In this paper, we apply a fluid analysis simulation using a COMSOL Multiphysics® in order to theoretically simulate the influence of several fabrication parameters on the core position. The calculated core height deviation from the designed height is dependent on the needle-tip height, because the core positions are influenced by the pressure distribution of cladding monomer caused by the monomer flow. Meanwhile, we find that the monomer wetting on the needle outer wall also affects the core height. When the effect of monomer wetting is taken into account, the simulated core heights are different from the results without the effect of monomer wetting and we can theoretically predict the height of the formed core. Finally, we confirm that the core height can be controlled by adjusting the needle-tip height setting in which the effect of the monomer flow and wetting theoretically calculated is taken into account in the Mosquito method. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 1 scholarly publication.
Cladding
Waveguides
Polymer multimode waveguides
Polymers
Device simulation
Optical alignment
Liquids