Maintaining safe transportation infrastructure networks such as roadways benefit from image surveillance. One promising technology is 3D LiDAR scanning of which the paper presents the Slope LiDAR embankment (SLidE) dataset. This paper highlights 3D LiDAR exploitation methods for expansive clay terrains across different seasons at a specific site along the Terry Road Exit from I-20 westbound in Jackson, Mississippi. The analysis helps to understand the impact of seasonal moisture variation on slope stability, with a particular focus on the implications of climate change. Expansive clays, known for their shrink-swell behavior in response to moisture changes, pose significant geotechnical challenges, especially under the evolving conditions brought about by extreme weather. By capturing dynamic soil behavior through seasonal 3D scanning, the results provide insights into these soils' volumetric changes and deformation patterns at the monitored location, underscoring the critical influence of moisture dynamics on soil and slope stability. The proposed LiDAR 3D scan processing methodology is designed to reduce the computational load of analyzing large datasets. Moreover, this work shares the SLidE dataset. SLidE serves as a valuable resource for researchers and practitioners in the field, enhancing data processing efficiency and enabling real-time monitoring and rapid response to potential geotechnical failures. Results indicate a notable trend where the slope, subject to expansive clay dynamics, tends to revert to its normal structural state during the fall/winter months.
|