Nonlinear spectroscopy, such as sum-frequency generation spectroscopy and coherent Raman spectroscopy, are powerful tools for analyzing transient molecular structural changes. Achieving fast and high-resolution spectroscopy with these methods requires bandwidth compression techniques to convert broadband femtosecond pulses into synchronized narrowband picosecond pulses. Here we present a novel single-pass narrowband SHG method based on a novel pulse-shaping scheme using dispersion-engineered optical filters. In our first verification experiment, we found that the SHG bandwidth after passing the filter was compressed to 1/6, and the wavelength conversion efficiency was improved by 18 times compared to the case without the filter. This result demonstrates that precision-engineered optical filters can be used as a pulse-shaping tool. This alignment-free, single-pass bandwidth compression method may be an important tool for promoting the use of nonlinear spectroscopy in a wider range of fields.
|