One or the main challenges in this new machine resides in the design and production of the superconducting dipoles used to steer the particles around the 27 km underground tunnel. These so-called cryodipoles are composed of an external vacuum tube and an insert, appropriately named the cold mass, that contains the particle tubes, the superconducting coil and will be cooled using superfluid Helium to 1.9 K. The particle beam must be placed inside the magnetic field with a sub-millimeter accuracy, this requires in turn that the relative displacements between the vacuum tube and the cold-mass must be monitored with accuracy. Due to the extreme condition environmental conditions (the displacement measurement must be made in vacuum and between two points with a temperature difference of more than 200°C) no adequate existing monitoring system was found for this application. It was therefore decided to develop an optical sensor suitable for this application. This contribution describes the development of this novel sensor and the first measurements performed on the LHC cryodipoles. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 1 scholarly publication.