Poster + Paper
26 August 2024 Development of a self-assembling ferrofluidic ionic liquid mirror
Author Affiliations +
Conference Poster
Abstract
Under the Defense Advanced Research Projects Agency (DARPA) Zenith program, a novel concept has been developed for a self-assembling ferrofluidic ionic liquid mirror (FILM) telescope utilizing a Halbach array of permanent neodymium magnets. The primary mirror will be constructed from two immiscible liquids containing reflective and magnetic nanoparticles (NPs), which will spontaneously phase separate. To maximize reflectivity, minimize wavefront error (WFE), and anchor the reflective layer, the volume of the upper liquid has been minimized. The system is scalable and self-healing and can be deployed without applied acceleration or rotation. The Halbach array overcomes the force of gravity for a ground-based liquid mirror, providing a Kelvin body force potential parallel to the surface of the array. The liquids are held in place and shaped within the mirror by use of the magnetic array, hydrophilic materials, and the high surface tension and high viscosity of the liquid. By tuning the position of the magnet assembly and application of components that tune the effective magnetic field, the liquid surface is forced to adopt the desired optical shape and allows tilting off-axis and slewing with acceptable imaging quality WFE levels.

We report here on the progress of this work in multiple areas including modeling and simulation of the magnetic fluid system optimized for a 0.5 m diameter demonstration mirror and the supporting development of laboratory 0.25 m × 0.25 m flat prototypes of the fluid and magnetic systems. Analytical and finite element models of the ferrofluid and magnetic array have been developed and these results have informed a PDR-level design for a notional build and demonstration of a 0.5 m diameter F/2 spherical mirror with overall root mean squared (RMS) WFE of λ/6 at λ= 550 nm at Zenith which can be slewed to off-zenith pointing angles of up to 10°.
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Neil Rowlands, Álvaro Romero-Calvo, David Strafford, Rebecca Kamire, Amanda Childers, Stephen F. Yates, Emir Rahislic, Jason Smoke, Sheng-Hai Zheng, Peter Cameron, Gabriel Cano-Gómez, Hugh Chen, Tianyang Hu, Eric Comstock, and Miguel Herrada "Development of a self-assembling ferrofluidic ionic liquid mirror", Proc. SPIE 13100, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation VI, 131007H (26 August 2024); https://doi.org/10.1117/12.3020718
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Liquids

Magnetism

Mirrors

Mirror surfaces

Interfaces

Modeling

Reflection

Back to Top