The developed classification approach allows i) a successive partitioning of data into several levels or partitions in which the main classes are first identified, ii) an estimation of the number of classes automatically at each level without any end user help, iii) a nonsystematic subdivision of all classes of a partition Pj to form a partition Pj+1, iv) a stable partitioning result of the same data set from one run of the method to another. The proposed approach was validated on synthetic and real hyperspectral images related to the identification of several marine algae species. In addition to highly accurate and consistent results (correct classification rate over 99%), this approach is completely unsupervised. It estimates at each level, the optimal number of classes and the final partition without any end user intervention. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
![Lens.org Logo](/images/Lens.org/lens-logo.png)
CITATIONS
Cited by 1 scholarly publication.
Hyperspectral imaging
Ocean optics
Vegetation
Image classification
Earth observing sensors
Satellite imaging
Satellites