In this paper we describe our recent work in multi-excitation surface enhanced Raman spectroscopy (MX-SERS), and its application for robust strain-level bacteria identification. The development of MX-SERS follows directly from our previous work in rapid bacterial identification using multi-excitation Raman spectroscopy (MX-Raman), which enabled highly accurate (up to 99.75%) strain-level distinction of bacteria, including antibiotic resistant strains of bacteria and from within complex media. In this work we use the strong wavelength dependence of both the Raman scattering cross-section and the surface plasmon to demonstrate a novel capability in bacteria identification. Compared to MX-Raman, MX-SERS has up to 8x faster data acquisition speed as well as up to 4000x lower laser power incident on the sample. Furthermore, we fabricate SERS-active substrates with a simple and low-cost fabrication method that can be adapted to fit a chosen wavelength regime. This combination of strain-level sensitivity and high-speed detection, combined with a low-cost SERS substrate, has strong potential applications in clinical diagnostics, and could be integrated within a real-world pathogen detection workflow.
|