In order to verify these differences, overlay measurements are regularly done after the final etch process. These post-etch overlay measurements can be performed by using the same overlay targets used in post-litho overlay measurement or other targets. Alternatively, they can be in-device measurements using electron beam measurement tools (for instance CD-SEM). The difference is calculated between the standard post-litho measurement and the post-etch measurement. The calculation result is known as litho-etch overlay bias. This study focuses on the feasibility of post-etch overlay measurement run-to-run (R2R) feedback instead of post-lithography R2R feedback correction. It is known that the post-litho processes have strong non-linear influences on the in-device overlay signature and, hence, on the final overlay budget. A post-etch based R2R correction is able to mitigate such influences.2 This paper addresses several questions and challenges related to post-etch overlay measurement with respect to R2R feedback control. The behavior of the overlay targets in the scribe-line is compared to the overlay behavior of device structures. The influence of different measurement methodologies (optical image-based overlay vs. electron microscope overlay measurement) was evaluated. Scribe-line standard overlay targets will be measured with electron microscope measurement. In addition, the influence of the intra-field location of the targets on device-to-target shifts was evaluated. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Overlay metrology
Etching
Device simulation
Feedback control
Lithography
Measurement devices
Semiconducting wafers