
Chapter 2

Polarization

According to classical physics, light is an electromagnetic wave and its
properties are obtained from Maxwell’s equations. One of these properties is
that light is a transverse wave; i.e., the electric and magnetic vectors (optical
field) vibrate orthogonally to the direction of wave propagation. If we assume
that the light source is composed of oscillators that emit electromagnetic
energy, then in general, the directions of the electric and magnetic vectors are
random. However, it is possible to maintain the vibration of the resulting
electric (magnetic) vector in a fixed plane or following an elliptical or circular
curve. In such a case, the wave is said to be polarized. This chapter defines
polarization and shows some of its applications (Fig. 2.1).

Taking into account the linearity of Maxwell’s equations, one can limit
the study of polarization to plane harmonic waves. Although the emitted or
reflected optical field can have any form, Fourier analysis shows that the
complex form of the optical field wavefront can be expressed by the sum of

(a) (b)

Figure 2.1 Polarization by reflection. The light that enters through a window in a room is
not polarized. When reflecting off a glass plate (smooth surface), as in (a), part of the window
is visible along with the text below the glass plate. If the reflection is viewed at an angle close
to Brewster’s angle, the light will be linearly polarized, which is verified by placing a linear
polarizer between the glass plate and the photographic camera taking the image. This
eliminates reflected light, and the text below the page is seen clearly, as shown in (b).
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harmonic plane waves. Thus, the results for plane waves can be extended to
more complex forms of the optical field.

This chapter begins by developing the algebra to describe linear, elliptical,
and circular polarization. Among the polarization mechanisms, dichroism,
polarization by total internal and external reflection, and birefringence are
discussed in detail, with the latter limited to the case in which the principal
directions of the refractive indices coincide with the axes of the crystal glass.
The refractive media considered here are dielectrics without absorption.
Finally, the Jones formalism to describe polarization states and polarizing
elements is presented.

2.1 Plane Waves and Polarized Light

In a vacuum, for a vector point r¼ (x, y, z) and time t, the optical field is
described by the electric vector E and the magnetic vectorH, which are related
to each other according to Maxwell’s equations, given by

∇� E ¼ �m0
∂H
∂t

, (2.1)

∇�H ¼ ϵ0
∂E
∂t

, (2.2)

∇ ·E ¼ 0, (2.3)

∇ ·H ¼ 0: (2.4)

From Eqs. (2.1), (2.2), and (2.3), the wave equation for the electric field is�

∇2E ¼ 1
c2

∂2E
∂t2

, (2.5)

with c2 ¼ 1∕m0ϵ0. For the magnetic field, an equation analogous to Eq. (2.5)
is obtained.

Because Eðx, y, zÞ ¼ fExðx, y, zÞ, Eyðx, y, zÞ, Ezðx, y, zÞg for a time t,
Eq. (2.5) represents a set of three equations, one for each component of the
electric field E. If any of these components is represented by V¼V(x, y, z), we
have a scalar equation of the form

∂2V
∂x2

þ ∂2V
∂y2

þ ∂2V
∂z2

¼ 1
c2

∂2V
∂t2

: (2.6)

Let ŝ ¼ ðsx, sy, szÞ be a unit vector in a fixed direction in space. A solution
of Eq. (2.6) of the form Vðr, tÞ ¼ gðr · ŝ, tÞ represents a homogeneous plane

�The wave equation is obtained using the identity vector ∇� ð∇� EÞ ¼ ∇ð∇ ·EÞ � ∇2ðEÞ:
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wave propagating in the ŝ direction, since at a given time g is constant for the
planes r · ŝ ¼ a (with a constant).

In particular, a harmonic plane wave can be written as

Vðr, tÞ ¼ A0 cosðkr · ŝ� vtþ dÞ, (2.7)

where A0 is the amplitude of the wave. In addition, k¼ 2p/l, where l is the
wavelength in vacuum, called the wavenumber; v¼ 2pn, where n is the wave
temporal frequency, called the angular frequency; and d is the initial phase
shift. Then, the phase of the wave is composed of three terms: a spatial phase
given by the surface wðx, y, zÞ ¼ kr · ŝ, a temporal phase vt, and a constant
phase d that allows the value to be adjusted at the origin (spatial and/or
temporal). Surfaces of constant spatial phase are called wavefronts and
correspond to the geometrical wavefronts derived from Fermat’s principle in
Chapter 1.

2.1.1 Maxwell’s equations with plane waves

If in Maxwell’s equations the fields E and H describe plane waves, these
differential equations simplify to algebraic equations. To see this, let us write
E and H in complex form, i.e.,

Eðr, tÞ ¼ E0eiðk · r�vtÞ, (2.8)

Hðr, tÞ ¼ H0eiðk · r�vtÞ, (2.9)

where k is the wave vector whose modulus is the angular wavenumber and
whose direction is that of the unit vector ŝ; i.e., k ¼ kŝ. Although the term of
the initial phase has been omitted to simplify the treatment, it will be included
again when required. Then, the result of the operators ∇ and ∂/∂t on plane
waves is

∇� E ¼ iðk� EÞ, (2.10)

∇ ·E ¼ iðk ·EÞ, (2.11)

∂E
∂t

¼ �ivE (2.12)

for the field E. For the field H, similar relationships are obtained. Therefore,
Maxwell’s equations can be reduced to

k� E ¼ m0vH, (2.13)

k�H ¼ �ϵ0vE, (2.14)

k ·E ¼ 0, (2.15)
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k ·H ¼ 0: (2.16)

From these equations,

E ¼ � 1
ϵ0v

k�H, (2.17)

which with Eq. (2.16) implies that E, H, and k form an orthogonal system of
vectors, as illustrated by Fig. 2.2.

Let H¼ |H| (the modulus of H) and E¼ |E| (the modulus of E). Given the
mutual orthogonality between E, and H, and k from Eq. (2.14),

H ¼ ϵ0cE, (2.18)

where c¼v/k.
Thus the fields E and H vibrate in phase [Eqs. (2.8) and (2.9)] in a plane

orthogonal to k and propagate as illustrated by Fig. 2.3.

2.1.2 Irradiance

Experimentally, in the visible range, the field E is not measured due to the lack
of detectors that can respond as fast as the E vibrations. Instead of measuring
the amplitude of the field, a time average of the square of the field can be
measured, i.e., the average energy per unit time per unit area. The time

Figure 2.2 Orientation of the fields E and H and the wave vector k.

Figure 2.3 Illustration of the propagation of harmonic fields E and H.
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required to do the averaging is determined by the response of the detector.
Detector response times are several orders of magnitude of the time period.

Formally, the mean value of the energy is calculated from the Poynting
vector

S ¼ E�H: (2.19)

From the shared orthogonality between E, H, and k, taking into account
Eq. (2.13), the Poynting vector can be written as

S ¼ 1
m0v

ðE ·EÞk; (2.20)

and because v/k¼ c,

S ¼ 1
m0c

ðE ·EÞŝ ¼ ϵ0cðE ·EÞŝ: (2.21)

This formula indicates that the direction in which the energy flows is normal
to the wavefront, since ŝ is the unit vector that defines the normal of the
wavefront. This result is also valid in dielectric (isotropic) media.

The irradiance is then defined as

I ¼ hSiŤ , (2.22)

where S¼ |S|. Here, h i denotes the mean value of the function� and Ť denotes
the integration (detection) time. By inserting Eq. (2.21) into Eq. (2.22), the
irradiance is

I ¼ ϵ0c
Ť

ZŤ∕2

�Ť∕2

ðE ·EÞdt: (2.23)

In particular, for a periodic function, the mean value is taken with
respect to the period of the signal. So for a harmonic plane wave, the
irradiance will be

I ¼ ϵ0c
T

ZT∕2

�T∕2

ðE ·EÞdt, (2.24)

where T¼ 1/n is the period of the wave.

�The mean value of the function f over time period t is defined as h f i ¼ 1
t ∫

t∕2

�t∕2
f dt.

107Polarization



If the harmonic plane wave is given by

E ¼ E0 cosðkr · ŝ� vtÞ, (2.25)

the irradiance would be

I ¼ ϵ0cðE0 ·E0Þ
1
T

ZT∕2

�T∕2

cos2ðkr · ŝ� vtÞdt: (2.26)

The mean value of the cosine-squared function in a period is equal to 1/2;
therefore;

I ¼ ϵ0c
2

ðE0 ·E0Þ ¼
ϵ0c
2

E0
2: (2.27)

Another common way of representing the harmonic plane wave, also used
in this book, is through the complex exponential function. Suppose the wave is
given by

E ¼ E0eiðkr · ŝ�vtÞ, (2.28)

where the amplitude E0 is also complex and ∥E0∥¼E0. In this case, the
irradiance should be defined as

I ¼ ϵ0c
2T

ZT∕2

�T∕2

ðE ·E�Þdt, (2.29)

where E� is the conjugate of E. In this way, it is guaranteed that the irradiance
value is equal to the one obtained if the wave is represented as a cosine (or
sine) function. By inserting Eq. (2.28) into Eq. (2.29), the irradiance is

I ¼ ϵ0c
2

ðE0 ·E�
0Þ: (2.30)

2.1.3 Natural light and polarized light

Because E andH are in phase and related according to Eq. (2.17), we will only
consider the vector E to refer to the propagation of the optical field.

Let us assume that the field E is the result of monochromatic plane waves
emitted by the oscillators that make up a light source. Simplifying the model,
let us also assume that the waves propagate in the z direction, so that at a
given instant of time in an (x, y) plane at a distance z, the field E can be
written as
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Eðx, y, z; tÞ ¼
n
jEoxjeidxeiðkz�vtÞ, jEoyjeidyeiðkz�vtÞ

o
: (2.31)

The amplitude of each field component has a phase term (dx and dy), so their
difference allows us to measure the delay of one component with respect to the
other. Choosing the plane z¼ z0, from the phase difference Dd¼ dy – dx, we
can observe how the vector E evolves in time. This depends on the nature of
the source. In general, the oscillations in the sources are such that Dd is a
random variable. Consequently, we cannot predict how the vector E evolves
in time (what amplitude and direction it has at a given moment). It is said that
these types of sources, very common in nature, emit natural polarized or
nonpolarized light. But if Dd remains stable in time, i.e., Dd¼ constant, then it
is possible to determine how the vector E evolves. In this case, it is said that
the light is polarized.

2.1.4 Elliptical, circular, and linear polarization

Polarized light implies that, given two components for the field E, the phase
difference of the amplitude components is a constant. Depending on the value
of this difference, the electric vector evolves confined to a plane or following
an ellipse (circle). In the first case, there is linear polarization; in the second,
there is elliptical (circular) polarization to the left or to the right. To see this,
let us consider an example. Suppose

Eðx, y, z; tÞ ¼
n
Eox, Eoy

o
eiðkz�vtÞ (2.32)

with

Eox ¼ jEoxjei0 and Eoy ¼ jEoyjeip∕2; (2.33)

i.e., dx¼ 0 and dy¼p/2. Therefore, Dd¼p/2. First, let us see what the
endpoint of the electric vector projected onto a plane, say z¼ 0, looks like.
The components of E take the form

Ex ¼ jEoxje�i2pt∕T , (2.34)

Ey ¼ jEoyje�ið2pt∕T�p∕2Þ: (2.35)

Considering each component as a phasor, i.e., a rotating vector of radius
|Eox| (|Eoy|) and a phase dx (dy), graphically each component will look as
illustrated in Fig. 2.4(a). The y component (top left), at t¼ 0, starts with a lag
of p/2, i.e., at point 1. On the other hand, the x component (bottom), at t¼ 0,
starts with a phase shift of 0, which is also indicated by the dot 1. As time
increases, particularly for t¼T/4, T/2, 3T/4, and 2T, the positions for the
phasors for x and y will be indicated by points 2, 3, 4, and 5, respectively. The

109Polarization



projections of points 1, 2, 3, 4, and 5 in the vertical direction for the x phasor
and in the horizontal direction for the y phasor intersect in the shaded
rectangular region with sides 2|Eox| and 2|Eoy|. The locus of the intersections
describes the evolution of the electric vector in time, as shown at the top right
of Fig. 2.4(a). In this example, the path is an ellipse, since |Eox| > |Eoy|, and it
builds counterclockwise. In this case, the electric vector is said to have left
elliptical polarization. The opposite direction of the trajectory (clockwise) is
obtained if Dd ¼ �p∕2; then the electric vector is said to have right elliptical
polarization. In particular, if |Eox|¼ |Eoy|, the trajectory is a circle,
corresponding to left or right circular polarization.

Now if we look at how the electric vector evolves in space, we see
something different. Fixing the time at t¼ 0, the E components take the form

Ex ¼ jEoxjei2pz∕l, (2.36)

Ey ¼ jEoyjeið2pz∕lþp∕2Þ: (2.37)

For the real part, in z¼ 0, E ¼ fjEoxj, 0g; in z¼ l/4, E ¼ f0, �jEoyjg; in
z¼ l/2, E ¼ f�jEoxj, 0g; in z¼ 3l/4, E ¼ f0, jEoyjg; and finally, in z¼ l,
E ¼ fjEoxj, 0g. This is illustrated by arrows in Fig. 2.4(b). In this case, the
path followed by the end of the electric vector is a helix moving clockwise. Of
course, the two images are equivalent. Indeed, if in (b) we observe how the
ends of the electric vector reach the plane z¼ 0, we will have the trajectory
given in (a).

(a) (b)

Figure 2.4 Left elliptical polarization. (a) Endpoint of the electric vector projected onto a
fixed plane (z ¼ 0). The end of the vector rotates counterclockwise. (b) Spatial evolution
(t ¼ 0) of the electric vector. The end of the vector describes a helix that advances in the z
direction in a clockwise rotation.
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When Dd¼ 0, the observed path of the endpoint of the electric vector in a
fixed plane (z¼ 0) is a straight line inclined at an angle arctan(|Eoy|/|Eox|), as
illustrated in Fig. 2.5(a). The extension of the line is limited by the rectangle
with sides 2|Eox| and 2|Eoy|. This is the case of linear polarization.

If the spatial evolution of the electric vector is observed, the field E will
vibrate harmonically in an inclined plane with the angle arctan(|Eoy|/|Eox|), as
illustrated in Fig. 2.5(b).

2.1.5 Polarization: general case

In the previous section, left elliptical and linear polarization are shown,
which result from the phase differences Dd¼p/2 and Dd¼ 0. However, the
value of Dd can be any constant. In general, the polarization state of an
electromagnetic wave is given by a rotated ellipse,

E2
x

jEoxj2
� 2

Ex

jEoxj
Ey

jEoyj
cosðDdÞ þ E2

y

jEoyj2
¼ sin2ðDdÞ, (2.38)

as shown in Fig. 2.6. The ellipse remains confined to the rectangle of sides
2|Eox| and 2|Eoy| and the angle of rotation c of the ellipse is determined from

tanð2cÞ ¼ tanð2aÞ cosðDdÞ, (2.39)

where

(a) (b)

Figure 2.5 Linear polarization when the two components are in phase. (a) The trajectory of
the end of the electric vector is a straight line bounded by the rectangular region of sides
2|Eox| and 2|Eoy|, tilted by an angle tan–1(|Eoy|/|Eox|). (b) The field E is confined to a plane
inclined by an angle tan–1(|Eoy|/|Eox|) and moves harmonically.
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tana ¼ jEoyj
jEoxj

: (2.40)

The sign of sin(Dd) indicates the direction of the polarization. If sin(Dd) > 0,
the polarization is to the left; if sin(Dd) < 0, the polarization is to the right.
Appendix F shows the complete derivation to obtain Eqs. (2.38), (2.39), and
(2.40).

Case 1. Dd ¼ mp; m ¼ 0, �1, �2, : : : ,
Equation (2.38) becomes

E2
x

jEoxj2
� 2ð�1Þm Ex

jEoxj
Ey

jEoyj
þ E2

y

jEoyj2
¼ 0, (2.41)

which is equal to

�
Ex

jEoxj
� ð�1Þm Ey

jEoyj
�

2
¼ 0, (2.42)

which represents the straight line

Ey ¼ ð�1ÞmðtanaÞEx, (2.43)

i.e., linear polarization with the plane of vibration inclined by the
angle ±a.

Figure 2.6 Polarization ellipse in the general case.
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Case 2. Dd ¼ ð2m� 1Þp∕2; m ¼ 0, �1, �2, : : : ,
Equation (2.38) becomes

E2
x

jEoxj2
þ E2

y

jEoyj2
¼ 1, (2.44)

which represents an ellipse with its major and minor axes oriented with the
axes x (Ex) and y (Ey), respectively. Thus, there is elliptical polarization to the
left or to the right. In particular, if |Eox|¼ |Eoy|, there is left or right circular
polarization.

Case 3. Dd ≠ mp, ð2m� 1Þp∕2.
For phase shifts different from those treated in cases 1 and 2, there is elliptical
polarization, in which the ellipse is rotated according to Eqs. (2.39) and (2.40).

Example: ellipse from line to circle and vice versa
To illustrate these three cases, suppose we have an optical field with
|Eox|¼ |Eoy| and Dd¼ 0, p/4, p/2, 3p/4, p, 5p/4, 3p/2, 7p/4, and 2p.
In this example, because tan 2a¼`, the angle of rotation of the general ellipse
will be given by tan 2c ¼ � ,̀ where the sign is given by the sign of cos(Dd).
In other words, the angle of rotation of the ellipse would be c¼ 45°, if
ð0 ≤ Dd , p∕2Þ ∪ ð3p∕2 , Dd ≤ 2pÞ and c¼�45°, if p∕2 , Dd , 3p∕2.

In Fig. 2.7, the polarization states for the phase changes mentioned above
are shown: Eþ45 denotes linear polarization with the plane of vibration at 45°,
E–45 denotes linear polarization with the plane of vibration at �45°, EL

indicates left circular or elliptical polarization, and ER indicates right circular
or elliptical polarization.

Figure 2.7 Polarization states for various phase shifts with |Eox| ¼ |Eoy|.
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On the other hand, a¼ 0 defines a horizontal linear polarization state
(EH) and a¼ 90° defines a vertical linear polarization state (EV).

2.2 Dichroism Polarization

One way to remove one of the E-field components is by absorbing that
component. This can be achieved by designing a device that performs this task
or by using a natural material that has this property [1]. In both cases, the
selective absorption of one of the E-field components is called dichroism. The
final effect on the field will be linearly polarized light.

2.2.1 Linear polarizer

To see how a dichroism-based linear polarizer works, suppose that a grid of
parallel conducting wires is constructed, as shown in Fig. 2.8, and an
unpolarized field E (natural light) is incident in a direction orthogonal to the
grid plane. Because the electric charges have the possibility of greater
displacement in the horizontal direction (along the wires) compared with the
vertical direction (cross section of the wires), there will be a greater absorption
of electric energy in the direction of the wires; thus, the net component Ex

experiences a greater attenuation than the net component Ey. If, ideally, the
component Ex is completely attenuated, we will have a linear polarizer and the
field will have a vertical linear polarization state, EV. The direction in which
the field is not attenuated is called the transmission axis of the linear polarizer.

Using lithographic methods, polarizers based on a grid of conductive
wires for the visible spectrum are manufactured, achieving arrangements with
a separation of 100 nm between wires. Aluminum microwires are deposited on
glass substrates.

The most common dichroic linear polarizers are made of sheets of a
special transparent plastic (polyvinyl alcohol). These sheets have been
stretched in one direction to align their long molecules, which are then

Figure 2.8 Linear polarizer made with a grid of conducting wires.

114 Chapter 2



coated with iodine. In this way, something similar to the arrangement of the
threads shown in Fig. 2.8 is obtained, but at a microscopic level (type H
polarizers).

Extinction coefficient and degree of polarization
In practice, it is not possible to completely attenuate the component
orthogonal to the transmission axis of the polarizer, and the component
parallel to the transmission axis of the polarizer is not completely transmitted.
If we represent the linear polarizer, as shown in Fig. 2.9, and we decompose
the resulting incident field on the polarizer into a component parallel to the
transmission axis, E∥, and into a component orthogonal to the transmission
axis, E⊥, then the incident field would be

E ¼ fE∥, E⊥geiðkz�vtÞ: (2.45)

To characterize the linear polarizer taking into account the absorption of
the components E∥ and E⊥, two quantities are defined: the extinction
coefficient,

rP ¼ t∥
t⊥

, (2.46)

and the degree of polarization,

PP ¼ t∥ � t⊥
t∥ þ t⊥

, (2.47)

where t∥ ¼ jE0
∥j∕jE∥j is the fraction that transmits the component parallel to

the transmission axis and t⊥ ¼ jE0
⊥j∕jE⊥j is the transmission fraction of the

Figure 2.9 In a real polarizer, 100% of the component parallel to the transmission axis is
not transmitted, and the component orthogonal to the transmission axis is not completely
canceled.
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component orthogonal to the transmission axis. The extinction ratio is usually
given as rP:1. The transmittance of the polarizer is also used, defined as the
fraction of the intensity of linearly polarized light parallel to the transmission
axis that is transmitted by the polarizer, T ¼ t2∥. For example, it is typical to
find technical specifications for linear dichroic polarizers such as those shown
in Table 2.1.

The bandwidth tells us the spectral range for which the extinction
coefficient and the transmission are maintained according to the nominal
value. A 100:1 extinction corresponds to a low quality polarizer, whereas a
1,000,000:1 extinction is a high-quality polarizer. On the other hand, near
100% transmission requires a high-quality polarizer. Ultimately, the optical
quality of the polarizing foil comes down to the maximum distortion the foil
generates in a flat wavefront once it passes through the polarizer.

2.2.2 Malus’ law

Combining several linear polarizers not only allows control of the resulting
polarization state, but also the irradiance. Suppose we have several ideal
linear polarizers, i.e., with rP¼` and PP¼ 1. In Fig. 2.10, a configuration
with two polarizers is shown where their transmission axes form an angle u.
The first polarizer receives natural light. The second receives linearly
polarized light vibrating in planes parallel to the transmission axis of the

Table 2.1 Technical specifications for a linear dichroic polarizer.

Bandwidth (nm) 100–1000

Extinction 102–106

Transmission (%) >50, <90

Optical quality l/5–l/2

Figure 2.10 Malus’ law.
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first polarizer and transmits linearly polarized light, but changes the
orientation of the vibrating planes parallel to the transmission axis of the
second polarizer.

To determine the irradiance obtained at the end of the second polarizer,
let us assume that the irradiance of natural light is I0. This irradiance is the
mean value of the energy flow per unit area, emitted by the oscillators that
make up the light source. The oscillators are randomly oriented and emit
short-duration (10–8 s) electromagnetic wave trains. When looking at plane
waves at a great distance from the oscillator, each wave train will be linearly
polarized. Therefore, there will be a superposition of wave trains with
different initial phases (origin of time) and with different planes of occasional
vibration. Because the integration time is much longer than the duration of
the wave trains, it is not possible to predict the state of polarization. At a given
moment, we will have a resultant vector for the field E and then, an instant
later, it will have randomly changed its orientation and amplitude. However,
we can define an average vector in a given direction. Because the process is
random for any other direction, we will have a mean vector with the same
amplitude as the first. Consequently, if we decompose the vector E incident on
the first polarizer into a component parallel to the transmission axis and
another one orthogonal to the transmission axis [Eq. (2.45)], then

I0 ¼
ϵ0c
2

fE∥, E⊥g · fE∥, E⊥g�, (2.48)

which is equal to

I0 ¼
ϵ0c
2

ðjE∥j2 þ jE⊥j2Þ: (2.49)

And, since natural light is randomly polarized, |E∥|¼ |E⊥|; thus,

I0 ¼
ϵ0c
2

ð2jE∥j2Þ: (2.50)

After the first polarizer, E0
∥ ¼ E∥; thus, the transmitted irradiance

would be

I 0 ¼ ϵ0c
2

jE0
∥j2 ¼ I0

2
: (2.51)

Finally, after the second polarizer E00
∥ ¼ E0

∥ cos u; therefore, the transmit-
ted irradiance will be

I 00 ¼ ϵ0c
2

jE00
∥j2 ¼ ϵ0c

2
jE0

∥j2cos2u, (2.52)

i.e.,
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I 00 ¼ I 0cos2u: (2.53)

This expression, known as Malus’ law, states that when two linear polarizers
are placed one behind the other with their transmission axes parallel to each
other, the second polarizer transmits 100% of the linearly polarized light
emerging from the first polarizer (I00 ¼ I0/2); and when two linear polarizers
are placed one behind the other with their transmission axes orthogonal to
each other, the second polarizer transmits 0% of the linearly polarized light
emerging from the first polarizer (I00 ¼ 0). For other orientations of the
transmission axes, the transmission will have a value in the range 0 < I00 < I0

according to Eq. (2.53). In other words, the two-polarizer system shown in
Fig. 2.10 is an irradiance-attenuating device (which also rotates the plane of
vibration of the transmitted E field).

2.3 Polarization by Reflection

Another way to generate linearly polarized light from natural light is by
reflecting it off a smooth surface (mirror) at an appropriate angle (Brewster’s
angle). To determine this angle, one observes how the amplitude of the
reflected wave changes as a function of the angle of incidence. This depends
on the boundary conditions for the incident, reflected and transmitted waves
at the surface. The boundary conditions must be met for both the phases and
the amplitudes of the waves. From the boundary conditions of the phases, the
laws of reflection and refraction (Snell’s law) are derived; from the boundary
conditions of the wave amplitudes, the Fresnel equations are derived. From
these equations, the condition to obtain linearly polarized light is established.

2.3.1 Laws of reflection and refraction

Let us first consider the vibration of frequency n of the field E at a point in
space, given by the expression

EðtÞ ¼ E0e�i2pnt: (2.54)

Let us assume that the observation point is immersed in a homogeneous
dielectric medium of refractive index n. Then the (phase) speed with which the
progressive wave propagates would be y¼ c/n, where c is the speed of light in a
vacuum. The expression for the progressive harmonic plane wave in the
direction of the unit vector ŝ becomes

Eðr, tÞ ¼ E0 exp
�
�i2pn

�
t� ŝ · r

y

��
, (2.55)

which can be rewritten as
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Eðr, tÞ ¼ E0 exp
�
i2pn

�
n
ŝ · r
c

� t
��

(2.56)

or

Eðr, tÞ ¼ E0 exp
�
i
�
2pn

ŝ · r
l

� 2pnt
��

: (2.57)

Defining the wave vector in a medium of refractive index n as

k ¼ 2p
l

nŝ, (2.58)

the plane wave is

Eðr, tÞ ¼ E0eiðk · r�vtÞ, (2.59)

with k given by Eq. (2.58).
In a homogeneous dielectric medium, Maxwell’s equations are written as

in Section 2.1.1, but changing ϵ0 to ϵ, m0 to m, and the wave vector k
according to Eq. (2.58). With these changes, the wave equation becomes

∇2E ¼ 1
y2

∂2E
∂t2

, (2.60)

with y ¼ 1∕ ffiffiffiffiffiffiϵmp
(see Appendix B).

Assuming that we have an interface (plane surface) separating two media
of refractive indices ni and nt, and a plane wave traveling in the medium of
refractive index ni and incident on the interface, then we will have a reflected
plane wave and a transmitted (or refracted) plane wave. Let ŝi, ŝr, and ŝt be the
unit vectors that indicate the direction of propagation of the incident,
reflected, and transmitted plane waves, respectively, at a point of the interface
located with the vector r. The incident, reflected, and transmitted plane waves
would then be given by

Eiðr, tÞ ¼ E0ieiðki ·r�vtÞ, (2.61)

Erðr, tÞ ¼ E0reiðkr ·r�vtÞ, (2.62)

Etðr, tÞ ¼ E0teiðkt ·r�vtÞ, (2.63)

with ki ¼ ð2p∕lÞni ŝi, kr ¼ ð2p∕lÞnrŝr, and kt ¼ ð2p∕lÞntŝt. Normally, the
reflected and incident waves are in the same medium as the incident wave, so
nr¼ ni. Because for any point on the interface the phases of all three waves
must be equal, then
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ki · r ¼ kr · r ¼ kt · r: (2.64)

This double equality implies that the vectors ki, kr, and kt are coplanar. In
Fig. 2.11, the unit vectors ŝi, ŝr, and ŝt are shown with the normal unit vector
ûn of the interface at the point of incidence. The interface corresponds to the
xz plane, and the plane containing the vectors ŝi, ŝr, and ŝt corresponds to the
xy plane and is called the plane of incidence. The angles of incidence ui,
reflection ur, and transmission ut are measured with respect to the normal
interface at the point of incidence.

Law of reflection
From Eq. (2.64), for the reflected wave

ðki � krÞ · r ¼ 0; (2.65)

i.e., (kr – ki) is parallel to the normal unit vector of the interface. Thus,

ðki � krÞkûn: (2.66)

Therefore,

2p
l

niðŝi � ŝrÞ � ûn ¼ 0 (2.67)

and

ŝr � ûn ¼ ŝi � ûn, (2.68)

from which

Figure 2.11 Unit vectors corresponding to the directions of propagation of the incident,
reflected, and transmitted plane waves.
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sin ur ¼ �sin ui, (2.69)

and the law of reflection, ur¼ –ui, is obtained.

Law of refraction
From Eq. (2.64), for the transmitted wave,

ðki � ktÞ · r ¼ 0, (2.70)

so the vector (kt – ki) is also parallel to the normal unit vector of the interface.
Thus,

ðki � ktÞkûn: (2.71)

Hence,

2p
l

ðni ŝi � ntŝtÞ � ûn ¼ 0, (2.72)

and

ntŝt � ûn ¼ ni ŝi � ûn (2.73)

from which

nt sin ut ¼ ni sin ui, (2.74)

which is the law of refraction or Snell’s law.
Note that Eq. (2.71) implies that

ni ŝi � ntŝt ¼ Gûn, (2.75)

which turns out to be the vector form of the geometrical construction shown
in Fig. 1.9(b), where G is the length of side BC.

2.3.2 Fresnel equations

Let us now consider the boundary conditions for the amplitudes of the
incident, reflected, and transmitted waves. Because we are dealing with
dielectric media (without absorption), the tangential components of the fields
E and H are continuous at the interface. It is convenient, then, to decompose
vectors E and H into components orthogonal to the plane of incidence and
components parallel to the plane of incidence, as shown in Fig. 2.12.

Whereas the orthogonal component of the electric field E⊥ and its
corresponding magnetic field H∥ are shown in Fig. 2.12(a), the parallel
component of the electric field E∥ and its corresponding magnetic field H⊥ are
shown in Fig. 2.12(b). Taking into account the right-handed coordinate
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system for the fields E and H, as shown in Fig. 2.12, the normal components
in the positive direction are represented by a circle with a cross to indicate that
the vector enters the plane of the paper (away from the reader). Similarly, the
normal components in the negative direction are represented by a circle with a
center point to indicate that the vector exits the plane of the paper (toward the
reader). For parallel components, we also have components in the x and y
directions. The vectors must have their origin at the point of incidence, but for
the sake of clarity they have been drawn at some distance from the point of
incidence. The orientations of the reflected and transmitted vectors can
change according to the phase changes that these components experience at
the interface (this will be shown later). The field E⊥ is usually called the “TE”
(transverse electric field) polarization or “s” polarization. The field E∥ is
usually called the “TM” (transverse magnetic field) polarization or “p”
polarization. With these components, the amplitudes of the electric fields are
written as

E0i ¼ fE⊥
i , E

∥
i g, (2.76)

E0r ¼ fE⊥
r , E

∥
rg, (2.77)

E0t ¼ fE⊥
t , E

∥
t g; (2.78)

the magnetic fields are written as

H0i ¼ fH⊥
i , H

∥
i g, (2.79)

H0r ¼ fH⊥
r , H

∥
rg, (2.80)

(a) (b)

Figure 2.12 Parallel and orthogonal components of the E and H fields with respect to the
plane of incidence.

122 Chapter 2



H0t ¼ fH⊥
t , H

∥
t g: (2.81)

Taking Eq. (2.18) into account for a homogeneous dielectric medium, in each
case

H∥ ¼ ϵyE⊥ (2.82)

and

H⊥ ¼ ϵyE∥: (2.83)

Applying the boundary conditions for the components of the fields, for the
TE polarization state [Fig. 2.12(a)]

E⊥
i þ E⊥

r ¼ E⊥
t , (2.84)

H∥
i cos ui �H∥

r cos ur ¼ H∥
t cos ut: (2.85)

Thus, Eq. (2.85) can be rewritten as

ϵiyiE⊥
i cos ui � ϵiyiE⊥

r cos ui ¼ ϵtytE⊥
t cos ut (2.86)

using Eq. (2.82) and the law of reflection. In a dielectric (nonmagnetic)
material, the magnetic permeability can be approximated to that of a vacuum;
thus, multiplying Eq. (2.86) by m0c, and then exchanging m0 for mi on the left-
hand side of the equality and m0 for mt on the right-hand side leads to

niE⊥
i cos ui � niE⊥

r cos ui ¼ ntE⊥
t cos ut: (2.87)

Given the incident field, Eqs. (2.84) and (2.87) constitute a system of two
equations with two unknowns, namely E⊥

r and E⊥
t . Solving this system of

equations for each of the unknowns leads to

E⊥
r ¼ ni cos ui � nt cos ut

ni cos ui þ nt cos ut
E⊥

i (2.88)

and

E⊥
t ¼ 2ni cos ui

ni cos ui þ nt cos ut
E⊥

i : (2.89)

If the boundary conditions for the components in the TM polarization
state [Fig. 2.12(b)] are applied, then

�H⊥
i �H⊥

r ¼ �H⊥
t , (2.90)
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E∥
i cos ui � E∥

r cos ur ¼ E∥
t cos ut: (2.91)

Using Eq. (2.83) to write Eq. (2.90) in terms of the parallel components of E, a
procedure analogous to that used in the case of TE polarization to solve the
system of equations leads to

E∥
r ¼

nt cos ui � ni cos ut
nt cos ui þ ni cos ut

E∥
i (2.92)

and

E∥
t ¼

2ni cos ui
nt cos ui þ ni cos ut

E∥
i : (2.93)

Equations (2.88), (2.89), (2.92), and (2.93) are the Fresnel equations. The
coefficients multiplying E⊥

i and E∥
i on the right-hand side of these equations

determine the fraction of the amplitude of the electric field components that is
reflected and transmitted at the interface. These coefficients are

r⊥ð¼ rsÞ ¼
�
Er

Ei

�
⊥
, t⊥ð¼ tsÞ ¼

�
Et

Ei

�
⊥

(2.94)

for the TE polarization state and

r∥ð¼ rpÞ ¼
�
Er

Ei

�
∥
, t∥ð¼ tpÞ ¼

�
Et

Ei

�
∥

(2.95)

for the TM polarization state.
Then, for the reflected wave at the interface, the amplitudes of each

component are E⊥
r ¼ r⊥E⊥

i and E∥
r ¼ r∥E∥

i , where

r⊥ ¼ ni cos ui � nt cos ut
ni cos ui þ nt cos ut

, (2.96)

r∥ ¼ nt cos ui � ni cos ut
nt cos ui þ ni cos ut

: (2.97)

For the wave transmitted at the interface, the amplitudes of each component
are E⊥

t ¼ t⊥E⊥
i and E∥

t ¼ t∥E∥
i , where

t⊥ ¼ 2ni cos ui
ni cos ui þ nt cos ut

, (2.98)

t∥ ¼ 2ni cos ui
nt cos ui þ ni cos ut

: (2.99)
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The behavior of the reflection coefficients r⊥ and r∥ and the transmission
coefficients t⊥ and t∥, as a function of the angle of incidence ui, is shown in
Fig. 2.13, when the refractive indices are ni¼ 1.0 (air) and nt¼ 1.5 (glass).

From Fig. 2.13, the following facts can be established:

• At normal incidence, ui¼ 0, the highest transmission is obtained, with
t⊥¼ 0.8 and t∥¼ 0.8. For reflection, r∥¼ 0.2 and r⊥¼�0.2. The
negative sign for r⊥ indicates that at the interface, while the incident
vector points toward the paper, the reflected vector points away from
the paper. Then it is said that the orthogonal component undergoes a
phase change of ±p. Therefore, E⊥

r ¼ 0.2e�ipE⊥
i at ui¼ 0.

• At grazing incidence, ui → 90°, the transmission tends to zero for both
t⊥ and t∥. For reflection, both r∥ and r⊥ tend to –1; i.e., the incident field
is completely reflected and each of the components suffers a phase shift
of ±p.

• In reflection, the parallel component r∥ is in phase at 0 < ui < up and
experiences a phase shift of ±p in up < ui < p/2. For the angle ui¼ up,
the parallel component vanishes (r∥¼ 0). This means that if an
unpolarized electromagnetic plane wave hits a reflecting surface with
an angle of incidence equal to up, a linearly polarized wave is obtained
from the reflection in the TE polarization state.

To explicitly find the polarization angle up, the numerator of Eq. (2.97) is
set equal to zero, with ui¼ up. Thus,

nt cos up ¼ ni cos ut: (2.100)

Figure 2.13 Fresnel coefficients for reflection and transmission at an air (ni ¼ 1.0) – glass
(nt ¼ 1.5) interface. The polarization angle is up.
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Changing the cosine functions to sine functions and using Snell’s law,

nt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2up

q
¼ ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2i sin

2up∕n2t
q

: (2.101)

Squaring and multiplying by n2t leads to

n4t � n4t sin2up ¼ n2i n
2
t � n4i sin

2up, (2.102)

and then rearranging and factoring leads to

sin2upðn4i � n4t Þ ¼ n2t ðn2i � n2t Þ, (2.103)

from where

sin up ¼
ntffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2t þ n2i

q , (2.104)

which is equivalent to

up ¼ arctan
�
nt
ni

�
: (2.105)

This angle is also known as Brewster’s angle.�

Figure 2.14 illustrates how to obtain linearly polarized light from natural
light when it is reflected from a smooth interface. When the angle of incidence
of natural light is equal to the Brewster angle given by Eq. (2.105), the
component of the incident field parallel to the plane of incidence vanishes on
reflection. Consequently, only the component orthogonal to the plane of
incidence is reflected (with a phase shift of p); i.e., linearly polarized light is
obtained in the TE polarization state. For the example shown in Fig. 2.13,
r⊥¼�0.3846. The transmitted light remains natural. The two components of
the incident field are transmitted with a similar amplitude (with t∥¼ 0.6667
and t⊥¼ 0.6145 for the example shown in Fig. 2.13).

Of course, the Brewster angle depends on the wavelength. For example,
suppose the interface is the face of a BK7 glass plate (Appendix C).
The refractive indices of the wavelengths used to characterize optical
glasses are nF ðl ¼ 486.13 nmÞ ¼ 1.5223, ndðl ¼ 587.56 nmÞ ¼ 1.5168, and
nCðl ¼ 656.27 nmÞ ¼ 1.5143. With these values, the angles of incidence to
have linear polarization in each case are uFp ¼ 56.6991°, udp ¼ 56.6038°, and
uCp ¼ 56.5604°. These values are close to each other, so in practice, with white
light, if we are close to the polarization angle corresponding to the central

�David Brewster (1781–1868) was a Scottish scientist who investigated the polarization of light.
In 1815, he formulated this law that is used to find the angle of polarization.
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wavelength of the visible spectrum, the effect of polarization by reflection can
be observed very well. Note that even the effect is well observed if the angle of
incidence is a few degrees away from Brewster’s angle, since the value of r∥
remains close to zero, as shown in Fig. 2.1.

2.3.3 Reflectance and transmittance

The reflection and transmission coefficients measure the change in the
amplitude of the incident wave. To measure the amount of reflected and
transmitted energy, the flux of energy [Eq. (1.64)] is used. On a flat surface,
the flux energy can be calculated as

dF ¼ IðAreaÞ: (2.106)

Suppose that the region where there is an incident light beam (plane wave)
has a circular shape with area s. The incident, reflected, and transmitted
beams will be contained in tubes of cross section s cos ui, s cos ur, and s cos
ut, as illustrated in Fig. 2.15.

Reflectance is the ratio of reflected flux to incident flux, and transmittance
is the ratio of transmitted flux to incident flux. For reflectance,

R ¼ dFr

dFi
¼ I rs cos ur

I is cos ui
¼ ðϵryr∕2ÞjErj2s cos ur

ðϵiyi∕2ÞjEij2s cos ui
: (2.107)

Because the reflection occurs in the same medium as the incident beam, and
taking into account the law of reflection,

Figure 2.14 Polarization by reflection. The component of the incident field that is parallel to
the plane of incidence vanishes on reflection when the angle of incidence is equal to the
Brewster angle up.
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R ¼ r2, (2.108)

where r¼Er/Ei is the reflection coefficient.
For transmission,

T ¼ dFt

dFi
¼ I ts cos ut

I is cos ui
¼ ðϵtyt∕2ÞjEtj2s cos ut

ðϵiyi∕2ÞjEij2s cos ui
, (2.109)

and assuming that in dielectric materials mi¼m0, mt¼m0, multiplying and
dividing Eq. (2.109) by m0c leads to

T ¼ nt cos ut
ni cos ui

t2, (2.110)

where t¼Et/Ei is the transmission coefficient.
Conservation of energy means that

Rþ T ¼ 1 (2.111)

if the dielectric media do not absorb energy. In the case of energy absorption,
R þ T < 1 and an absorption term must be added to make the energy balance.

For the TE and TM polarization states, Eqs. (2.107) and (2.110) both
apply for each component, orthogonal and parallel. Therefore, the energy
balance (assuming no absorption) in each case would be

R⊥ þ T⊥ ¼ 1 (2.112)

for the TE polarization state and

R∥ þ T∥ ¼ 1 (2.113)

for the TM polarization state.

Figure 2.15 Reflected and transmitted intensities at an interface.
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In Fig. 2.16, R⊥, R∥, T⊥, and T∥ are shown as functions of the angle of
incidence when the refractive indices are ni¼ 1.0 (air) and nt¼ 1.5 (glass). For
any angle, it can be verified that the sum of the reflectance and the
transmittance is equal to 1. For example, if the incidence is given at the
Brewster angle, then ui¼ 56.3° and ut¼ 33.7°; r∥ ¼ 0, r⊥¼�0.3846,
t∥¼ 0.6667, and t⊥¼ 0.6145. Note that the sum r∥ þ t∥ ≠ 1; however,
R∥ þ T∥ ¼ T∥ ¼ ½1.5 cosð33.7°Þ∕ cosð56.3°Þ�ð0.66672Þ ¼ 1. As another exam-
ple, when the incidence occurs with an angle ui¼ 0 (incidence normal to the
interface), the coefficients are r∥ ¼ 0.2, r⊥¼�0.2, t∥ ¼ 0.8, and t⊥¼ 0.8.
Therefore, the reflectance and transmittance are R∥ ¼ R⊥ ¼ 0.04 and
T∥ ¼ T⊥¼ 1.5ð0.8Þ2 ¼ 0.96, and again Eqs. (2.112) and (2.113) hold. It is
common to give the reflectance and transmittance as percentages, multiplying
by 100%; e.g., for ui¼ 0, the reflectance is 4% and the transmittance is 96%.

For a glass optical surface (ni¼ 1.0 and nt¼ 1.5) the reflectance is small.
However, in a multi-lens system, the transmitted light can be greatly reduced.
For example, in a system with three lenses, the light must pass through six
interfaces, so in a first approximation, the total transmittance would be
T6¼ 78,3%.� For this reason, antireflective thin-film dielectric coatings are
very common on lenses.

Finally, it is worth noting how the reflectance approaches 1 as the angle of
incidence approaches 90°. Any smooth surface behaves like a mirror at

Figure 2.16 Parallel and orthogonal components of reflectance and transmittance.

�Note that in this example, there are three air–glass interfaces and three glass–air interfaces.
With na denoting the refractive index of air and nv denoting the refractive index of glass, for the
first type of interface the transmittance is T ¼ ðnv∕naÞ½2na∕ðna þ nvÞ�2 and for the second type
of interface the transmittance is T 0 ¼ ðna∕nvÞ½2nv∕ðnv þ naÞ�2. Because T ¼ T 0 ¼ 4nanv∕
ðna þ nvÞ2, the total transmittance T3T03 is equal to T6. This result is approximate, since
successive reflections and transmissions on the faces are being omitted. However, these are
minor contributions, and the final result is very close to the approximate one.
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grazing incidence (at the interface). This even happens with flat opaque
surfaces; e.g., if we look at a sheet of paper from a grazing angle, we can see
the specular reflection of light very well.

2.4 Polarization by Total Internal Reflection

In the previous section, we show how the orthogonal and parallel components of
the reflected field can undergo a phase change with respect to the components of
the incident field. The parallel component is reflected in phase, when 0 < ui < up,
and with a phase shift of ±p, when up < ui < p/2. On the other hand, the
orthogonal component is always reflected with a phase shift of ±p. This,
together with the change in amplitude of the reflected components, implies that a
linearly polarized wave when reflected remains linearly polarized but with a
rotation in the plane of vibration. When total internal reflection occurs, the
components of the reflected field have phase shifts that vary between 0 and ±p,
and the phase difference between the components is no longer limited to 0 or
±p. Therefore, the reflected wave can have an elliptical polarization state.

2.4.1 Total internal reflection

If the incident wave goes from a medium with a higher refractive index to one
with a lower refractive index, from a certain angle, called the critical angle, the
reflection and transmission coefficients obtain the values jr∥j ¼ jr⊥j ¼ 1 and
t∥ ¼ t⊥ ¼ 0. In other words, the energy of the reflected wave is equal to
the energy of the incident wave. In Section 1.1, the condition in which the
transmission ray is tangential to the interface is illustrated in Fig. 1.11. The
angle of incidence for which this occurs is [Eq. (1.5)]

uc ¼ arcsin
�
nt
ni

�
, (2.114)

with ni > nt. From this angle the phenomenon of total internal reflection
occurs.

The Fresnel equations for ni > nt and ui < uc apply in the same way as in
the external reflection case (ni > nt), and the only phase changes of the
reflected components with respect to the incident components are 0 or ±p, as
shown in Fig. 2.17 for ni¼ 1.5 and nt¼ 1.0. Unlike external reflection
(Fig. 2.13), the orthogonal component does not undergo a phase change. In
contrast, the parallel component has a phase shift of ±p for 0 , ui , u0p and is
in phase for u0p , ui , uc. The angle u0p is the angle at which the polarization
of the reflection occurs and is given by tan u0p ¼ ðnt∕niÞ. This angle together
with the external polarization angle satisfies the relation

up þ u0p ¼ p∕2. (2.115)
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When ni> nt and ui> uc, the reflection coefficients are complex
variable quantities. To see this, note that from Snell’s law
cos ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðni∕ntÞ2sin2ui

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsin ui∕ sin ucÞ2

p
, and for ui > uc, the term

inside the square root is negative. Then it is convenient to write

cos ut ¼
i
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

q
, (2.116)

with i ¼ ffiffiffiffiffiffiffi�1
p

and n ¼ nt∕ni , 1. Thus, the reflection coefficients can be
rewritten as

r∥ ¼ n2 cos ui � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p
n2 cos ui þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p (2.117)

and

r⊥ ¼ cos ui � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p
cos ui þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p : (2.118)

In the two coefficients, the numerator is the conjugate of the denominator;
therefore,

jr∥j ¼ jr⊥j ¼ 1: (2.119)

Figure 2.17 Reflection coefficients for the parallel and orthogonal components in internal
reflection (0 < ui < uc) and total internal reflection (uc < ui < p/2).
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This is shown in Fig. 2.17 for uc , ui , p∕2. Then the reflection coefficients
can be written as

r∥ ¼ jr∥jeid∥ ¼ eid∥ ¼ e�i2f∥ , (2.120)

r⊥ ¼ jr⊥jeid⊥ ¼ eid⊥ ¼ e�i2f⊥ , (2.121)

where

tanf∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p
n2 cos ui

, (2.122)

tanf⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p
cos ui

: (2.123)

The behavior of the phase shifts (d∥ ¼ �2f∥ and d⊥ ¼ �2f⊥) of the parallel
and orthogonal reflection coefficients in the internal reflection 0 < ui < uc and
the total internal reflection uc < ui < p/2, when ni¼ 1.5 and nt¼ 1.0, is shown
in Fig. 2.18.

The polarization state of the reflected wave will be determined by
Dd ¼ d∥ � d⊥. For the range 0 < ui < uc, a linearly polarized incident wave is
reflected linearly polarized (except for a change in the orientation of the plane
of vibration). For the range uc < ui < p/2, the phase difference can be
determined from

Figure 2.18 Phase shifts of the parallel and orthogonal components in internal reflection
(0 < ui < uc) and total internal reflection (uc < ui < p/2).
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tan
�
d∥

2
� d⊥

2

�
¼ tanðf⊥ � f∥Þ, (2.124)

i.e.,

tan
�
d∥

2
� d⊥

2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p
∕ cos ui �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p
∕ðn2 cos uiÞ

1þ ðsin2ui � n2Þ∕ðn2cos2uiÞ
: (2.125)

Simplifying, this can be rewritten as,

tan
�
d∥

2
� d⊥

2

�
¼ � cos ui

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p
sin2ui

: (2.126)

Therefore, the phase differences will be

Dd ¼ d∥ � d⊥ ¼ �2 arctan
�
cos ui

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ui � n2

p
sin2ui

�
: (2.127)

The difference of phase shifts by internal reflection 0 < ui < uc and total
internal reflection uc < ui < p/2, when ni¼ 1.5 and nt¼ 1.0, are shown in
Fig. 2.19. In this figure it can be seen that for total internal reflection the phase
difference varies between 0 and a value close to –p/4. Consequently, a wave
reflected in the domain of total internal reflection will have an elliptical
polarization state.

To determine the minimum value of the phase difference in total internal
reflection, dðDdÞ∕dui ¼ 0 can be solved for ui. The result obtained for the
angle of incidence is

Figure 2.19 Difference of the phase shifts of the parallel and orthogonal reflected
components, when ni ¼ 1.5 and nt ¼ 1.0.
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sin2ui ¼
2n2

1þ n2
, (2.128)

and the minimum value of the phase difference turns out to be

Ddmin ¼ 2 arctan
�
n2 � 1
2n

�
: (2.129)

As shown in Fig. 2.19, the minimum of the phase difference is
Ddmin¼�45.24°, corresponding to the angle of incidence ui¼ 51.67°. This
tells us that with a reflection, in the domain of total internal reflection, when
ni¼ 1.5 and nt¼ 1.0, it is not possible to obtain a wave with a state of circular
polarization. One option to achieve Ddmin¼ –p/2 is to have a material whose
refractive index ni is such that n2�1¼�2n. The positive solution of this
equation is n ¼ �1þ ffiffiffi

2
p ¼ 0.4142. Assuming that nt¼ 1, then ni¼ 2.4142.

This is a very high index for an optical glass. Another option is to keep a
common optical glass and achieve two successive reflections, as long as the
sum of the two phase differences is –p/2. The most common option is the one
in which each reflection has a phase shift of –p/4. The values of the angles of
incidence, for which the phase differences of –p/4 are obtained, are illustrated
in Fig. 2.19 with segmented lines. These are ui1¼ 50.23° and ui2¼ 53.26°.

An optical element that changes from linear to circular polarization,
based on these ideas, is the Fresnel rhomb, such as the one shown in Fig. 2.20,
with glass of refractive index 1.5 for the angle ui2¼ 53.26°. Suppose that an
incident linearly polarized light beam (traveling from left to right) with the
plane of vibration at �45° to the plane of incidence (45° to the positive
direction of the orthogonal component) is perpendicular to the first side of the
rhomb. Omitting the spatial and temporal phase terms, the electric field
shown in Fig. 2.20 at position (1) can be written as

Eð1Þ ¼ fei0, ei0gE0:

Position (2) would be

Eð2Þ ¼ ftð2Þ⊥ ei0, tð2Þ∥ ei0gE0 ¼ fei0, ei0g0.8E0;

i.e., it is still linearly polarized, but the amplitude of the components is 0.8
times the initial one.

Position (3) would be

Eð3Þ ¼
n
rð3Þ⊥ tð2Þ⊥ ei0, rð3Þ∥ tð2Þ∥ ei0

o
E0 ¼ fe�ið1.2785Þ, e�ið2.0639Þg0.8E0;

i.e., fei0, e�ip∕4g0.8e�ið1.2785ÞE0, which represents a state of right elliptical
polarization.
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Position (4) would be

Eð4Þ ¼
n
rð4Þ⊥ rð3Þ⊥ tð2Þ⊥ ei0, rð4Þ∥ rð3Þ∥ tð2Þ∥ ei0

o
E0 ¼ fe�ið2.5570Þ, e�ið4.1277Þg0.8� E0;

i.e., fei0, e�ip∕2g0.8e�ið2.5570ÞE0, which represents a state of right circular
polarization. The radius of the circle is 0.8E0.

Position (5) will be

Eð5Þ ¼
n
tð5Þ⊥ rð4Þ⊥ rð3Þ⊥ tð2Þ⊥ ei0, tð5Þ∥ rð4Þ∥ rð3Þ∥ tð2Þ∥ ei0

o
E0

¼ fe�ið2.5570Þ, e�ið4.1277Þg0.96E0;

i.e., fei0, e�ip∕2g0.96e�ið2.5570ÞE0, which represents a state of right circular
polarization. The radius of the circle is 0.96E0.

If the incident beam is linearly polarized but with a plane of vibration other
than þ45°, the result will be a polarization state other than circular. Specifically,
if the angle of the vibration plane is 0 or 90°, the state of linear polarization does
not change; it remains in a plane perpendicular or parallel to the plane of
incidence. Note that the plane of incidence is defined with the normal of the
second surface, since with the first surface the plane of incidence is not defined
(the incident wave vector is collinear with the normal of the interface).

2.4.2 Reflectance and transmittance

Reflectance and transmittance curves are shown in Fig. 2.21. The reflectance
is the square of the curves shown in Fig. 2.17 [Eq. (2.108)]. For transmittance,

Figure 2.20 Fresnel rhomb in air (nt ¼ 1.0) for glass of refractive index ni ¼ 1.5. The angle
of incidence on the diagonal faces is ui ¼ 53.26°. Incident light linearly polarized at �45°
(with respect to the plane of incidence) emerges as right circularly polarized light.

135Polarization



we also have two intervals. In the first, 0 , ui , uc, the transmission
coefficients are calculated according to Eqs. (2.98) and (2.99). In the second
interval, uc , ui , p∕2, the transmission angle is ut¼ 90°; therefore,
according to Eq. (2.110), the transmittance for both the parallel and the
orthogonal components becomes equal to 0.� Of course, it is again verified
that R þ T¼ 1 for the two components of the electric (and magnetic) fields.

2.5 Polarization with Birefringent Materials

The electric polarization vector in dielectric materials is related to the electric
field by the electric susceptibility according to Eq. (B.9):

P ¼ ϵ0xE:

When the material is isotropic, the susceptibility quantity is described by a
scalar and the wave equation [Eq. (B.14)] is reduced to ∇2E ¼ m0ϵ0ð1þ xÞ�
∂2E∕∂t2, where y ¼ c∕

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
is the speed of light in the material. When the

material is anisotropic, the susceptibility is described by a tensor (3� 3 matrix)
and the wave equation is a bit more complex.

In general, electric susceptibility can be described as

x ¼
0
@ x11 x12 x13

x21 x22 x23
x31 x32 x33

1
A, (2.130)

Figure 2.21 Reflectance and transmittance for internal reflection (0 < ui < uc) and total
internal reflection (uc < ui < p/2).

�In total internal reflection, the incident energy is completely reflected. However, there is still an
electromagnetic wave beyond the interface that is rapidly fading. This wave is known as an
evanescent wave.
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and the electric polarization vector can be described as
0
@Px

Py

Pz

1
A ¼ ϵ0

0
@ x11 x12 x13

x21 x22 x23
x31 x32 x33

1
A
0
@Ex

Ey

Ez

1
A, (2.131)

which is not necessarily parallel to the electric field vector.
In the case of nonabsorbing anisotropic dielectric materials (of particular

interest in this book), x is a symmetric matrix and can be reduced on a system
of principal axes to [2]

x ¼
0
@ x1 0 0

0 x2 0
0 0 x3

1
A: (2.132)

The quantities x1, x2, and x3 are called principal susceptibilities.
In general, crystals are anisotropic materials whose elements (atoms,

molecules, ions, etc.) are located in regular geometrical arrangements: cubic,
trigonal, tetragonal, hexagonal, triclinic, monoclinic, and orthorhombic. For
nonabsorbing dielectric crystals, the principal susceptibilities are related as
follows: for cubic, x1¼ x2¼ x3; i.e., it behaves like an isotropic material; for
trigonal, tetragonal, and hexagonal, x1¼ x2≠ x3; and for triclinic, monoclinic,
and orthorhombic, x1 ≠ x2 ≠ x3.

By writing the wave equation [Eq. (B.14)] as

∇� ð∇� EÞ þ 1
c2

∂2E
∂t2

¼ � 1
c2

x
∂2E
∂t2

(2.133)

and proposing a plane wave solution of the form Eðr, tÞ ¼ E0eiðk · r�vtÞ, a set of
algebraic equations are obtained from which the behavior of the components
of the electric field inside the anisotropic material can be analyzed. According
to Eqs. (2.10) and (2.12), for harmonic plane waves, the following changes can
be made: ∇ → ik and ∂/∂t → –iv. With this in mind, Eq. (2.133) becomes

k� ðk� EÞ þ v2

c2
E ¼ �v2

c2
xE: (2.134)

In terms of components of k and E,� it leads to
�
�k2y � k2z þ

v2

c2

�
Ex þ kxkyEy þ kxkzEz ¼ �v2

c2
x1Ex, (2.135)

�To obtain each of the components, the identity vector ½x� ðy� zÞ�i ¼ yixjzj � zixjyj can be
used, where xjyj (xjzj) denotes the scalar product x · y (x · z). With this equation, we obtain the
ith component of the double cross product.
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kxkyEx þ
�
�k2x � k2z þ

v2

c2

�
Ey þ kykzEz ¼ �v2

c2
x2Ey, (2.136)

kxkzEx þ kykzEy þ
�
�k2x � k2y þ

v2

c2

�
Ez ¼ �v2

c2
x3Ez: (2.137)

2.5.1 Phase retarder plates

A first result of Eqs. (2.135–2.137) is obtained directly if we assume that a
wave propagates within the material in one of the directions, e.g., k¼ (kx,
0, 0), where the magnitude of k is k¼ kx. In this case, the wave equations
reduce to

v2

c2
Ex ¼ �v2

c2
x1Ex, (2.138)

�
�k2x þ

v2

c2

�
Ey ¼ �v2

c2
x2Ey, (2.139)

�
�k2x þ

v2

c2

�
Ez ¼ �v2

c2
x3Ez: (2.140)

Because ϵ ≠ ϵ0 in the dielectric material, then x1 (and x2, x3) ≠ 0. Therefore, in
Eq. (2.138), Ex¼ 0; i.e., E is transverse to the direction of propagation,
or E¼ {0, Ey, Ez}.

In Eq. (2.139), if Ey ≠ 0, then

k2 ¼ v2

c2
ð1þ x2Þ: (2.141)

Because the index of refraction is defined as n ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
[Eq. (B.18)], the

wavenumber of the component of the electric field that vibrates in the yx
plane and propagates in the x direction is given by

k ¼ 2p
l

n2: (2.142)

In other words, the Ey component propagates in a material of refractive index
n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
.

Similarly, in Eq. (2.140), if Ez ≠ 0, then

k2 ¼ v2

c2
ð1þ x3Þ; (2.143)

therefore, the wavenumber of the component of the electric field that vibrates
in the zx plane and propagates in the x direction is given by
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k ¼ 2p
l

n3: (2.144)

Now, the Ez component of the field propagates in a material of refractive
index n3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x3

p
. So for the wave propagating in the x direction, the

material has two refractive indices, one for each component of the electric
field. These types of materials are called birefringent materials (double index).

In short, the electromagnetic wave propagating in the x direction has the
form

E ¼ f0, E0yeið2pxn2∕l�vtÞ, E0zeið2pxn3∕l�vtÞg. (2.145)

Thus, Ey and Ez components are continuously out of phase. For the distance
x, the phase shift between the components would be

Dd ¼ 2pðn3 � n2Þ
l

x: (2.146)

Similar results are obtained whether the propagation direction is y or z. Thus,
the principal refractive indices n1, n2, and n3 are associated with the x, y, and
z, respectively.

Based on these results, birefringent plates are fabricated to generate phase
delays between components by controlling the thickness of the plate. Suppose
we have a birefringent plate of thickness d, as shown in Fig. 2.22, whose edges
coincide with the principal directions and n3 > n2. A wave that vibrates in the
zx plane propagates with speed y3¼ c/n3, and a wave that vibrates in the yx
plane propagates with speed y2¼ c/n2. Because n3 > n2, then y3 < y2. In other
words, for Eq. (2.145), the Ez component travels slower than the Ey

component. So it is said that there is a slow axis in z and a fast axis in y. Thus,

Figure 2.22 Phase retarder plate.
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it is clear that the Ey component is ahead of Ez when they emerge from the
plate, and the phase difference between the two would be 2pðn3 � n2Þd∕l.

Quarter-wave plate
Suppose that we want to generate a phase difference equal to p/2,
i.e., 2pðn3 � n2Þd∕l ¼ p∕2. The thickness of the plate should be

d ¼ l

4

�
1
Dn

�
,

with Dn ¼ jn3 � n2j. These types of plates are called l/4 plates and are often
used to generate circularly polarized light. For example, if a linearly polarized
plane wave with the plane of vibration at an angle a¼ 45° is incident on the
front face of the plate with ui¼ 0 (normal incidence), the light exiting the plate
will have a left circular polarization state, as shown in Fig. 2.22 Note that if
the plate is rotated 90° around the x axis (now the fast axis will be vertical and
the slow axis will be horizontal) maintaining the polarization of the incident
beam, the result will be light with a right circular polarization state.

Half-wave plate
To generate a phase difference of p, the thickness of the plate must be
doubled, i.e,

d ¼ l

2

�
1
Dn

�
:

These types of plates are called l/2 plates and are often used to rotate the
plane of vibration of a linearly polarized wave. Specifically, if the incident
wave is as in the previous case, with a¼ 45°, the wave leaving the l/2 plate
will be linearly polarized with a¼�45°.

A notable advantage of using a l/2 plate to rotate the plane of vibration of
a linearly polarized wave is that the rotation is performed without attenuating
the amplitude of the wave, which occurs when dichroic polarizers are used,
according to Malus’ law [Eq. (2.53)].

To estimate the thickness of phase-retarding plates, suppose we want to
build a l/4 plate of calcite (trigonal crystal structure). The principal refractive
indices of calcite are n1¼ n2¼ 1.658 and n3¼ 1.486,� i.e., Dn¼ 0.172.
Thus, the thickness for the line “d” of helium (l¼ 587.56 nm) would be
d¼ 0.8540 mm. This is a very small thickness for a practical device. Thus, at a
commercial level, the plates are made with birefringent crystals whose
thickness is an odd multiple of l/4 (or an even multiple of l/2).

�These are the ordinary and extraordinary indices. These definitions appear in Section 2.5.2.
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2.5.2 Birefringent crystals

The previous section shows how a birefringent crystal behaves assuming that
the wave propagates along one of the principal directions. A more general
case assumes any direction of propagation. In this case, Eqs. (2.135–2.137)
must be considered. These equations constitute a system of homogeneous
linear equations. The trivial solution is Ex¼Ey¼Ez¼ 0. The nontrivial
solution assumes that the determinant of the coefficients is equal to 0, i.e.,

������
ðn1v∕cÞ2 � k2y � k2z kxky kxkz

kxky ðn2v∕cÞ2 � k2x � k2z kykz
kxkz kykz ðn3v∕cÞ2 � k2x � k2y

������ ¼ 0:

(2.147)

In a kx, ky, and kz coordinate system, this equation represents a double-
layered surface. To see these surfaces in a simple way, let us examine the cuts
of the surfaces with the planes kxky (kz¼ 0), kxkz (ky¼ 0), and kykz (kx¼ 0),
assuming that n1 < n2 < n3. Starting with the plane kz¼ 0, Eq. (2.147) is
reduced to

������
ðn1v∕cÞ2 � k2y kxky 0

kxky ðn2v∕cÞ2 � k2x 0
0 0 ðn3v∕cÞ2 � k2x � k2y

������ ¼ 0, (2.148)

from where

fðn3v∕cÞ2 � k2x � k2ygf½ðn1v∕cÞ2 � k2y�½ðn2v∕cÞ2 � k2x� � k2xk2yg ¼ 0: (2.149)

This is the product of two factors (those in curly brackets), and at least one of
them must be equal to 0. From the first factor,

k2x þ k2y ¼ ðn3v∕cÞ2, (2.150)

i.e., a circle of radius n3v/c. From the second factor,

k2x
ðn2v∕cÞ2

þ k2y
ðn1v∕cÞ2

¼ 1, (2.151)

i.e., an ellipse with semiaxes n2v∕c and n1v∕c along kx and ky, respectively.
The two curves resulting from the intersection of the surface of two shells

with the plane kz ¼ 0 are shown in Fig. 2.23: the circle with radius n3v∕c and
the ellipse with semiaxes n1v∕c and n2v∕c.

Performing an analogous analysis for the planes kx¼ 0 and kz¼ 0, the
intersections of the two surfaces in each plane are a circle and an ellipse, as
shown in Fig. 2.24. So, in general, for any direction k, there will be two values
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for the wavenumber k, i.e., two refractive indices. In particular, for
propagation in the x direction, there will be two phase velocities, y2¼ c/n2
for the Ey component and y3¼ c/n3 for the Ez component; for propagation
in the y direction, we will also have two phase velocities, y1¼ c/n1 for the
Ex component and y3¼ c/n3 for the Ez component; and similarly for
propagation in the z direction, i.e., y1¼ c/n1 for the Ex component and
y2¼ c/n2 for the Ey component. This means that for each direction of
propagation there are two phase velocities corresponding to two mutually

Figure 2.23 Wave vector curves in a birefringent crystal in the plane kz¼ 0.

Figure 2.24 Wave vector surfaces in a birefringent crystal with n1 < n2 < n3. In the direction of
the optic axis, the phase velocities associated with each of the polarization directions are equal.
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orthogonal components of the electric field. For any other direction of
propagation the same thing happens: there are two phase velocities that
always correspond to two polarization directions orthogonal to each other.
This is illustrated in Fig. 2.24, with the wave vector k in the plane kz¼ 0. The
values of the refractive indices for each direction of polarization are the
distances from the origin of the coordinate system to the two intersections of
the vector k, divided by v/c.

A particular situation for phase velocities occurs when the two surfaces of
the wave vector intersect at a point, as shown in Fig. 2.24 for the ky¼ 0 plane.
There, the wavenumber k is the same for the two polarization directions;
therefore, the refractive indices are the same and, consequently, the phase
velocities will also be the same. The direction of k for which this occurs is
called the optic axis of the crystal. Thus, a wave that propagates in an
anisotropic crystal along the optic axis of the crystal does so in the same way
as in an isotropic material. The two orthogonal components of the field are
not out of phase with each other. In birefringent crystals in which the three
principal refractive indices are different from each other, there are two optic
axes; these crystals are called biaxial crystals. In birefringent crystals in which
two of the three principal refractive indices are equal to each other, there is
only one optic axis; these crystals are called uniaxial crystals. The two surfaces
of the wave vector in uniaxial crystals consist of a sphere and an ellipsoid of
revolution. Depending on which surface contains the other, uniaxial crystals
are classified as positive or negative. They are positive if the ellipsoid
circumscribes the sphere; they are negative if the sphere circumscribes the
ellipsoid. In the case of biaxial crystals, these surfaces are intersecting
ellipsoids of revolution. The crystal classification of the sphere and ellipsoid
sections in the plane containing the optic axes is shown in Fig. 2.25.

In uniaxial crystals x1¼ x2, the corresponding index of refraction is called
the ordinary refractive index, no. The index corresponding to x3 is called the
extraordinary refractive index, ne. Thus, in a positive uniaxial crystal, no < ne,

(a) (b) (c)

Figure 2.25 Classification of birefringent crystals according to the optic axis of the crystal.
(a) Positive uniaxial, (b) negative uniaxial, and (c) biaxial.
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and in a negative uniaxial crystal, no > ne. On the other hand, the component
of the field that vibrates with the wavenumber corresponding to no is called an
ordinary wave (ordinary ray), and the component of the field that vibrates with
the wavenumber corresponding to ne is called an extraordinary wave
(extraordinary ray).

Some examples of positive (þ) and negative (–) uniaxial and biaxial
crystals are given in Table 2.2 [2]. In particular, calcite has a relatively large
Dn, which explains why it is a widely used material for the manufacture of
optical elements (phase retarders and prisms).

2.5.3 Refraction in crystals

In general, a birefringent crystal has two refractive indices for one direction of
light propagation. Therefore, in the refraction of light at an interface
separating two media, one isotropic and the other anisotropic, an incident
light beam with ui ≠ 0 (coming from the isotropic medium) will separate into
two refracted light beams. In particular, for refraction we will consider
interfaces that are parallel or orthogonal to the optic axis of the crystal.

In Fig. 2.24, in the ky¼ 0 plane, it can be seen that the ordinary wave
vibrates orthogonally to the optic axis of the crystal. This is the case in all
crystals and allows us to determine the direction that ordinary and
extraordinary waves follow in refraction. To see the refraction, let us consider
a negative uniaxial crystal immersed in air. Assume that the interface is a flat
face of the crystal that contains the optic axis and that the plane of incidence is
orthogonal to the optic axis. From Fig. 2.25(b), we can see that the incidence
and refraction of rays occur as shown in Fig. 2.26. The refractive index curves
(wavenumber divided by v/c) are circles. Because the optic axis indicates one

Table 2.2 Some crystals. In uniaxial crystals, the indices that are the same are called
ordinary, and the index that is different is called extraordinary [2].

Structure Susceptibility Crystal n1 n2 n3

Isotropic
cubic x ¼

" a 0 0
0 a 0
0 0 a

# Sodium chloride 1.544 1.544 1.544

Diamond 2.417 2.417 2.417

Uniaxial

trigonal
tetragonal
hexagonal

x ¼
" a 0 0
0 a 0
0 0 b

# þ Quartz 1.544 1.544 1.553

þ Ice 1.309 1.309 1.310

– Calcite 1.658 1.658 1.486

– Sodium nitrate 1.587 1.587 1.336

Biaxial

triclinic
monoclinic
orthorhombic

x ¼
" a 0 0
0 b 0
0 0 c

# Topaz 1.619 1.620 1.627

Mica 1.552 1.582 1.588
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direction, the optic axis is shown as points (lines orthogonal to the plane of the
paper) in Fig. 2.26. If we decompose the incident beam into a vector parallel
to the plane of incidence (paper plane), E∥

i , and into a vector orthogonal to the
plane of incidence, E⊥

i , then the parallel component will be orthogonal to the
optic axis; this will be the ordinary wave.

To obtain the directions of propagation of ordinary and extraordinary
waves in refraction, we can make use of the graphical ray tracing of Fig. 1.9,
as shown in Fig. 2.26. Of course, both rays obey the vector form of Snell’s law
(Eq. [2.75)]. For the ordinary ray, nt¼ no, and for the extraordinary ray,
nt¼ ne. Therefore, for the ordinary ray,

no sin uto ¼ ni sin ui, (2.152)

and for the extraordinary ray,

ne sin ute ¼ ni sin ui: (2.153)

The final result is the separation of the two components of the incident
wave: E∥

t vibrates propagating in the direction of the ordinary ray, and E⊥
t

vibrates propagating in the direction of the extraordinary ray. The separation
of the beams by double refraction explains the double image that can be
observed with calcite crystals, as shown in Fig. 2.27.

Changing the orientation of the optic axis with respect to the interface also
changes the refractive index curves and thus the way ordinary and
extraordinary rays are refracted. Some basic configurations of the index
curves for positive and negative uniaxial crystals are shown in Fig. 2.28. The
optic axis is represented by parallel lines in gray or by dots (lines orthogonal
to the plane of the paper). In addition to the separation of the ordinary (o) and
extraordinary (e) rays, in negative uniaxial crystals the ordinary ray lags
behind the extraordinary ray; in positive uniaxial crystals the opposite occurs.

Figure 2.26 Refraction in a negative uniaxial crystal (no > ne). In refraction, there are two
separate beams: the ordinary wave E∥

t and the extraordinary wave E⊥
t .
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2.5.4 Polarizing prisms

From the configurations shown in Fig. 2.28, optical elements can be built to
obtain linearly polarized light from natural light. Because the two components
of the refracted field have mutually orthogonal linear polarization states, one
of them can be blocked to obtain linearly polarized light. However, the
obtained beam will have a different direction of propagation than the incident
beam.

To obtain linearly polarized light in the same direction as the incident
natural light beam, a pair of birefringent prisms can be used with their
diagonal faces joined by an optical medium or by a film of air. In the first
prism, the rays with mutually orthogonal polarizations maintain the direction

Figure 2.27 Double image generated with a calcite crystal.

(a) (b) (c)

Figure 2.28 Some configurations of the interface and the plane of incidence in uniaxial
crystals whose optic axis is parallel or orthogonal to the interface.
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of the incident ray (orthogonal to the first face). In the diagonal face, one of
the rays is completely reflected while the other is reflected and transmitted to
the second prism to maintain the direction of the incident beam. What is
remarkable here is the total internal reflection of one of the beams.

To see the working principle, let us consider the internal reflection of a
beam in calcite, as shown in Fig. 2.29. Because there are two refractive indices
in calcite, no¼ 1.658 for the wave that vibrates parallel to the plane of
incidence (ordinary ray) and ne¼ 1.486 for the wave that vibrates orthogonal
to the plane of incidence (extraordinary ray), there will also be two critical
angles for total internal reflection. If n¼ 1 (air), for ordinary rays,

u
ðcÞ
o ¼ arcsin

�
n
no

�
¼ 37.09°,

and for the extraordinary,

u
ðcÞ
e ¼ arcsin

�
n
ne

�
¼ 42.29°:

Based on these two angles, if the incident ray arrives at the interface with

an angle u
ðcÞ
o , ui , u

ðcÞ
e , then the ordinary ray is reflected with total internal

reflection, while the extraordinary ray is reflected and transmits, so that in the
second medium (air) there is a linearly polarized beam that vibrates
orthogonally to the plane of incidence.

Figure 2.30 shows a possible system with a pair of calcite prisms in which
the output beam is linearly polarized in the “s” state and in the same direction
as the incident beam (natural light). The normal of the diagonal face (of the
first prism) and the incident beam determine the plane of incidence. On the
other hand, the inclination of the diagonal is such that the rays transmitted in
the first prism arrive at an angle ui¼ 40° with the diagonal. A total internal
reflection of the ordinary ray and an internal reflection of the extraordinary
ray occur in the reflection of this diagonal. In transmission there is only the

Figure 2.29 Total internal reflection in calcite for ordinary rays, n < no and n < ne.
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extraordinary ray that deviates (according to Snell’s law), and when it reaches
the second diagonal it returns to take the direction it had in the first prism
because the two diagonals are faced parallel to each other.

Commercially, there is a wide variety of polarizing prisms. The diagonal
faces are usually bonded with an optical medium other than air, e.g., Canada
balsam,� which has a refractive index in the range of 1.54 to 1.55. This index is
in the middle of the two refractive indices of calcite, no and ne, so there will
only be the critical angle for the ordinary ray, i.e., uðcÞo ¼ 68.25°. A Glan–
Thompson prism made of calcite, with the optic axis orthogonal to the plane
of incidence, is shown in Fig. 2.31. The geometry of the prisms is such that the

angle of incidence on the first diagonal face is greater than u
ðcÞ
o .

Other types of prisms made of quartz are shown in Fig. 2.32. In these
prisms, the optic axes change direction and the diagonals are inclined by 45°.
In Wollaston prisms, E⊥

i in the first prism is the ordinary ray; it changes to an
extraordinary ray when passing to the second prism, so that on the diagonal it

Figure 2.30 System of two calcite prisms with the optic axis orthogonal to the plane of
incidence to generate linearly polarized light in the “s” state. The two diagonals are parallel,
and the medium between them is air (n¼ 1.000).

Figure 2.31 Glan–Thompson prism made with two calcite prisms bonded with Canada
balsam.

�Canada balsam is a tree resin that, due to its transparency and its refractive index close to glass
(after being subjected to an oil evaporation process), is used to glue lenses in optical
instruments.
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is refracted approaching the normal. On the other hand, E∥
i is the

extraordinary ray in the first prism; it changes to an ordinary ray when
passing to the second prism, so that on the diagonal it refracts away from the
normal. In Rochon prisms, E⊥

i and E∥
i enter the first prism along the optic

axis, so both rays will see the ordinary index. In the second prism, E⊥
i changes

to an extraordinary ray and refracts closer to the normal. In contrast, E∥
i

continues as an ordinary ray, so its propagation direction does not change.
Finally, in Sénarmont prisms, E⊥

i and E∥
i also enter the first prism along the

optic axis, so both rays will see the ordinary index. In the second prism, E⊥
i

continues as an ordinary ray, so its direction of propagation does not change,
and E∥

i changes to an extraordinary ray and refracts closer than normal.
There are also polarizing prisms made of isotropic optical glass. These are

beamsplitter cubes with a dielectric film between the diagonals that joins the
prisms, allowing the transmission of the p-polarization state and the reflection
in the diagonal of the s-polarization state. These are mentioned briefly in
Appendix E.

2.6 Vectors and Jones Matrices

To describe the polarization state of a plane wave in Section 2.1, we use the
vector [Eq. (2.32)]

Eðx, y, z; tÞ ¼ fîEox þ ĵEoygeiðkz�vtÞ,

where Eox ¼ jEoxjeidx and Eoy ¼ jEoyjeidy . Because the temporal and spatial
phase terms are common to the complex amplitudes of the two wave
components, it is convenient to represent the state of polarization as a column
vector in which its elements determine the relationship between the
components of the wave. This representation is known as a Jones vector:

�
Eox

Eoy

�
¼

� jEoxjeidx
jEoyjeidy

�
: (2.154)

Figure 2.32 Some types of polarizing prisms that separate the components of the optical
field into the “s” and “p” states. In all cases, the prisms are quartz [2].
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For some of the more common polarization states, the explicit
representations are as follows.

Linear polarization
The phase shift between the components must be Dd¼mp (m¼ 0, ±1,
±2,. . . ). Therefore,

� jEoxj
�jEoyj

�
: (2.155)

In the most common cases of linear polarization, the Jones vector can be
reduced depending on the orientation of the plane of vibration. For horizontal
polarization (EH), |Eoy|¼ 0,

jEoxj
�
1
0

�
; (2.156)

for vertical polarization (EV), |Eox|¼ 0,

�jEoyj
�
0
1

�
; (2.157)

and for diagonal polarization at ±45° (E±45), |Eox|¼ |Eoy|,

jEoxj
�

1
�1

�
: (2.158)

Circular polarization
The phase shift between the components must be Dd¼ (2m� 1)p/2; (m¼ 0,
±1, ±2,. . . ) and |Eox|¼ |Eoy|. Therefore, the Jones vector becomes

jEoxj
�
1
�i

�
: (2.159)

The (þ) sign is for the left circular polarization (EL), and the (–) sign is for the
right circular polarization (ER).

Elliptical polarization
When the phase shift between the components is Dd¼ (2m� 1)p/2; (m¼ 0,
±1, ±2,. . . ) and |Eox| ≠ |Eoy|, which corresponds to an unrotated ellipse, the
Jones vector would be

jEoxj
�

1
�ib

�
, (2.160)
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with b¼ |Eoy|/|Eox|. The (þ) sign is for the left elliptical (EL) polarization, and
the (–) sign is for the right elliptical polarization (ER).

Any other state of polarization will be described by Eq. (2.154). The
polarization states most commonly used are shown in Table 2.3. Note that the
factor that multiplies the column vector is omitted since it is common to both
elements. Thus, to represent a state of polarization, only the simplest form of
the Jones vector is used.

Operations between polarization states can be performed with Jones
vectors. For example, the sum of two mutually orthogonal linear polarization
states

�
1
0

�
þ
�
0
1

�
¼

�
1
1

�

results in a state of diagonal polarization; the sum of a linear and circular
polarization state

�
1
0

�
þ
�
1
i

�
¼ 2

�
1

0.5i

�

results in a state of elliptical polarization; and the sum of two circular
polarization states, one to the left and one to the right,

�
1
i

�
þ
�
1
�i

�
¼ 2

�
1
0

�

results in a state of linear polarization.
On the other hand, polarizing elements can also be conveniently

represented as 2� 2 matrices, such that the effect of a polarizing element on
a polarization state is described by a linear transformation. Thus, if

Table 2.3 Some polarization states in Jones vector notation.

Jones vector Polarization state
�
1
0

�
EH, (Horizontal linear)

�
0
1

�
EV, (Vertical linear)

�
1
�1

�
E±45, (Linear diagonal ±45°)

�
1
i

�
EL, (Left circular)

�
1
�i

�
ER, (Right circular)
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�
a b
c d

�
(2.161)

describes the polarizing element, the result on a state of polarization
�
A
B

�
is

�
A0

B0

�
¼

�
a b
c d

��
A
B

�
: (2.162)

For example, consider a linear polarizer with its transmission axis horizontal.
The result over EH is again EH, and the result over EV is 0; i.e.,

�
1
0

�
¼

�
a b
c d

��
1
0

�
(2.163)

and
�
0
0

�
¼

�
a b
c d

��
0
1

�
: (2.164)

It is immediately clear that from Eq. (2.163) a¼ 1 and c¼ 0, and from
Eq. (2.164) b¼ 0 and d¼ 0. Therefore, the matrix

�
1 0
0 0

�
(2.165)

represents a linear polarizer with its transmission axis horizontal.
Table 2.4 shows some matrices that represent polarizing elements. Some

of the matrices are accompanied by the factors 1/2 and 1∕
ffiffiffi
2

p
, which are

necessary when energy balance is required but can be omitted for the analysis
of polarization changes. Multiple representations can exist for the same
element; e.g., a left circular polarizer element is represented in Table 2.4 by

Table 2.4 Some polarizers represented as Jones matrices.

Element Jones matrix

Linear polarizer horizontal
�
1 0
0 0

�
vertical

�
0 0
0 1

�
diagonal 1

2

�
1 �1
�1 1

�

Plate l/4 fast axis horizontal
�
1 0
0 i

�
fast axis vertical

�
1 0
0 �i

�
fast axis ±45° 1ffiffi

2
p

�
1 �i
�i 0

�

Plate l/2 fast axis horizontal
�
1 0
0 �1

�
fast axis vertical

�
1 0
0 �1

�

Circular polarizer right 1
2

�
1 i
�i 1

�
left 1

2

�
1 �i
i 1

�
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�
1 �i
i 1

�
:

But the same polarizer can also be represented by the matrix that results from
combining a diagonal linear polarizer with a l/4 plate, i.e.,

�
1 0
0 i

��
1 1
1 1

�
¼

�
1 1
i i

�
:

With either arrangement, a linear polarization state (EH, EV, E±45) can be
transformed into a circular EL polarization state, which can be easily verified
as follows:

�
1 �i
i 1

��
A
B

�
¼ ðA� iBÞ

�
1
i

�

and

�
1 1
i i

��
A
B

�
¼ ðAþ BÞ

�
1
i

�
:

As an example, let us consider the system shown in Fig. 2.33. There are
three optical elements aligned with the z axis: a linear polarizer LP with its
transmission axis rotated 45°, a l/4 plate with its fast ( f ) axis vertical, and a
glass plate reflecting r∥¼ 0.2 and r⊥¼�0.2.

Figure 2.33 Optical system that cancels the reflected light after passing through the l/4
plate.
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If (from the left) natural light hits the linear polarizer, the reflected light
will vanish when it hits the linear polarizer again. Qualitatively (observing
from the positive side of the z axis), it follows that after the linear polarizer the
light becomes linearly polarized at 45°; passing through the l/4 plate it
becomes right-circularly polarized; reflecting off the glass plate it changes to
left-circularly polarized; and when it passes again through the l/4 plate during
its return, it becomes linearly polarized at �45° and no light is transmitted
back through the polarizer LP. Mathematically, with vectors and Jones
matrices, it will be:

�
0
0

�
¼

�
1 �1
�1 1

��
1 0
0 �i

���1 0
0 1

��
1 0
0 �i

��
1 1
1 1

��
A
B

�
:

Note that the arrays are written in the reverse order of the optical elements
(from left to right). The product of the matrices is indeed 0. The middle matrix
represents the reflecting surface at normal incidence, which is written as

�
r⊥ 0
0 r∥

�
¼ 0:2

��1 0
0 1

�
:

On the other hand, when light is reflected, the positive direction of the x axis
changes. Although this has no effect on the l/4 plate, since its fast (f ) and slow
(s) axes are still oriented vertically and horizontally, it impacts the linear
polarizer, since its transmission axis will now be at �45°. This explains the
sign change in the matrix representing the linear polarizer (first matrix, after
the¼ sign) on the return of the light.

In addition to Jones vectors and matrices, there are other possible
mathematical representations, such as Stokes parameters, the Poincaré sphere,
and Mueller matrices.
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