Paper
11 February 2003 SONTRAC: an imaging spectrometer for solar neutrons
James M. Ryan, Laurent Desorgher, Erwin O. Flueckiger, John R. Macri, Mark L. McConnell, Richard S. Miller
Author Affiliations +
Abstract
An instrument capable of unambiguously determining the energy and direction of incident neutrons has important applications in solar physics-as well as environmental monitoring and medical/radiological sciences. The SONTRAC (SOlar Neutron TRACking) instrument is designed to operate in the neutron energy range of 20-250 MeV. The measurement principle is based on non-relativistic double scatter of neutrons off ambient protons (n-p scattering) within a block of densely packed scintillating fibers. Using this double-scatter mode it is possible to uniquely determine neutron energy and direction on an event-by-event basis. A fully operational science model of such an instrument has been built using 300 μm (250 μm active) scintillating fibers. The science model consists of a 5×5×5 cm cube of orthogonal plastic scintillating fiber layers. Two orthogonal imaging chains, employing image intensifiers and CCD cameras, allow full 3-dimensional reconstruction of scattered proton particle tracks. We report the results of the science model instrument calibration using 35-65 MeV protons. The proton calibration is the first step toward understanding the instrument response to n-p scatter events. Preliminary results give proton energy resolution of 2% (6%) at 67.5 (35) MeV, and angular resolution of 2° (4.5°) at 67.5 (35) MeV. These measurements are being used to validate detailed instrument simulations that will be used to optimize the instrument design and develop quantitative estimates of science return. Based on the proton calibration, neutron energy and angular resolution for a 10×10×10 cm version of SONTRAC is expected to be ~5% and <10°, respectively, while the efficiency of the detector to double n-p scatter events is approximately 1%. We will also discuss ongoing opto-electronic developmental efforts and concepts for extending the instrument response to lower energies.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James M. Ryan, Laurent Desorgher, Erwin O. Flueckiger, John R. Macri, Mark L. McConnell, and Richard S. Miller "SONTRAC: an imaging spectrometer for solar neutrons", Proc. SPIE 4853, Innovative Telescopes and Instrumentation for Solar Astrophysics, (11 February 2003); https://doi.org/10.1117/12.460368
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Particles

Optical fibers

Solar energy

Scattering

Sensors

Calibration

Spatial resolution

RELATED CONTENT

High resolution FOXSI: The development of FOXSI-4
Proceedings of SPIE (January 01 1900)
SPOT4: first in-flight absolute calibration results
Proceedings of SPIE (December 21 1998)
GOES x ray sensor and its use in predicting solar...
Proceedings of SPIE (October 18 1996)
High performance spectrograph for solar UV 250-400 band
Proceedings of SPIE (October 22 2007)
Hard x-ray spectroscopy for proton flare prediction
Proceedings of SPIE (November 02 1998)

Back to Top