PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Richard B. Hoover,1,2 Gilbert V. Levin,3 Alexei Yu. Rozanov,4 Nalin C. Wickramasinghe2
1Athens State Univ. (United States) 2The Univ. of Buckingham (United Kingdom) 3Arizona State Univ. (United States) 4Paleontological Institute (Russian Federation)
This PDF file contains the front matter associated with SPIE Proceedings Volume 8865, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
During the past two years, the world has lost two great pioneers of the field of Astrobiology-Dr. David Stewart McKay who worked at the NASA-Johnson Space Center in Houston, Texas, USA and Academician Georgy Alexandrovich Zavarzin of the Institute of Microbiology of the Russian Academy of Sciences and Professor of the Moscow State University in Moscow, Russia. The Volume of the Proceedings of the 2013 SPIE Instruments, Methods, and Missions for Astrobiology XVI is dedicated to the memory of these great scientists. We remember our dear friends and review some of their many important contributions to Planetary Science, Geology, Meteoritics, Microbiology and Astrobiology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Curiosity’s latest reported findings, or lack thereof, are interpreted from the standpoint of their implications for the Viking Labeled Release experiment, and for life on Mars in general. As of the writing of this abstract, Curiosity has reported no findings related to those anticipated by the author’s last year’s paper, “Stealth Life Detection Experiments Aboard Curiosity.” However, Curiosity scientists have stated that soil and rock samples have been taken and analyzed, and abundant images have been downloaded. The only (indirectly) relevant reports issued by Curiosity scientists concern small-molecule organics found in a soil sample, which simple compounds they suggest might be terrestrial contamination, and images of rocks with colored (green) patches, the latter not of sufficient resolution (of which the cameras are capable) to detect possible evidence of biology. Hopefully, by the time of preparation of the body of this paper, more information will be available.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Perchlorates have been found on the surface of Mars. Since they are strongly oxidizing, it is important to discuss how this fact is reflected both on the existence of organic compounds on the surface of Mars and possibly life. We have previously reported that perchlorates, although strongly oxidizing, do not destroy some amino acids, such as glycine and alanine, among others, and also spare other classes of organic compounds. Others have found that perchlorates are utilized by bacteria and Archaea as energy sources. Particularly important are the findings about Archaea, since they show a combination of a biotic and abiotic processing of perchlorates, which implies ancient origins of these pathways, which may have been typical on prebiotic Earth. There are also numerous reports of the presence of organohalogen compounds on Earth which are made by natural sources or living organisms. Such compounds may be simple, such as chloromethane, or very complicated. They are utilized or produced by living organisms on Earth. Significantly, some such compounds are extremely stable to high temperatures, over 400oC, which should be taken into account for the chemical analyses on Mars. Finally, organohalogen compounds have been also detected on the meteorites. This combined evidence indicates that eventual finding of the organohalogen compounds on Mars is expected, and that the presence of the strongly oxidizing perchlorates does not rule out life on Mars.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Biomolecules and Microfossils in Carbonaceous Meteorites and Terrestrial Rocks I
Simulation experiments for prebiotic synthesis result in racemic mixtures (D/L = 1.0) for protein and non-protein amino acids, irrespective of the composition of the precursor gas mixtures or the energy sources employed. It is therefore not surprising that it was commonly assumed that if amino acids in carbonaceous meteorites were formed by similar reactions they would also be racemic. Engel and Nagy1 and more recently Glavin et al.2 have shown that protein amino acids in carbonaceous meteorites often exhibit a moderate to strong L-amino acid excess (D/L ˂ 1.0). Engel3 hypothesized that this extraterrestrial L-excess might be the precursor material from which life as we know it originated. Stable isotope analysese.g 4 confirmed that the L-amino acid excess in meteorites was indigenous rather than the result of contamination subsequent to impact on Earth. A key question that arises is that since there are no known mechanisms for the direct prebiotic synthesis of amino acids with an L-enantiomer excess, how did these compounds come to exist in carbonaceous meteorites? It has been proposed5and references therein that a series of diagenetic reactions subsequent to synthesis are responsible for the L-enantiomer excess. In this paper, this hypothesis is further explored with respect to explaining the range of D/L values for amino acids in the various types of carbonaceous meteorites as well as in different stones of the same meteorite. Possible effects of diagenesis on the stable isotope compositions of these compounds are also addressed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
On December 29, 2012, a bright yellow and green fireball was observed to disintegrate over the Polonnaruwa District of North Central, Sri Lanka. Many low density, black stones were recovered soon after the observed fall from rice paddy fields near the villages of Aralaganwila and Dimbulagala. These stones were initially studied by optical microscopy methods at the Medical Research Institute in Colombo, Sri Lanka. Soon thereafter, samples were sent to the UK and to the United States. More extensive Field Emission Scanning Electron Microscopy studies were then carried out at Cardiff University and the NASA/Marshall Space Flight Center. The physico-chemical properties, elemental abundances, mineralogy and stable isotope data clearly indicate that these stones are non-terrestrial. Freshly fractured interior surfaces of the black stones have also been observed to contain the remains of fossilized diatom. Many of the diatom frustules are clearly embedded in the meteorite rock matrix and exhibit nitrogen levels below the EDX detection limits. Some of the fossil diatoms are araphid marine pennates and planktonic forms that are inconsistent with conditions associated with rice paddy fields. These observations indicate the fossilized diatoms are indigenous to the meteorites rather than post-arrival biological contaminants. The carbon content and mineralogy suggests that these stones may represent a previously ungrouped clan of carbonaceous meteorites. The extremely low density (~0.6) of the stones and their observed mineralogy was inconsistent with known terrestrial rocks (e.g., pumice, diatomite and fulgurites). The minerals detected suggest that the parent body of the Polonnaruwa stones may have been the nucleus of a comet. These observations are interpreted as supporting the Hoyle-Wickramasinghe Panspermia hypothesis and the hypothesis that diatoms and other microorganisms might be capable of living and growing in water ice and brines in comets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Acritarchs are a group of organic-walled, acid-resistant microfossils of uncertain or unknown origin. Some are thought to represent the cysts or resting stages of unicellular protists (possibly dinoflagellates), chrysophytes (green algae) or other planktonic eukaryotic algae. Acritarchs are found throughout the geologic column extending back as far at 3.2 Ga. The presence of large sphaeromorphs in the Archaean provides evidence that the eukaryotic lineage extends much farther back in time than previously thought possible. Acritarchs are abundant in the Paleoproterozoic shales (1.9-1.6 Ga) of the former Soviet Union and they have been extensively used for the investigation of Proterozoic and Paleozoic biostratigraphy and paleoenvironmental parameters. Scanning Electron Microscope studies have revealed the fossilized remains of organic-walled microfossils of unknown origin and exhibiting characteristics of acritarchs in a variety of carbonaceous meteorites. In many cases, these remains are black or brown in color and have Carbon/Oxygen ratios suggesting they have been diagenetically converted into kerogen. It is not feasible that the fossilized remains of organicwalled microfossils such as acritarchs represent biological contaminant that invaded and became embedded in the rock matrix of carbonaceous meteorites within the short time periods of their residence on Earth. Consequently, these groups of microfossils are considered to provide an additional line for the existence of indigenous extraterrestrial microbial remains in meteorites. This paper presents a brief review of acritarchs in terrestrial rocks and provides images of a number of similar morphotypes of uncertain origin found in freshly fractured samples of carbonaceous meteorites.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We report on the physical, chemical and mineral properties of a series of stone fragments recovered from the North Central Province of Sri Lanka following a witnessed fireball event on 29 December 2012. The stones exhibit highly porous poikilitic textures comprising of isotropic silica-rich/plagioclase-like hosts. Inclusions range in size and shape from mm-sized to smaller subangular grains frequently more fractured than the surrounding host and include ilmenite, olivine (fayalitic), quartz and accessory zircon. Bulk mineral compositions include accessory cristobalite, hercynite, anorthite, wuestite, albite, anorthoclase and the high pressure olivine polymorph wadsleyite, suggesting previous endurance of a shock pressure of ~20 GPa. Further evidence of shock is confirmed by the conversion of all plagioclase to maskelynite. Here the infrared absorption spectra in the region 580 cm-1 to 380 cm-1 due to the Si-O-Si or Si-O-Al absorption band shows a partial shift in the peak at 380 cm-1 towards 480 cm-1 indicating an intermediate position between crystalline and amorphous phase. Host matrix chemical compositions vary between samples, but all are rich in SiO2. Silica-rich melts display a heterogeneous K-enrichment comparable to that reported in a range of non-terrestrial material from rare iron meteorites to LL chondritic breccias and Lunar granites. Bulk chemical compositions of plagioclase-like samples are comparable to reported data e.g. Miller Ranger 05035 (Lunar), while Si-rich samples accord well with mafic and felsic glasses reported in NWA 1664 (Howardite) as well as data for fusion crust present in a variety of meteoritic samples. Triple oxygen isotope results show Δ17O = -0.335 with δ18O (‰ rel. SMOW) values of 17.816 ± 0.100 and compare well with those of known CI chondrites and are within the range of CI-like (Meta-C) chondrites. Rare earth elemental abundances show a profound Europium anomaly of between 0.7 and 0.9 ppm while CI normalized REE patterns accord well with those of high potassium and high aluminium glasses found in lunar and 4 Vesta samples. Twoelement discrimination maps of FeO vs SiO2, FeO vs TiO2, FeO vs Al2O3 and FeO vs Na2O similarly match those of impact glasses present in lunar samples and remain within relatively close proximity of the KREEP component. Iridium levels of between 1-7ppm, approximately 104 times that of terrestrial crustal rocks, were detected in all samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Information density can increase locally if one is careful to control the flow of entropy. Not diffusively but through clever use of “invariants of the flow”. Replacing entropy with true invariants of the flow, we show how information can be concentrated or “added” consistent with the observation of increasing complexity on the Earth. Analogous to a digital computer made of fluid components, the “calculation” proceeds by clever manipulation of boundary conditions. Magnetized comets possess exactly the properties needed to produce the simplest entropy invariant, making them a prime candidate for driving evolution. They may also provide the origin of the chirality or ”handedness” of life. Thus the Origin-of-life, evolutionary progress paradox can be solved, but at the cost of requiring the universe to be in a highly information-dense initial state.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We first introduce a concept of algorithms in a form which is useful to astrobiology. We follow Dennett’s description of algorithms, which he has used to introduce the idea that evolution takes place via natural selection in an algorithmic process. We then bring up various examples and principles of evolution, including inventive evolution for the biosynthesis of secondary metabolites, and propose them as candidates for constituting evolutionary algorithms. Finally, we discuss philosophy papers of Rescher about extraterrestrials and their science and attempt to extract from them some generalized principles for the search for extraterrestrial life.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Principles of molecular recognition, which include both intra- and inter-molecular noncovalent interactions, guide twoand three-dimensional organization of molecules which is critical for functioning and evolution of life. In this paper we review the importance of the noncovalent interactions in the genetic systems with an emphasis on the ionic interactions. We review the most recent work on the metal- RNA interactions, which shows how such interactions were intimately connected with the environment on the early Earth. We also bring up the proposals by others of the requirements for the extraterrestrial genetic systems which are not based on RNA or DNA. Such systems would utilize the available noncovalent interactions for their stabilization and molecular recognition in general in a manner which could be different than that on the Earth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
While life on Earth continues to be discovered in unlikely environments, the underlying biochemistry is all very similar, based on the element carbon, and requiring liquid water. We consider alternate biochemistries based on elements other than carbon, including other group IVA elements, such as silicon and germanium, and solvents other than water. Terminal electron acceptors other than oxygen are also discussed. A fundamental issue is raised related to the detection of, and even the definition of life, whether it is carbon or non-carbon based. An extreme example of this issue would be in consideration of speculative life based on electrically charged dusty plasmas, which may have no physical body.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The geometry of coordinates for physiological optima of Archaea demonstrates the function of a hyperbola in two dimensions, and of a hyperboloid in three dimensions modeling. It was shown that the hyperboloid has an inclination of 67.5°. In previous work, both hyperboloids (one- and two-sheet) were positioned vertically, as schematic data for a preliminary result’s demonstration. Furthermore, our previous model of the Evolution of Life was constructed exclusively on the data of Archaea. In this work, we have constructed a hyperboloid with respect to the precise coordinates of physiological groups, and we have added the data for other key groups of microorganisms and multicellular eukaryotes that interfered and co-evolved with the relic ancient Archaean’s groups. Consequently, the inclined hyperboloid was composed to demonstrate the evolution of prokaryotic and eukaryotic organisms in space and time. Here, a complete model of the Evolution of Life is presented for consideration. In this article, we discuss some critical changes of geometry for separate physiological groups during the process of evolution, and focus on a possible involvement of mathematical laws and potential application of geometric function for explanation of the evolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene reconstruction studies in astrobiology and also be applicable to the study of point mutation in conformational thermostabilization research with Synchrotron based X-ray data for drug applications such as Parkinson’s disease.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The evolutionary rate co-variation in meiotic proteins has been reported for yeast and mammal using phylogenic branch lengths which assess retention, duplication and mutation. The bioinformatics of the corresponding DNA sequences could be classified as a diagram of fractal dimension and Shannon entropy. Results from biomedical gene research provide examples on the diagram methodology. The identification of adaptive selection using entropy marker and functional-structural diversity using fractal dimension would support a regression analysis where the coefficient of determination would serve as evolutionary pathway marker for DNA sequences and be an important component in the astrobiology community. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, clinical trial targeted cancer gene CD47, SIRT6 in spermatogenesis, and HLA-C in mosquito bite immunology demonstrate the diagram classification methodology. Comparisons to the SEPT4-XIAP pair in stem cell apoptosis, testesexpressed taste genes TAS1R3-GNAT3 pair, and amyloid beta APLP1-APLP2 pair with the yeast-mammal DNA sequences for meiotic proteins RAD50-MRE11 pair and NCAPD2-ICK pair have accounted for the observed fluctuating evolutionary pressure systematically. Regression with high R-sq values or a triangular-like cluster pattern for concordant pairs in co-variation among the studied species could serve as evidences for the possible location of common ancestors in the entropy-fractal dimension diagram, consistent with an example of the human-chimp common ancestor study using the FOXP2 regulated genes reported in human fetal brain study. The Deinococcus radiodurans R1 Rad-A could be viewed as an outlier in the RAD50 diagram and also in the free energy versus fractal dimension regression Cook’s distance, consistent with a non-Earth source for this radiation resistant bacterium. Convergent and divergent fluctuating evolutionary pressure could be studied with extension to genetic sequences in organisms in possible astrobiology conditions, with the assumption that the continuation of a book of life would require meiotic proteins everywhere in the universe.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Red rain cells are the microscopic biological cells which appear mixed in rain water in large quantity imparting visibly red color to the rain water in a strange event called red rain phenomenon. Our study of this phenomenon which happened in Kerala, India in 2001 has shown that the origin of these cells is possibly extraterrestrial. These cells are not so far successfully identified as any organism known on earth. The cells have unusual property like ability to reproduce at extreme high temperature and the colorless daughter cells cultured from the red cells show unusual autofluorescence characteristics. In this paper we report the autofluorescence characteristics of the original red rain cells. High resolution fluorescence microscopy is employed to study the fluorescence images of the cells under UV-Visible excitation. The results are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Biological entities were isolated at a height of between 22-27 km in the stratosphere. Sampling of this region was carried out in the UK in July 2013 using a relatively simple low-cost balloon-borne sampler carrying aseptically clean scanning electron microscope stubs onto which aerosols were directly captured. The entities varied from a presumptive colony of ultra-small bacteria to two unusual individual organisms - part of a diatom frustule and a 200 micron-sized particle mass interlaced with biological filaments. Biological entities of this nature have not previously been reported occurring in the stratosphere; their likely origin is discussed and we provide arguments to support our view that such biological entities may have arrived from space. The new data gives strong confirmation of the Hoyle-Wickramasinghe theory of cometary panspermia.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Prebiotic Chemistry, Horizontal Gene Transfer, and Panspermia
Without modern fluid mechanics to inform cosmology theory, the formation of life is virtually impossible. Dark-energy cold-dark-matter hierarchical-clustering (Λ CDMHC) models are much too slow and oversimplified to produce the vast array of homogeneous life forms on cosmic space and time scales inferred from recent observations. Hydro-gravitational-dynamics (HGD) cosmology predicts viscous fragmentation of the primordial plasma to form proto-super-cluster voids at only 30,000 years (1012 seconds) following the big bang, with baryonic density matching (and explaining) the constant density ρ0 of globular star clusters observed in all present galaxies as a persistent fossil of the event. At the plasma to gas transition time 300,000 years (1013 seconds) plasma-proto-galaxies fragmented with linear and spiral morphologies set by large photon-viscosity and weak plasma turbulence. These proto-galaxies fragmented in 1012 seconds to Jeans mass clumps of a trillion earth-mass planets on transition to gas, which host the formation of stars, supernovae, hot water oceans, and the formation and distribution of life in a biological big bang beginning at 2,000,000 years when water condensed, and slowed at 8,000,000 years when water began to freeze.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Most prebiotic reactions are hypothesized to have occurred in water. However, organic compounds in general are not water-soluble. This has created a great problem for prebiotic chemistry. However, it has been shown recently that many organic materials which are not soluble in water are still capable of reacting in water, often at faster rates than in the organic solvents. This has provided a new era in the study of the prebiotic reactions. Simulated prebiotic reactions are typically performed in water. However, presence of inorganic salts and the amino acids was ubiquitous in the aqueous media on the prebiotic Earth. We thus address the influence of common salts and selected water-soluble amino acids on the rate and outcome of selected prebiotic reactions in water. We focus on Diels-Alder (DA) reaction and multicomponent Passerini reaction (PR), as models for other prebiotic reactions. Some of the results came from our laboratory, and others are from the literature. DA reaction is influenced by salts and by selected water-soluble amino acids, but generally not to a large extent. The PR is also influenced by salts, but not dramatically. However, concentrations of salts and amino acids could have been extremely high in various local niches on the early Earth, and the influence of such concentrations on these prebiotic reactions awaits further study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The 2013 data from the Kepler Mission gives a current estimate of the number of Earth-like planets in the habitable zone of sun-like stars in the Milky Way Galaxy, as 144 billion. We propose that this estimate has caused a consciousness change in human belief in the probability of life off Earth. This seems to have affected NASA’s public statements which are now leaning to the more visionary mission goal of the “Search for Life” rather than the 1975-2012 focus of the “Search for Water”. We propose that the first confirmed Earth-like planet, expected to be announced later this year, be called “BORUCKI” in honour of the visionary USA scientist Bill Borucki, the father of the Kepler Mission. We explore the 2013 status of the Hoyle-Wickramasinghe Model of Panspermia, its hypothesis, propositions, experiments and evidence. We use the Karl Popper model for scientific hypotheses (1). Finally we explore Sir Fred Hoyle’s vision of a planetary microbe defense system we call the Hoyle Shield. We explore the subsystem components of the shield and assess some options for these components using break-though technologies already available.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Cosmologists refer to elements heavier than helium as “metals” and are essential as the building blocks of life, as well as the formation of rocky, terrestrial, Earth-like planets on which life is likely to be found. Widely-accepted cosmological models suggest the early universe was extremely metal-poor, limiting opportunities for life to arise. With the formation of galaxies and on-going stellar synthesis of heavy elements, these opportunities continue to improve. We consider the Galactic Habitable Zone of our Milky Way galaxy, how it may have appeared in the past, and how it may evolve over time, increasing the likelihood of the formation of rocky Earth-like planets, and the opportunities for life to emerge on them.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.