of each hand were acquired in
NIR. Because the vein pattern of the right hand is different
from the vein pattern of the left hand, they were taken as two
different subjects,29 therefore, the subject’s number is 72.

2.2 PolyU Multispectral Palmprint Database
In order to evaluate the feature extraction algorithms, we
use the PolyU Multispectral Palmprint Database (PUMPD)
from the Biometric Research Center of the Hong Kong
Polytechnic University. The database consists of 6000
vascular pattern images obtained from 250 volunteers, 55
females, and 195 males, from which 24 images of both hands
from each subject were acquired in four channels (red, green,
blue, and NIR).30 Again, because of vein patterns of the right
and left hands are different, the number of subjects is 500
from 250 volunteers. Some images from the PolyU Database
are shown in Fig. 3.

3 TRSI Zernike Moment Invariants
Image representation through characteristic descriptors is the
main objective in this section. Moment invariants are widely
used in pattern recognition because they can effectively char-
acterize an image in a general way through a small set of
moments31,32 and are invariant to the most common affine
TRS transformations that an image undergoes. Additionally,
orthogonal moments are robust to noise presence.21 Invariant
moments proposed in this work are based on Zernike
polynomials.

3.1 Affine Transformations
Imaging conditions cause that vein pattern image can
change. According to Flusser et al., imaging conditions are
commonly imperfect, so observed image represents a
degraded version of the original scene.21 Degradations in the
digital image can be radiometric and/or geometric. A common
geometric spatial transform is affine transformation, which

can be represented by means of the following transformation
matrix:33

EQ-TARGET;temp:intralink-;e001;326;581gðx; yÞ ¼ kfðx 0; y 0Þ; (1)

EQ-TARGET;temp:intralink-;e002;326;539

�
x 0

y 0

�
¼

��
cx 0

0 cy

��
cosðαÞ sinðαÞ
− sinðαÞ cosðαÞ

���
x
y

�
þ
�
tx
ty

�
;

(2)

where k is the intensity factor. The vector ðcx; cyÞ gives the
geometrical center of the image region, tx and ty are the hori-
zontal and vertical translations, and α is the rotation angle.
Pixel coordinates in the input image and its corresponding
transformed image are, respectively, ðx; yÞ and ðx 0; y 0Þ.

3.2 Zernike Orthogonal Moments on a Unitary Disk
Let fðri;j; θi;jÞ be aM × N gray level image defined in discrete

polar coordinates: ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þ y2i

q
and θi;j ¼ arctanðyixjÞ,

for xj ¼ aþ j·ðb−aÞ
N−1 , yi ¼ b − i·ðb−aÞ

M−1 , i ¼ 0; : : : ;M − 1, and
j ¼ 0; : : : ; N − 1. Parameters a and b are real numbers and
take values according to a suitable domain inside (or outside)
a unit circle jrj ≤ 1.34

The 2-D discrete Zernike moments of radial order n and
angular repetition l are as follows:20

EQ-TARGET;temp:intralink-;e003;326;320Zn;l ¼
nþ 1

π

XM−1

i¼0

XN−1

j¼0

fðri;j; θi;jÞ · Rn;lðri;jÞ · e−1i·lθi;j ; (3)

with jlj ≤ n and n − jlj being even. Here, Rn;lðri;jÞ is the
discrete real value radial polynomial given by

EQ-TARGET;temp:intralink-;e004;326;247Rn;lðrÞ ¼
Xn−jlj2

s¼0

ð−1Þs ðn − sÞ!
s!
�
nþjlj
2

− s
�
!
�
n−jlj
2

− s
�
!
rn−2 s: (4)

The number of Zernike moments can be computed using
the following expression given by35

EQ-TARGET;temp:intralink-;e005;326;166χ ¼
XMax

n¼0

	

n
2

�
þ 1

�
; (5)

where Max represents the highest order of Zernike moments.

Fig. 3 Images of subject 9 from PUMPD in different channels: (a) red, (b) green, (c) blue, and (d) NIR.
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3.2.1 TRSI invariant descriptors based on Zernike
moments

A set of Zernike moment invariants is given as follows:

• For the translation-invariant description, let the origin
of a coordinate system be located at the image centroid
ðxc ¼ m1;0∕m0;0; yc ¼ m0;1∕m0;0Þ. It can be calculated
from the zero-order geometric momentm0;0 of a binary
image and the first-order geometric moments m1;0
and m0;1.

• If an image object fðr; θÞ is rotated as f 0ðr; θ − αÞ,
where α is the rotation angle, its corresponding
moments are ZR

n;lðf 0Þ ¼ Zn;lðfÞexp−iαl. The magni-
tude-based method36 is used for rotation invariance for
which jZR

n;lðf 0Þj ¼ jZn;lðfÞj.
• If an image object fðr; θÞ is scaled as f 0ðr∕c; θÞ,

the scaling factor c can be computed using c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0;0ðf 0Þ∕m0;0ðfÞ

p
. Let n ¼ lþ℘ in Eq. (3), the

invariants to image rotation and scaling are37

EQ-TARGET;temp:intralink-;e006;63;529

ψ lþ℘;lðfÞ¼
X℘
t¼0

lþ℘þ1

lþ tþ1

�X℘
κ¼t

ðΓf 0 Þ−ðlþκþ2ÞCl
℘;κ ·Dl

κ;t

�

· jZlþt;lðf 0Þj; (6)

for Γf 0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijZ0;0ðf 0Þjp
Cl
℘;κ¼ð−1Þ℘−κ · ð2lþ℘þ1þκÞ!

κ!ð℘−κÞ!ð2lþ1þκÞ!
and Dl

κ;t ¼ ð2lþ2 tþ2Þκ!ð2lþκþ1Þ!
ðκ−tÞ!ð2lþκþtþ2Þ! 0 ≤ t ≤ κ ≤ ℘

• If the intensity distribution of an image fðr; θÞ is
changed as kfðr; θÞ, the intensity factor k can be
obtained using k ¼ 1

c2 ðZ0;0ðf 0Þ∕Z0;0ðfÞÞ using m0;0 ¼
Z0;0∕π.38

If ℘ ¼ 0 and l ¼ 1;2; 3; : : : , then the proposed
n ¼ l TRSI Zernike moment invariants are given by

EQ-TARGET;temp:intralink-;e007;63;359ψ̃ l;lðfÞ ¼ kl∕2 ·
jZl;lðf 0Þj

jZ0;0ðf 0Þj1þl∕2 : (7)

3.3 Numerical Experiments
In this subsection, the TRSI Zernike moment invariants are
proven using a set of artificial distorted images. In Fig. 4, the
test images are shown. The values of the moment invariants
were computed for each one of these images using Eq. (7)
and the logarithm of the values was taken to reduce the
dynamic range. The TRSI moment invariants of the i ¼
1; : : : ; 10 distorted images of Fig. 4 are given in Table 1 and
graphed in Fig. 5.

An image that undergoes uniform contrast variation k,
like those that are shown in Figs. 6(a)–6(c), can be repre-
sented equivalently by scaling of the intensity function.38

Figures 6(d)–6(f) exemplify the processes of intensity nor-
malization using the factor k.

However, in this work, the k factor is used to normalize
the descriptors in intensity but not to normalize the raw bio-
metric data. The normalization factor k is used in Eq. (7).

4 Experimental Results
The classification stage is carried out in the obtained space of
descriptors using the feature extraction techniques previ-
ously described in Sec. 3. During this stage, the input
images are transformed from raw biometric data to Zernike
moments. Afterward, by means of Eqs. (6) and (7), a set of
descriptors are obtained. It converts the image of M × N
pixel values into a pattern vector composed by the first χ
TRSI Zernike moment invariants. This method was applied
to the PUMPD and also in our home database. A 3-D space
of descriptors based on TRSI Zernike moment invariants is
shown in Fig. 7(a).

In spite of some images including extra information about
the hand, such as parts of the thumb, wrist, or scars, it can be
seen that each class forms a cluster because the Zernike
moments are invariant to affine transformation and illumina-
tion changes. Some points in the graph have been slightly
scattered from their respective cluster. This dispersion is
because the input images suffer from perspective deforma-
tions due to a nonperpendicular view (for example shearing)
during image acquisition.

Fig. 4 Images used to demonstrate the invariant properties of descriptors.
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Table 1 TRSI moment invariants for the i ¼ 1; : : : ; 10 images of Fig. 4.

Sample
image

Spatial distortions and
contrast changes ψ̃11 ψ̃22 ψ̃33 ψ̃44 ψ̃55 ψ̃66 ψ̃77 ψ̃88 ψ̃99 ψ̃1010

1 α ¼ 0 6.85 11.99 19.38 23.95 29.87 35.39 41.15 46.75 52.83 58.49

c ¼ 1

k ¼ 1

2 α ¼ 40 deg 6.85 11.98 19.37 23.95 29.86 35.39 41.14 46.75 52.83 58.50

c ¼ 1

k ¼ 1

3 α ¼ 240 deg 6.97 11.98 19.33 23.93 29.88 35.42 41.18 46.79 52.87 58.51

c ¼ 0.9

k ¼ 1.2

4 α ¼ 0 6.85 12.00 19.43 23.97 29.90 35.43 41.20 46.80 52.89 58.56

c ¼ 0.7

k ¼ 1

5 α ¼ 280 deg 6.85 12.00 19.41 23.96 29.89 35.41 41.18 46.78 52.88 58.54

c ¼ 0.8

k ¼ 1

6 α ¼ 200 deg 6.85 11.99 19.38 23.95 29.87 35.39 41.15 46.75 52.83 58.49

c ¼ 1

k ¼ 1

7 α ¼ 120 deg 6.85 11.98 19.38 23.94 29.86 35.40 41.15 46.75 52.83 58.49

c ¼ 1.1

k ¼ 1

8 α ¼ 160 deg 6.91 11.94 19.17 23.89 29.81 35.32 41.09 46.64 52.75 58.32

c ¼ 1.2

k ¼ 0.8

9 α ¼ 0 6.85 11.98 19.36 23.94 29.87 35.39 41.15 46.75 52.82 58.47

c ¼ 1.3

k ¼ 1

10 α ¼ 0 6.83 11.99 19.47 23.95 29.88 35.41 41.14 46.76 52.82 58.51

c ¼ 1

k ¼ 1.1

σ 0.0420 0.0170 0.0797 0.0216 0.0242 0.0299 0.0298 0.0437 0.0395 0.0646
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As we can see, similar samples are grouped in closer
proximity to each other. Nearly identical or identical samples
are placed in the same cluster.

4.1 Discriminative Feature Selection Algorithm
Since feature selection is meaningful to establish a functional
neural network, a discriminative metric is implemented.39

It evaluates the effectiveness of a given moment invariant
by means of the formula:40

EQ-TARGET;temp:intralink-;e008;63;391Qðjψ̃n;lj; Si; SjÞ ¼
η½σðSijψ̃n;ljÞ þ σðSj; jψ̃n;ljÞ�
½mðSi; jψ̃n;ljÞ −mðSj; jψ̃n;ljÞ�

; (8)

where σðSi; jψ̃n;ljÞ andmðSi; jψ̃n;ljÞ are the standard deviation
and the mean of each invariant feature, respectively, and

η ¼ 3.0. Si and Sj are the i’th and j’th classes, and ψ̃n;l are
the orthogonal moment invariants.

4.2 Correct Rate Classification Using TRSI Zernike
Moment Invariants

In this work, we use WEKA software, which is commonly
used as a test platform to measure the classification capacity
of several well-known pattern recognition models, such as
MP, BN, NB, and KNN.22 All of the percentages shown
in this work were calculated through cross-validation. From
this point of view, an experimental comparison assesses the
ability of TRSI Zernike moment invariants of Eqs. (6) and (7)
for vein pattern recognition using the raw biometric data.

4.2.1 Set 1: PUMPD database

Let w ¼ ðw1; w2; : : : ; wWÞ and W ¼ 500 pattern classes of
the PUMPD public database. For each class wk, there are
12 acquired versions in the testing dataset. The χ-dimen-
sional pattern vector ψ̃ ¼ ðψ̃1; ψ̃2; : : : ; ψ̃ χÞ is based on the
TRSI Zernike moment invariants using Eqs. (6) and (7) for
maximum order nmax ¼ lmax. The classification results for
order nmax ¼ 18 with χ ¼ 100 TRSI Zernike moment invar-
iants are shown in Fig. 8(a). Furthermore, the percentage
behavior of CRC is given against the number of descriptors
that are used in the classification stage, using MP as a clas-
sifier in Fig. 8(b).

From Table 2, it is clear to see that the MP classifier
achieves a CRC classification above 99% using at least
χ ¼ 16 invariants descriptors.

The receiver operating characteristic (ROC) curves from
the four tested models reached high performances; MP appa-
rently displays better suboptimal results, as shown in Fig. 9.
On the other hand, the area under ROC confirms that MP has
a better performance since it has an area of 0.9577, followed
by KNN with 0.9523, NB with 0.9457 and finally, the
BayesNet with 0.9338.

Using the discriminative feature metric of Eq. (8), a set of
χselected TRSI Zernike moment invariants were selected for

Fig. 5 TRS and TRSI Zernike moment invariants computed for each
i ¼ 1; : : : ;10 distorted image. The proposed features have all the
properties of moment invariants along with the additional feature of
image contrast invariance.

Fig. 6 (a)–(c) Input images from CASIA database. (d)–(f) Intensity normalized images of (a)–(c),
respectively.
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the classification task. In Fig. 10, the results are shown;
through the selection of Zernike descriptors (χ ¼ 100 and
χselected ¼ 46), the input data to the classifiers are reduced
54%. In this case, the CRC drops less than 1%.

Since the first stage of a recognition system includes
traditional image processing methods in order to improve
information about the potential objects of interest in the
scene, most of the papers in Table 3 use this procedure

to enhance and normalize the original input images.
Conversely, the proposed method analyzes the parametric
space of geometric and radiometric image degradations.
This method excludes the contrast enhancement, RoI
extraction stage, and the image normalization. Moreover,
our method is robust to noise presence and uses a mini-
mal descriptors number χ ¼ 16 to obtain a CRC above
99%.

Fig. 7 Three-dimensional feature space with six vein pattern classes and eight sample images from our
home database. (a) Zernike normalized moments invariants to affine transformations and illumination
changes. (b) Reference and distorted versions of the reference image due to (c) intensity, (d) rotation,
and (e) scale changes. Moreover, it is important to see that some images like (d) are distorted geomet-
rically by vertical shearing. The images from (b) to (e) correspond to subject F.

Fig. 8 Classification results using TRSI Zernike moment invariants. (a) Performance of the classification
method for orders nmax ¼ 18 and (b) comparison of different orders using an MP.
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4.2.2 Set 2: UPT home database

Let w ¼ ðw1; w2; : : : ; wWÞ andW ¼ 72 pattern classes of the
UPT home database. For each class wk, there are eight
acquired versions in the testing dataset. The χ-dimensional
pattern vector ψ̃ ¼ ðψ̃1; ψ̃2; : : : ; ψ̃ χÞ is based on the TRSI
Zernike moment invariants using Eqs. (6) and (7) for maxi-
mum order n ¼ l ¼ 4. Figure 11 shows images from the
UPT database.

We can observe that in addition to the geometric and
radiometric distortions, the images suffer from perspective
deformations due to a nonperpendicular view. Again, some
images include extra information about the hand, such as
parts of the thumb, wrist, or scars. In spite of that, Fig. 12(a)
shows a CRC above 80% using only χ ¼ 9 TRSI moment
invariants with order n ¼ l ¼ 4. An ROC curve using MP
for the UPT database is shown in Fig. 12(b). It is visually
clear that there are more true positives than false positives
in the entire curve.

Due to image acquisition system conditions (some per-
spective variations and other alterations), this experiment did
not reach higher performance rates; nevertheless, the area
under ROC is close to 0.7 (0.6783).

5 Conclusions and Discussion
In practice, some factors, for instance, environmental, non-
uniform illumination, and hand pose affect the image acquis-
ition stage and increment the presence of spatial distortions
and contrast changes in the sensed image. It is well known
that a traditional approach of a hand vein recognition system
requires RoI extraction followed by data preprocessing
like contrast enhancement, spatial filters, binarization,
mathematical morphology, and so on. Additionally, image
normalization with respect to change of size, translation,
rotation, and intensity can be required.

In this paper, we describe all images by a set of normal-
ized features that are invariant with respect to TRSI transfor-
mations. Numerical experiments have been done using a set
of artificial distorted images. We can see in Fig. 5 and Table 1
that the close range of the proposed TRSI Zernike moment
invariants is reduced. This means that the descriptors defined
in Eq. (7) have all the properties of TRS Zernike moment
invariants with the additional feature of image contrast
invariance.

In this way, two experiments were carried out in
order to evaluate the performance of the proposed TRSI
Zernike moment invariants on hand vein images without
any kind of preprocessing. For the PUMPD database (500
subjects with 12 versions of each subject), an optimized
approach selects χselected ¼ 46 TRSI moment invariants
achieve a CRC above 99.52% using MP as a classifier,
as can be seen in Fig. 10. The results obtained from real
data show that the invariant selected features require a lower
computational cost compared to existing methods listed in
Table 3.

On the other hand, for the UPT home database (72 sub-
jects with eight versions of each subject), χselected ¼ 9 TRSI
selected moment invariants achieve 80% classification rate.
In this case, in addition to the geometric and radiometric dis-
tortions, the images suffer from perspective deformations
due to a nonperpendicular view during image acquisition and
also include more information about the hand, such as parts
of the thumb, wrist, or scars. In Fig. 7, we can see similar

Table 2 CRC classification results above 99% for the UPHK database.

nmax

χðnmaxÞ Zernike
moment invariants KNN BN NB MP

6 16 98.97 97.57 98.37 99.35

8 25 99.42 98.92 99.02 99.52

10 36 99.50 99.13 99.03 99.57

12 49 99.48 99.28 99.00 99.52

14 64 99.58 99.30 98.85 99.55

16 81 99.97 99.30 98.93 99.50

18 100 99.57 99.33 98.82 99.42

Note: Bold values correspond to the highest CRC obtained for
each nmax.

Fig. 9 Comparison of ROC curves using four different classification
algorithms.

Fig. 10 CRC percentage using a complete set (C) with χ ¼ 100 and
reduced set (R) with χselected ¼ 46 of TRSI Zernike moment invariants.
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Table 3 CRC classification results for the UPHK database.

Reference Preprocessing Feature extraction CRC

Cao et al.41 RoI extraction Thinning algorithm Matching score = 99.50%

Contrast enhancement

Multiscale Gaussian matched filter

Binarization

Noise reduction

Al-Juboori et al.42 Enhancement filter Wavelet transform Euclidean matching = 99.86%

Locality preserving

Projections (LPP)

LBP

Variance (LBPV)

Gumaei et al.43 RoI extraction Whitening filter and
contrast normalization

Normalized Gist-based feature extraction
and feature reduction using autoencoder

Regularized extreme
learning machine = 99.83%

Zhang et al.44 RoI extraction Palmprint feature extraction by texture
coding Palmvein feature extraction by
matched filters Postprocessing
operations to remove some small regions

Score level fusion

99.69%

Zhang et al.45 Visual Geometry Group model F
(VGG-F)

Convolutional neural Networks (CNN)
and Vector of locally Aggregated
descriptors (VLAD)

Equal error rate
weighted fusion = 100%

Proposed approach Any TRSI Zernike moment invariants KNN = 99.97%

BN = 99.33%

NB = 99.03%

MP = 99.57%

Fig. 11 Input images from subject 28 from our home database.
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samples that are grouped in closer proximity to each other.
Nearly identical or identical samples are placed in the same
cluster. During the pattern classification process, the recog-
nition system is able to handle changes in the dataset imputed
to spatial distortions and extra information. However, due to
k-fold cross-validation is a reliable test for classification
models, and the UPT home database has several distortions,
then the tested MP does not reach high recognition rates.
In future work, it is proposed to add shearing invariants to
TRSI Zernike moment invariants. In addition, more distorted
samples for each vein pattern class can be added to the home
database.
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