Open Access Paper
21 October 2015 Bio-inspired materials for electrochemical devices
A. Pawlicka, A. Firmino, F. Sentanin, R. C. Sabadini, D. E. Q. Jimenez, C. C. Jayme, M. Mindroiu, R. G. Zgarian, G. T. Tihan, I. Rau, M. M. Silva, A. F. Nogueira, J. Kanicki, F. Kajzar
Author Affiliations +
Abstract
Natural macromolecules are very promising row materials to be used in modern technology including security and defense. They are abundant in nature, easy to extract and possess biocompatibility and biodegradability properties. These materials can be modified throughout chemical or physical processes, and can be doped with lithium and rare earth salts, ionic liquids, organic and inorganic acids. In this communication samples of DNA and modified DNA were doped with Prussian Blue (PB), poly(ethylene dioxythiophene) (PEDOT), europium and erbium triflate and organic dyes such as Nile Blue (NB), Disperse Red 1 (DR1) and Disperse Orange 3 (DO3). The colored or colorless membranes were characterized by electrochemical and spectroscopic measurements, and they were applied in electrochromic devices (ECDs) and dye sensitized solar cells (DSSC). ECDs change the color under applied potential, so they can modulate the intensity of transmitted light of 15 to 35%. As the electrochromic materials, WO3 or Prussian blue (PB), are usually blue colored, the color change is from transparent to blue. DNA, and the complexes: DNA-CTMA, DNA-DODA and DNAPEDOT: PSS were also investigated as either hole carrier material (HTM) or polymer electrolyte in dye-sensitized solar cells (DSSC). The DNA-based samples as HTM in small DSSCs revealed a solar energy conversion efficiency of 0.56%. Polymer electrolytes of DNA-CTMA and DNA-DODA, both with 10 wt% of LiI/I2, applied in small DSSC, exhibited the efficiencies of 0.18 and 0.66%, respectively. The obtained results show that natural macromolecules-based membranes are not only environmentally friendly but are also promising materials to be investigated for several electrochemical devices. However, to obtain better performances more research is still needed.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. Pawlicka, A. Firmino, F. Sentanin, R. C. Sabadini, D. E. Q. Jimenez, C. C. Jayme, M. Mindroiu, R. G. Zgarian, G. T. Tihan, I. Rau, M. M. Silva, A. F. Nogueira, J. Kanicki, and F. Kajzar "Bio-inspired materials for electrochemical devices", Proc. SPIE 9652, Optics and Photonics for Counterterrorism, Crime Fighting, and Defence XI; and Optical Materials and Biomaterials in Security and Defence Systems Technology XII, 96520U (21 October 2015); https://doi.org/10.1117/12.2196924
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Dye sensitized solar cells

Polymers

Macromolecules

Transmittance

Europium

Erbium

Liquids

Back to Top