Azobenzene molecules have attracted important interest for photodynamic drug release and therapy applications. Often, their impact on the environment is directly associated to the photoinduced mechanical deformation of the molecule (when transferring from its Trans form to the Cis form). In the present talk, we demonstrate that the chemical impact of this transformation (pH, toxicity, etc.) also must be considered. We shall describe our work on the development of an optical control method of biological membranes based on the photoisomerization process. On the example of E-coli bacteria, we shall show that the isomerization process can indeed be used to control their behavior, but the changes in pH and toxicity are also playing important roles. Interestingly, while there are still many open questions, our preliminary results point out on the possibility of controlling protonic pump channels in a selective way.
|