Utilizing spatial wavelength encoding, spectrally encoded endoscopy (SEE) makes it possible to create miniature, small diameter endoscopic probes that can allow easy access to hard-to-reach locations within the body. Previously described SEE probes have been side-viewing, which limits their use for guiding the navigation of narrow passages. Forward-viewing SEE (FVSEE) probes are advantageous as they provide a look ahead that facilitates navigation and surveillance of a wider field of view (FOV). In this work, we present a novel FVSEE probe. The 500-µm illumination optics are designed in such a way that the shortest wavelength (460 nm) propagates along the optical axis, while an angle of approximately 56° is formed between the longest wavelength (720 nm) and the optical axis. Two-dimensional illumination was accomplished by rotating the illumination optics at a speed of 15 rps using a miniature torque coil. Reflected light from the sample was collected by 8 multimode detection fibers that were arranged into a circular array around the illumination optics. The proximal ends of the detection fibers were polished at a 17° angle, resulting in a total angle of detection of approximately 100°. Light coming out from the distal end of the detection fibers, which were rearranged into a linear array, was detected using a custom spectrometer with a tall-pixel linear CCD camera. The FVSEE probe was used to conduct a preclinical imaging of a swine joint. The results were compared to a commercial chip-on-the-tip mini-endoscope and showed a better spatial resolution and a wider FOV using the FVSEE probe.
|