The future ARIEL Space Mission aims achieving a photometric precision down to the parts-per-million (ppm) level, over periods longer than ten hours. This required level of sensitivity is crucial to obtain valuable information about the properties of the exoplanet and its atmosphere. The Institute of Astrophysics and Space Sciences is responsible for the development of the visible and near-infrared (Vis-NIR) illumination sub-system, integrated in ARIEL’s Optical Ground Support Equipment (OGSE). This study presents an in-depth analysis of two main component of the Vis-NIR illumination sub-system: a Quartz Tungsten-Halogen (QTH) calibration light source and an extended Indium Gallium Arsenide (InGaAs) reference detector, tested under cryogenic conditions. It is shown that these two components are compliant with the ARIEL's requirements, allowing the mission to obtain spectroscopic and photometric time series with the stability needed to identify signal variations from 20 ppm to 100 ppm, over a 10-hour observation period.
|