
Chapter 3

Interference

Light wave interference is observed as a modulation of irradiance, usually
bright fringes and dark fringes on an observation screen. The geometry of the
fringes depends on the shape of the wavefronts and the difference in the
optical path traveled by the waves. Differences in the order of the wavelength
of light cause changes in irradiance from a bright fringe to a dark fringe,
making interference a highly accurate tool for measuring refractive indices,
wavefronts, forms of optical surfaces, thicknesses, etc. The physical parameter
that determines the quality of the interference (the possibility of generating
fringes) is the coherence between the waves. The coherence has its origin in the
fluctuations of the optical field emitted by the sources. Natural sources, like
the sun, emit spontaneously (randomly), but in artificial sources, like lasers,
the emission has a high degree of correlation.

Two interference patterns generated with a He-Ne laser are shown in
Fig. 3.1. The laser beam is focused with a positive lens into a small hole in an
opaque screen, which is seen as a point of light in the figure (point source).
The lens is behind the screen and cannot be seen in the image. The divergent
(spherical) wavefront passes through several optical elements. First, it passes
through a 1 mm thick microscope slide (flat piece of glass). There, light is
reflected from each slide face and interference occurs between the two
reflected signals, which is seen on the opaque screen (two-source interference
pattern at bottom left). This interference pattern consists of roughly circular
fringes, where the thickness of the bright fringes is similar to the thickness of
the dark fringes. This is the typical result of the interference of two sources
that emit spherical waves. The beam transmitted by the microscope slide is
then allowed to enter a Fabry–Pérot interferometer, which consists of two
thick plates of highly reflective glass parallel to each other. The separation
between the plates is less than a millimeter, and the facing faces have a thin
aluminum film that increases reflectance. This generates multiple reflections,
with similar amplitude coefficients, so there is now interference from more
than two waves. The effect on the reflected interference pattern is a thinning of
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the dark fringes, as can be seen on the opaque screen (N sources interference
pattern at top right).

In this chapter the most common interferometers are presented, starting
with the Michelson interferometer, since it is very illustrative to study the
interference of plane waves and spherical waves. The interference of multiple
beams in a plate with parallel faces is then discussed, which also explains the
operation of the Fabry–Pérot interferometer. In all cases, it is assumed that
the surfaces of the optical elements that compose the interferometers are ideal,
i.e., they coincide with their mathematical description. In practice, the
manufacturing process of these elements limits the optical quality of the
surfaces. Finally, some practical aspects of the Michelson interferometer,
which may also be present in other interferometers, are discussed in
Section 3.4.

3.1 Interference and Coherence

Consider the sum of two harmonic plane waves given by E1ðr, tÞ ¼
E01eiðk1 · r�vtþf1Þ and E2ðr, tÞ ¼ E02eiðk2 · r�vtþf2Þ at a point r of empty space
(air). The phases f1 and f2 are functions of time that depend on the light
emission process and account for the fluctuations of the fields in r. The
amplitudes E01 and E02 are assumed to be constant in time. The resulting
wave is

Eðr, tÞ ¼ E1ðr, tÞ þ E2ðr, tÞ: (3.1)

Point 
source

Glass
plate

Opaque screen
with hole

Fabry–Pérot
interferometer

N sources
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Figure 3.1 Two-wave and multi-wave interference.
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The irradiance at r, according to Eq. (2.29), is given by

IðrÞ ¼ ϵ0c
2

hE1 ·E∗
1 þ E2 ·E∗

2 þ 2RefE1 ·E∗
2gi, (3.2)

i.e.,

IðrÞ ¼ ϵ0c
2

hE2
1i þ

ϵ0c
2

hE2
2i þ 2

ϵ0c
2

RehE1 ·E∗
2i: (3.3)

Let us set the plane that contains the wave vectors k1 ¼ 2pŝ1∕l and
k2 ¼ 2pŝ2∕l as a reference plane. With respect to this plane, the parallel and

orthogonal components of E1 and E2 can be defined, so that E01 ¼ E⊥
01 þ Ek

01

and E02 ¼ E⊥
02 þ Ek

02. Then,

E1 ·E∗
2 ¼ E⊥

01 · ðE⊥
02Þ∗e�iðDk · rþDfÞ þ Ejj

01 · ðEjj
02Þ∗e�iðDk · rþDfÞ, (3.4)

where Dk¼ k2 – k1 and Df¼f2 – f1. In Eq. (3.4), the terms Ek
01 · ðE⊥

02Þ∗ and

E⊥
01 · ðEk

02Þ∗ are not included because the components are orthogonal to each
other, resulting in 0. In other words, waves with polarizations orthogonal to
each other do not interfere.

The vectors E⊥
01 and E⊥

02 are parallel, while the vectors E
k
01 and Ek

02 form an
angle equal to the angle between ŝ1 and ŝ2; thus,

IðrÞ ¼ ϵ0c
2

hE2
1i þ

ϵ0c
2

hE2
2i þ 2

ϵ0c
2

Reh½E⊥
02E

⊥
01 þ Ejj

02E
jj
01 cosð2aÞ�e�iðDk · rþDfÞi,

(3.5)

where 2a is the angle between ŝ1 and ŝ2. From Eq. (3.5), the interference due
to waves whose polarization states are parallel to the reference plane depends
on the angle 2a. Thus, if 2a¼p/2, the waves do not interfere and the
irradiance will simply be the sum of the irradiances due to the parallel
components, I||¼ (I1þ I2)||. On the other hand, the interference due to waves
whose polarization states are orthogonal to the reference plane does not
depend on the angle formed between ŝ1 and ŝ2.

In what follows, the interfering waves will be assumed to be in the
polarization state that is orthogonal to the reference plane; thus, the
expression for two-wave interference is

IðrÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
Rehe�iðDk · rþDfÞi, (3.6)

where I1 ¼ ðϵ0c∕2ÞhE2
1i ¼ ðϵ0c∕2ÞðE⊥

01Þ2 and I2 ¼ ðϵ0c∕2ÞhE2
2i ¼ ðϵ0c∕2ÞðE⊥

02Þ2
are the irradiances in r generated by each of the waves. In the term
he–i(Dk·rþDf)i, the phase difference Df depends on time. So, to get the
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average value, one needs to explicitly know the variation of f1 and f2 over
time.

3.1.1 Degree of coherence

To get to Eq. (3.6), it is assumed that there is no time delay between the waves,
which can occur if the origin of one of the sources is displaced or if one of the
waves travels through a medium that produces a change in the speed of
propagation. If there is a time lag t, then the sum of the waves in general
would be

Eðr, tÞ ¼ E1ðr, tÞ þ E2ðr, t� tÞ: (3.7)

Now, the irradiance is given by

IðrÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
Rehe�iðDk·rþvtþDfðtÞÞi

¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
Refe�iDk·rhe�ivte�iðDfðtÞÞig,

(3.8)

with Df(t)¼f2(t – t) – f1(t). The complex degree of coherence is defined as

gðtÞ ¼ he�ivte�iðDfðtÞÞi
¼ jgðtÞje�iðaðtÞþvtÞ,

(3.9)

where a(t)þvt is the phase of the degree of coherence. Then,

IðrÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
jgðtÞj cosðDk · rþ vtþ aðtÞÞ: (3.10)

The modulus of the degree of coherence satisfies 0 ≤ |g(t)| ≤ 1. In its limits,
it takes the value 0 if Df is a random function and the value 1 if Df is constant
in time. The superposition of the waves is considered to be incoherent,
partially coherent, or coherent if the following is satisfied for the magnitude of
g(t):

jgðtÞj ¼
( 0, incoherent
f0, 1g, partially coherent
1, coherent:

(3.11)

Although the interference expression given by Eq. (3.10) has been
obtained specifically for homogeneous plane waves (i.e., when the amplitude
of each wave is constant over a given wavefront), the result is valid for the sum
of two waves in general. In the latter case, the degree of coherence is the
normalized version of the correlation of the fields at point r. Principles of
Optics by Born and Wolf contains the general formalism for interference with
partially coherent waves [1].
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3.1.2 Interference and coherence

To see the effect that g(t) has on interference, let us consider a simple but
illustrative example. Following Fowles [2], let us suppose there is a light
source consisting of a two-level electronic system, which spontaneously emits
a pulse given by

EðtÞ ¼ E0rectðt∕t0Þe�ið2pn0t�fðtÞÞ, (3.12)

where the function rect(t/t0) describes a rectangular signal as follows:

rect
�
t
t0

�
¼

�
1, if jtj ≤ t0∕2
0, otherwise:

: (3.13)

Hence, the pulse has cosine form with frequency n0 and duration t0, such that
t0 > T, where the period T¼ 1/n0. The initial phase f(t) is random within the
range –p < f < p. The spontaneous character of the emission is described by
the initial random phase of the pulse. Imagining a continuous emission of
pulses but with random phases, the graphical representation of the phase in
the emission process can be described as shown in Fig. 3.2.

Now suppose that the light thus generated is used in an optical system with
which we can produce interference of two waves; this is an interferometer. For
example, in Fig. 3.3, the diagram of a Michelson interferometer is shown. The
(plane) wave coming out of the source S is called the primary wave (0). The first
task of the interferometer is to generate two (secondary) waves from the
primary wave. For this, a flat semi-mirror can be used, which reflects 50% of
the amplitude of the primary wave and lets the other 50% of the amplitude pass.
The element that does this task is called a beamsplitter (BS). In this way, the
secondary waves (1) are obtained. The second task of the interferometer is to

Figure 3.2 Initial phases of pulses emitted randomly one after another by a two-level
electronic transition source.
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add the two secondary waves. This is achieved by means of the two mirrors, M1

and M2, with which the direction of propagation of the secondary waves (2) is
changed, directing them again toward the beamsplitter so that the reflected
and transmitted waves (3) in the beamsplitter overlap. In particular, if the
mirrors are orthogonal to the wave vectors of the secondary waves (with the
beamsplitter at 45°) in the interference region, the unit propagation vectors ŝ1
and ŝ2 will be parallel, i.e., k2 – k1¼ 0.

The final result is the sum of two plane waves (3) with Dk¼ 0 and with a
time delay t resulting from the difference in the optical path traveled by the
two secondary waves (1, 2, 3) from point O at the beamsplitter. If the distance
between O and M1 is d1 and the distance between O and M2 is d2, the optical
path difference (in air n¼ 1) between the waves (3) in the interference region is
2(d2 – d1). Consequently, the time lag will be t¼ 2(d2 – d1)/c. For d2 > d1,
t > 0. Then, displacing M2 (or M1) axially, the desired time delay is achieved.

Let us assume that the time delay between the two waves is less than the
duration of the pulse generated by the light source, t < t0. The degree of
coherence between the two waves depends on the difference in the initial phases
of the two waves. Because a copy of a wave is made with the interferometer, the
phase difference given in Fig. 3.2 would look like the one shown in Fig. 3.4. At
the top of Fig. 3.4, the phase f(t) of one of the waves is shown along with the
phase of the other wave, including the delay time. The result of the subtraction
is displayed at the bottom of Fig. 3.4. In the intervals of duration (t0 – t), the

Figure 3.3 Diagram of a Michelson interferometer. A light beam (0) coming out of the
source S is divided by the beamsplitter (BS) into two separate beams (1). One of the rays
passes through the BS and goes to the flat mirror M1 and the other beam is reflected by the
BS and goes to the flat mirror M2. The reflected beams (2) in each mirror reach the BS,
resulting in two new beams (3) that overlap to produce interference.
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phases coincide and, therefore, the result is 0. In the other intervals, the result is
not null, but it still has a random distribution of phases.

Thus, from Eq. (3.9),

gðtÞ ¼ e�ivt

Ť

ZŤ

0

e�iðfðt�tÞ�fðtÞÞdt: (3.14)

This integral can be solved by adding the M integrals over each interval of
duration t0, assuming that Ť ¼ Mt0. Thus,

gðtÞ ¼ e�ivt

Ť

2
4Z

t0

0

e�iðfðt�tÞ�fðtÞÞdtþ : : : þ
ZMt0

ðM�1Þt0

e�iðfðt�tÞ�fðtÞÞdt

3
5, (3.15)

and each of these integrals, in turn, can be decomposed into two intervals: the
duration interval (t0 – t), where the phase difference is 0, and the interval of

Figure 3.4 Difference of the phases f(t� t) and f(t) for the time delay t.
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duration t, where the phase difference takes any value, say Dj for the jth
interval. Therefore, grouping the integrals for which the phase shift is 0 and
putting in another group of integrals with phase shifts Dj,

gðtÞ ¼ e�ivt

Ť

2
4 Zt0�t

0

dtþ
Z2t0�t

t0

dtþ : : : þ
ZMt0�t

ðM�1Þt0

dt

3
5

þ e�ivt

Ť

2
4 Zt0
t0�t

eiD1dtþ
Z2t0

2t0�t

eiD2dtþ : : : þ
ZMt0

Mt0�t

eiDMdt

3
5,

(3.16)

which is equal to

gðtÞ ¼ e�ivt

Ť
½Mðt0 � tÞ� þ e�ivt

Ť
½0�: (3.17)

Because the result of the second group of integrals is 0, since the phases Dj

are random, the sum (for Ť . t0) is 0. Thus, the final result is

gðtÞ ¼ e�ivt t0 � t

t0
; t , t0

¼ 0; t ≥ t0:
(3.18)

The modulus of the degree of coherence is

jgðtÞj ¼ 1� t

t0
, (3.19)

and the phase a(t)¼ 0. The graphical representation is shown in Fig. 3.5.
When t¼ 0, the correlation of the waves is maximum and the degree of
coherence is equal to 1. For values of t > t0, the correlation between the waves

Figure 3.5 Modulus of the degree of coherence of a source that emits random and
consecutive pulses of duration t0.
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is null; therefore, there is no interference and the irradiance is reduced to the
sum of the individual irradiances of the waves, i.e., I¼ I1þ I2.

To see in detail the effect of g(t) on the irradiance in the observation
screen of the interferometer represented in Fig. 3.3, let us consider the
irradiance at the point {x¼ 0, y¼ 0}. Because the beamsplitter divides
the amplitude of the wave into two equal parts, I1¼ I2¼ I0. Therefore, the
irradiance at r¼ {0, 0} is

Ið0, 0Þ ¼ 2I0

�
1þ

�
1� t

t0

�
cos

�
2pt
T

��
, t . 0: (3.20)

The condition for t > 0 holds assuming d2 > d1. However, mirror 2 can
also be displaced axially so that d2 < d1, leading to t < 0. With this in mind,

Ið0, 0Þ ¼ 2I0

�
1þ

�
1� t

t0

�
cos

�
2pt
T

��
, (3.21)

where theþ sign is used for –t0 < t < 0 and the – sign is used for 0 < t < t0.
In Fig. 3.6, the irradiance is shown as a function of the time delay [Eq.

(3.21)] in the range –12T < t < 12T, assuming that the source emits pulses of
duration t0¼ 10T. When the mirrors are at the same distance from the
beamsplitter (point O, Fig. 3.3), d2¼ d1, then t¼ 0 and the maximum value of
irradiance is obtained. By moving one of the mirrors axially, the irradiance
oscillates, progressively decreasing (increasing) the maximum (minimum) of
the irradiance. This irradiance variation occurs according to the modulus of
the degree of coherence shown in Fig. 3.5. When the time delay reaches the
value of t0, the irradiance oscillations disappear, and for |t| > t0 the irradiance
remains constant, i.e., I¼ 2I0. Note that the envelope of the irradiance plot
corresponds to the modulus of the degree of coherence. Thus, we have an
experimental way (with a Michelson interferometer) to measure the degree of
coherence of a light source.

Figure 3.6 Irradiance as a function of delay time t.
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A complete oscillation of the irradiance occurs every time the optical path
difference between the waves changes by l. In other words, every time the
argument of the cosine function changes by 2p, a maximum (minimum)
is obtained. Setting the argument of the cosine function equal to 2p,
i.e., 2pDt/T¼ 2p(2Dd)/(cT)¼ 2p,

Dd ¼ l

2
(3.22)

is the spatial increase in the separation of the mirrors corresponding to two
consecutive maxima or minima.

3.1.3 Coherence length

From the above, there would be interference (radiation modulation) if the
delay time were less than t0. This is also equivalent to saying that there would
be interference if the path difference between the waves in the interference
region were less than lc¼ ct0. This length is called the coherence length and is
often used to characterize the (temporal) coherence of a light source. With the
Michelson interferometer, we have a way to measure the coherence length. It
can also be done in another way, which depends on the spectral width
(bandwidth) of the light source. To see this, let us return to the pulse example
from Eq. (3.12). Although the cosine vibration within the rect function
[Eq. (3.13)] has a specific frequency, n0, the pulse spectrum is not a Dirac delta
located at n0, but rather a distribution of frequencies centered at n0 due to the
finite duration of the pulse. A signal is strictly monochromatic if it is described
by a cosine function of infinite duration.

To evaluate the spectral content of the pulse, Fourier analysis can be used.
For a particular pulse, the function f(t), which measures the initial phase, will
have a fixed value. Omitting this term, the Fourier transform ẼðnÞ ¼ F [EðtÞ] is

ẼðnÞ ¼ E0

Z̀
�`

rectðt∕t0Þe�ið2pn0tÞei2pntdt

¼ E0

�Z̀
�`

rectðt∕t0Þei2pntdt
�
∗
�Z̀
�`

e�ið2pn0tÞei2pntdt
�
,

(3.23)

where the symbol � denotes the convolution operation. Solving the two
integrals, then

ẼðnÞ ¼ E0½t0sincðpnt0Þ� ∗ ½dðn� n0Þ�, (3.24)

where the function sinc(x)¼ sin(x)/x. The delta function centers the function
sinc(pnt0) at n¼ n0. The graph of Eq. (3.24) is shown in Fig. 3.7. The spectral
width of the function sinc(pnt0) can be defined as half the spectral separation
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between its leading zeros closest to n0. Let Dn be the spectral width of the
initial zeros closest to n0; the spectral positions of the leading zeros are given
by pðn0 þ DnÞt0 ¼ p and pðn0 � DnÞt0 ¼ �p. Subtracting them leads to

Dn ¼ 1
t0

: (3.25)

Thus, the inverse of the spectral width is a measure of the pulse duration time,
which, in turn, determines the coherence length. Therefore, the coherence
length of a light source having spectral width Dn is given by

lc ¼
c
Dn

: (3.26)

Because n¼ c/l, taking the differentials of n and l, Dn¼ –nDl/l, leads to an
alternative form for the coherence length given by

lc ¼
l2

jDlj , (3.27)

where l is the central value of the wavelength in the spectral range of width
Dl.

Considering the classical model for an illumination source, the spectral
width of the line (for electronic oscillators) is a universal constant [3],

Dl ¼ 1.2� 10�5 nm: (3.28)

With this value, the coherence length for a line of the visible spectrum varies
as 13 m < lc < 41 m (for 400 nm < l0 < 700 nm). In contrast, for white light,
between 400 nm (violet) and 700 nm (red), the coherence length would be
approximately lc¼ 1 mm, with l¼ 550 nm and Dl¼ 300 nm. Other sources,
such as mercury arc lamps, have coherence lengths of the order of 3 cm, and

Figure 3.7 Spectrum of the pulse given by Eq. (3.12). The spectral width Dn approaches
half the spectral separation of the leading zeros of the function sinc(pnt0).
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Kr discharge lamps have coherence lengths of the order of 30 cm. Lasers have
long coherence lengths; e.g., a stabilized He-Ne laser can have a coherence
length of 300 m.

3.2 Interference of Two Plane Waves

In the previous section, it is shown that the expression for the interference of
two plane waves of angular frequency v¼ 2pn0 is given by

IðrÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
jgðtÞj cos½Dk · rþ vtþ aðtÞ�,

where |g(t)| is the modulus of the degree of coherence, Dk¼ k2� k1 is the
difference of the wave vectors at the observation point r, t is the delay time of
the waves with respect to a reference point or plane (point O in the
beamsplitter), and a(t) is the phase (together with vt) of the degree of
coherence. Taking the two waves from the same source, a(t)¼ 0. In practice,
to observe the interference of two plane waves, it is usual to expand the beam
(increase its cross section) that reaches the beamsplitter. This can be done by
focusing light at a point S, which is made to coincide with the primary focal
point of an aberration-corrected lens. This lens is called a collimating lens
(CL), as shown in Fig. 3.8. After the lens, there will be planar wavefronts
orthogonal to the optical axis of the lens, which will be taken as the optical
axis of the interferometer. Any of these wavefronts can be taken as the
reference plane; here, let us take the wavefront arriving at point O of the

Figure 3.8 Plane waves interference with a Michelson interferometer. A collimating lens
(CL) converts the divergent spherical wave from the point light source S into a plane wave.
When the mirrors are orthogonal to the wave vectors, there is a uniformly illuminated region
on the screen that changes in irradiance level as one of the mirrors moves axially.

166 Chapter 3



beamsplitter as the reference plane. Once the beams are split, the path
differences from O can be measured.

Let us suppose that the illumination source has a degree of coherence that
remains constant for the displacements of the mirrors considered, |g(t)|¼ |g|.
By setting the plane mirrors M1 and M2 orthogonal to the wave vectors of the
beams transmitted and reflected by the beamsplitter, the interference in the
observation plane would be given by

Iðx, yÞ ¼ I1 þ I2 þ 2jgj
ffiffiffiffiffiffiffiffiffi
I1I2

p
cosðvtÞ: (3.29)

For t fixed, I(x, y) does not depend on x or y, so in the observation plane there
would be a uniform irradiance distribution, as shown in Fig. 3.8. By axially
displacing one of the mirrors, the irradiance level on the observation screen
changes, obtaining maximum values at (d2 – d1)¼ml/2, where m is an integer.
Figure 3.9 shows three examples of the variation of the irradiance level (with
I1¼ I2¼ I0) in the observation plane as a function of the relative axial
displacement between the mirrors M1 and M2, for three degrees of coherence:
|g|¼ 1, 1/2, and 0.

By observing the variation of irradiance as a function of (d2 – d1), |g| can
be measured directly. In particular, the maximum and minimum irradiances
can be measured, which in turn are given by

Imax ¼ I1 þ I2 þ 2jgj
ffiffiffiffiffiffiffiffiffi
I1I2

p
, (3.30)

Imin ¼ I1 þ I2 � 2jgj
ffiffiffiffiffiffiffiffiffi
I1I2

p
, (3.31)

according to Eq. (3.29). By defining the visibility or contrast of irradiance
modulation as

C ¼ Imax � Imin

Imax þ Imin
, (3.32)

the modulus of the degree of coherence is obtained by substituting Eqs. (3.30)
and (3.31) in Eq. (3.32); i.e.,

Figure 3.9 Modulation of the irradiance for different degrees of coherence in the
interferometer shown in Fig. 3.8 as a function of the difference in position of the mirrors
with respect to the point O of the beamsplitter.
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jgj ¼ ðI1 þ I2Þ
2

ffiffiffiffiffiffiffiffiffi
I1I2

p C: (3.33)

Thus, from the irradiance measurements, the modulus of the degree of
coherence is determined. Irradiances of each wave and the contrast are
measured individualy. In particular, if the beamsplitter reflects 50% and
transmits 50%, then I1¼ I2 and |g|¼C. In this case, the contrast is the
modulus measure of the degree of coherence.

3.2.1 Interference with inclined plane waves

In what follows, let us assume that |g(t)|¼ 1, e.g., by illuminating with a laser
whose coherence length is much greater than the axial displacements of the
mirrors. If the mirrors M1 and M2 rotate through an angle a/2, as shown in
Fig. 3.10, each beam in the interference region would be inclined by an angle
a with respect to the optical (vertical) axis. In each mirror, the rotation is
performed with respect to the point of intersection of the mirror with the
optical axis, i.e, O1 in mirror M1 and O2 in mirror M2. Therefore, the angle
between the two beams in the interference region is 2a. At the place of overlap
there will be a pattern of straight fringes (interference pattern) whose
separation will arise from the angle of inclination.

To determine the geometry of the fringes, let us first assume that the
mirror distances d1 ¼ OO1 and d2 ¼ OO2 are equal. This implies that there
will not be a time delay between waves along the optical axis. The intersection

Figure 3.10 Interference with inclined plane waves. On the observation screen there will
be a pattern of fringes. The separation of the fringes depends on the angle of inclination of
the mirrors.
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of the optical axis with the viewing screen is taken as the coordinate origin for
the interferogram (x¼ 0, y¼ 0). Now the expression for the interference is

IðrÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
cosðDk · rÞ: (3.34)

Assuming that the observation screen is in the z¼ 0 plane, according to
the geometry of Fig. 3.10, k1 ¼ ð2p∕lÞfs1x, 0, s1zg and k2 ¼ ð2p∕lÞ
fs2x, 0, s2zg, with s1z¼ s2z and s1x¼ –s2x. On the other hand, r¼ {x, y, 0}.
Thus, Dk · r ¼ ð2p∕lÞðs2x � s1xÞx and because s2x¼ sin a,

Dk · r ¼ 2p
l

ð2x sinaÞ: (3.35)

This indicates that on the observation screen there will be a modulation of the
irradiance in the x direction, according to

IðxÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
cos

�
4p
l

x sina
�
: (3.36)

A simulated interference pattern for two plane waves is shown in Fig. 3.11
when a¼ 0.01°, l¼ 632.8 nm, and I1¼ I2. The region where the interference
pattern is observed corresponds to (–5 < x < 5) mm and (–5 < y < 5) mm.

The separation Dx between two consecutive maxima or minima of
irradiance occurs every time (4p/l)xsin a changes by 2p; i.e.,

Dx ¼ l

2 sina
: (3.37)

Figure 3.11 Simulation of an interference pattern generated by two inclined plane waves
when |g(t)|¼ 1 (a¼ 0.01° and l¼ 632.8 nm). The scale of the axes is in millimeters.
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Note that to have a separation between fringes equal to 1.81 mm, in the
example of Fig. 3.11, the angle of rotation of the mirrors is very small:
a/2¼ 0.005°.

3.2.2 Displacement of interference fringes

When one of the mirrors in the interferometer shown in Fig. 3.8 is moved
axially, there is a change in the level of irradiance on the observation screen.
There is no spatial modulation of irradiance (along the screen); the
modulation is axial, i.e., temporal. If in the interferometer shown in
Fig. 3.10 one of the mirrors moves axially (d2 – d1 ≠ 0), at each point of
the observation screen there is also a change in the level of irradiance, but the
net effect observed is a transversal displacement of the fringes in the x
direction. The axial displacement of one of the mirrors introduces a time delay
t¼ 2(d2 – d1)/c between the waves (with respect to point O), and the irradiance
is given by

IðxÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
cos

�
4p
l

x sinaþ 4p
l

ðd2 � d1Þ
�
: (3.38)

By bringing the mirror M1 closer to point O, so that d2 – d1 > 0, the value
of the argument of the cosine function increases and, to maintain the initial
value, x must take a negative value; thus, the interference fringes shift to the
left. In Fig. 3.12, three interferograms with a¼ 0.01°, l¼ 632.8 nm, and
I1¼ I2 are simulated when the axial displacement of the mirror M1 leads to the
optical path difference d2 – d1¼ 0, l/8, and l/4. Moving mirror M1 away from
point O, so that d2 – d1 < 0, the interference fringes will shift to the right.

Figure 3.12 Transversal displacement of interference fringes as a function of the axial
displacement of the mirror M1 (approaching the beamsplitter). The optical path difference in
the images is d2 – d1¼ 0, l/8, and l/4. The scale of the axes is in millimeters.
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3.2.3 Interferogram visibility

The modulation contrast of irradiance in the axial direction was defined by
Eq. (3.32). This quantity, based on the irradiances, allows the degree of
coherence to be measured. The visibility of the interference fringe pattern can
also be calculated from Eq. (3.32), where Imax and Imin are the maximum and
minimum irradiance values of the fringe pattern.

The change in visibility depends on the degree of coherence and the
relationship between the intensities of the two waves; e.g., if |g|¼ 1, then the
visibility

C ¼ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
ðI1 þ I2Þ

(3.39)

only depends on the ratio between I1 and I2. In Fig. 3.13, three interferograms
are shown along with their profiles in the x direction when the wave
amplitudes are E1¼E0 and E2¼E0, E1¼E0 and E2¼ 0.4E0, and E1¼E0 and
E2¼ 0.1E0. In the first case, Imax¼ 4I0, Imin¼ 0, and C¼ 1; in the second case,
Imax¼ 1.96I0, Imin¼ 0.36I0, and C¼ 0.69; and in the third case, Imax¼ 1.21I0,
Imin¼ 0.81I0, and C¼ 0.20. Note that the irradiance oscillates spatially
around the mean value I1þ I2, which in the first case is 2I0, in the second case
is 1.16I0, and in the third case is 1.01I0.

Figure 3.13 Interferograms when the visibility of the fringes depends on the ratio of the
wave amplitudes: C ¼ 1 (E1 ¼ E0 and E2 ¼ E0), C ¼ 0.69 (E1 ¼ E0 and E2 ¼ 0.4E0), and
C ¼ 0.20 (E1 ¼ E0 and E2 ¼ 0.1E0). The modulus of the degree of coherence is set to
|g|¼ 1. The scale of the axes is in millimeters.
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Thus, when I1¼ I2¼ I0 and |g|¼ 1,

I ¼ 4I0cos2
�
4p
l

x sina
�
, (3.40)

from where Imax¼ 4I0 and Imin¼ 0, and the visibility is C¼ 1. If I1 ≠ I2, the
visibility decreases, and it becomes zero if I1¼ 0 or if I2¼ 0.

If in addition |g| < 1, then there is a greater decrease in the amplitude of
the spatial oscillation of the fringes (maintaining the mean value). In other
words, the width of the profiles shown in Fig. 3.13 decreases.

In practice, one of the interferometer mirrors is fixed and aligned, while
the other can be moved and tilted using precision screws. The analysis carried
out for the formation of the interference fringes is still valid, obtaining the
same results.

3.3 Interference of Two Spherical Waves

A light source is considered to be point-like if its apparent size is insignificant
relative to the distance at which the signal is detected. The detected wavefront
will be seen as a spherical wavefront whose radius is equal to the distance
between the source and the point of observation. In the previous section, with
the Michelson interferometer shown in Fig. 3.8, two plane waves are
generated. This is because the point source is located at the primary focal
point of the CL. If the point source is displaced axially from the primary focal
point of the CL, the wavefront refracted by the lens would be spherical and
the radius of curvature will be equal to the distance between the conjugate of
the point source and the point at which the wavefront is measured. Once the
spherical wave is divided in the beamsplitter, the mirrors M1 and M2 generate
two virtual images (secondary point sources) of the conjugate of the point
source, and in the interference region we would have the superposition of two
spherical waves. As in Section 3.2.1, here we also study the interference
phenomena when the mirrors are orthogonal to the optical axis of the
interferometer and when the mirrors are tilted at a small angle.

Before dealing with the two interference cases of greatest interest, let us
describe the geometry of the problem according to Fig. 3.14. Suppose there
are two point sources in an isotropic and homogeneous medium (air, n¼ 1)
separated by a distance a, located at z¼ –a/2 and z¼ a/2, and the irradiance at
a point P located at r¼ {x, y, z} is wanted. If the two sources are actually
images of a primary source, which emits spherical waves of angular frequency
v¼ 2pn0, the initial phases will be equal and the fields of the spherical waves
emitted by S1 and S2 at point P can be written as�

�E†

0 is the amplitude of the field multiplied by the unit length. Thus, the amplitude of the optical
field in a spherical wavefront of radius r would be E0 ¼ E†

0∕r.
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E1ðs1, tÞ ¼
E†

01

s1
eiðks1�vtÞ (3.41)

and

E2ðs2, tÞ ¼
E†

02

s2
eiðks2�vtÞ, (3.42)

where s1 ¼ [r2 þ ða∕2� zÞ2]1∕2 and s2 ¼ [r2 þ ða∕2þ zÞ2]1∕2, where in turn,

r ¼ [x2 þ y2]
1∕2

is the radial coordinate of the projection of point P on the xy
plane. The scalar form of these equations implies that at P, the fields have the
same polarization state.

If |g(t)|¼ 1, the irradiance at P due to the superposition of the two waves
would be

IðrÞ ¼ ϵ0c
2

ðE1 þ E2ÞðE∗
1 þ E∗

2Þ: (3.43)

The individual irradiances at P will be I1 ¼ ϵ0cðE†

01∕s1Þ2∕2 and
I2 ¼ ϵ0cðE†

02∕s2Þ2∕2. With this in mind, Eq. (3.43) becomes

IðrÞ ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffiffi
I1I2

p
cos

�
2p
l

ðs2 � s1Þ
�
: (3.44)

In this situation, (s2 – s1)/cmeasures the delay time of the waves arriving at
P. When the argument of the cosine function takes a constant value q, then
2p(s2� s1)/l¼ q describes surfaces where the irradiance is constant. Specifi-
cally, if 2p(s2� s1)/l¼ 2pm (m¼ 0, ±1, ±2,. . . ), the condition of surfaces of
maximum irradiance is fulfilled. These surfaces are hyperboloids of revolution
defined by

ðs2 � s1Þ ¼ ml, (3.45)

where the point sources are the focal points of the hyperbolas.

Figure 3.14 Geometry to describe the interference of two spherical waves emitted by point
sources S1 and S2.
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In Fig. 3.15, some of the hyperbolas resulting from the intersection of a
meridional plane with the z axis, when the two point sources are separated by
a¼ 0.5 mm and l¼ 632.8 nm, are shown for m¼ 0, 50, 250, 450, 650, 750,
780, 787, and 790. Along these curves, the irradiance has a maximum value.
The number of curves along which the maximum irradiance is obtained is
determined by the nearest integer to the quotient a/l, i.e., mmax ≡ a/l, which in
our example is 790. The surface for m¼ 0 is the plane z¼ 0 (which is in the
middle of the two sources). In this case, the optical path difference is zero for
any point of coordinates {x, y, 0}.

Let us see in detail the interference in planes parallel to the z¼ 0 plane and
in planes parallel to the y¼ 0 plane. In the first case, due to the symmetry of
revolution around the z axis, the maximum irradiance curves are circles. To
determine the radii of these circles, let us explicitly write Eq. (3.45) and solve
for s2:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ða∕2þ zÞ2

q
¼ mlþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ða∕2� zÞ2

q
: (3.46)

Squaring and simplifying, the radius of the circle for a given m in the z¼ z0
plane is given by

rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2az0 �m2l2

2ml

�2

�
�
a
2
� z0

�
2

s
: (3.47)

In Fig. 3.16, the circular interference fringes and the fringe radius
variation are shown for the example of two point sources separated by
a¼ 0.5 mm (located at z¼ –a/2 and z¼ a/2, with l¼ 632.8 nm) in the
z¼ 100 mm plane. Moving away from the center, the fringes get closer to each
other.

Figure 3.15 Some maximum irradiance curves produced by point sources located at
z¼–0.25 mm and z¼0.25 mm for m¼ 0, 50, 250, 450, 650, 750, 780, 787, and 790, with
l¼ 632.8 nm.
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In the second case, i.e., for a plane parallel to the plane y¼ 0, the
intersections of the hyperboloids are open curves (hyperbolas). The position of
the curves of maximum irradiance along the z direction as a function of m is
obtained by making x¼ 0 and y¼ y0 in Eq. (3.46), i.e.,

zm ¼ ml

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y20

a2 �m2l2
þ 1

s
: (3.48)

In Fig. 3.17 some interferograms obtained in different planes parallel to
the plane y¼ 0 are shown for different separations between the sources, in an
observation region of 80 mm� 80 mm centered at z¼ 0 and x¼ 0. The first
interferogram, in the plane y¼ 10 mm, has mmax¼ 1, so z1 → `. In other
words, there is only one interference fringe, the central fringe (m¼ 0); the rest
is an irradiance distribution that extends to infinity on each side. The second

Figure 3.16 Circular interference fringes in the z¼ 100 mm plane with the center at
{x, y}¼ {0, 0}, generated by two point sources separated by a¼ 0.5 mm and located
at z¼–a/2 and z¼ a/2, when the wavelength is l¼ 632.8 nm.

Figure 3.17 Interference fringes in planes parallel to the y¼0 plane located at y0¼10, 50,
100, and 200 mm, generated by two separate point sources a¼ l, 8l, and 32l, with
l¼ 632.8 nm. The scale of the axes is in millimeters.
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interferogram, also in the y¼ 10 mm plane, has mmax¼ 8 and all the
interference fringes that can be observed in this situation are shown: 7
interference fringes on each side of the central fringe (m¼±1, ±2, ±3, ±4, ±5,
±6, and ±7, as they move away from the central band). The shape of the
fringes is hyperbolic. In the third interferogram, the viewing plane moves
away to y¼ 50 mm, so there are fewer interference fringes. The fourth
interferogram zooms out even farther, to y¼ 100 mm, again decreasing the
number of fringes; now the fringes appear straight and equally spaced. The
last interferogram, collected at y¼ 200 mm, has mmax¼ 32. The interference
fringes in the observation region are straight and equally spaced. This last
statement can be supported by the fact that when the maximum number of
fringes m in the observation region satisfies the m2 ≪ m2

max relation,
a2 ≫ m2l2 and Eq. (3.48) can be approximated by zm¼mly0/a. Therefore,
the fringes in that region are evenly spaced with a separation equal to

Dz ¼ ly0
a

: (3.49)

Going back to the last interferogram, the maximum number m of fringes
in the observation screen is 5 and, in fact, 25 ≪ 1024 holds.

The two situations corresponding to Figs. 3.16 and 3.17 are obtained in
the Michelson interferometer when illuminated by a spherical wave: the first
with the configuration shown in Fig. 3.8 and the second with the
configuration shown in Fig. 3.10. These two cases are discussed below.

3.3.1 Circular fringes with the Michelson interferometer

If in the interferometer shown in Fig. 3.8 the CL is moved axially or the lens is
simply removed, a spherical wavefront arrives at the beamsplitter, as shown in
Fig. 3.18. Mirrors M1 and M2 will form virtual images of the point source from
which the wavefront diverges. These virtual images constitute two secondary
point sources S1 and S2. Looking from the observation screen toward the
beamsplitter, two secondary point sources can be seen, one after the other,
along the optical axis of the interferometer,� separated by a distance a¼ 2(d2 –
d1), where d2 ¼ OO2 and d1 ¼ OO1. The radii of curvature of the wavefronts
emitted by S2 and S1, on the observation screen, are R2 ¼ 2d2 þOSþOOP and
R1 ¼ 2d1 þOSþOOP. OP is the intersection of the optical axis of the
interferometer with the observation screen (x¼ 0 and y¼ 0). Keeping the origin
of coordinates in the middle of the two secondary sources (as in Fig. 3.14),

�Note that S2 is the virtual image of S generated by mirror M2, but S1 is the reflection in the
beamsplitter of the virtual image generated by mirror M1 of S. This virtual image is to the right
of mirror M1, but to an observer on the observation screen, the two secondary sources are
aligned.
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z0¼ (R1þR2)/2. Consequently, R1¼ z0 – a/2 and R2¼ z0þ a/2, and DR¼R2 –

R1¼ a. In what follows, let us assume that R2 > R1.
The interference of the two spherical waves on the observation screen

would look as shown in Fig. 3.16. Let us now consider what happens to the
interference fringes if one of the mirrors is displaced axially, say mirror M2.
To see this, suppose we shift mirror M2 so that the separation between the
secondary sources is a¼ 500l, 400l, 300l, 200l, 100l, and 0 (with l¼ 632.8
nm). Let us keep the observation screen at z0¼ 100 mm and the observation
region centered on the z axis with dimensions 33 mm� 33 mm. The radii of

Figure 3.18 A Michelson interferometer illuminated by a spherical wave. On the
observation screen, along the optical axis of the interferometer, there is a pattern of circular
fringes when the separation between the secondary sources S1 and S2 is a ≠ 0.
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the circles of maximum irradiance are shown in Fig. 3.19. The maximum
value of m, mmax¼ a/l, is taken as a reference point, and in each case it tells us
that in the interferogram we have, there is a maximum irradiance at {0, 0, z0}.
The first ring of irradiance (circular fringe) is given by mmax� 1, and each
curve tells us what the radius of the circle of maximum irradiance that
corresponds to it is (which from now on is taken as the radius of the ring). The
second irradiance ring occurs for mmax� 2, and so on. The interference
patterns for a¼ 500l, 400l, 300l, 200l, and 100l are shown in Fig. 3.20. For
a¼ 0, the region will be completely illuminated, i.e., there are no interference
rings, which is illustrated by Fig. 3.19 with the vertical line labeled with 0.

Let us consider the position of the first ring in each interferogram. If
initially the position of mirror M2 with respect to mirror M1 gives a separation
a¼ 300l, the radius of the first ring is rmmax�1

¼ 8.18mm. By displacing the
mirror M2, approaching the beamsplitter, so that a¼ 200l, the radius of the
first ring increases to rmmax�1

¼ 10.04mm. And when the mirror M2 moves
away from the beamsplitter such that a¼ 400l, the radius of the first ring
decreases to rmmax�1

¼ 7.08mm. Thus, if R2 > R1, by displacing the mirror M2,

Figure 3.19 Radii of the circles of maximum irradiance as a function of the number m with
respect to mmax for different values of the separation (a ¼ 500l, 400l, 300l, 200l, 100l,
and 0) of the secondary point sources in the interferometer shown in Fig. 3.18.

Figure 3.20 Interference patterns for different separations (a¼500l, 400l, 300l, 200l,
and 100l; l¼ 632.8 nm) in the interferometer shown in Fig. 3.18 when the observation
screen is at z0¼ 100 mm. The scale of the axes is in millimeters.
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the separation a decreases, leading to an increase in the radius of the rings and
therefore fewer rings in the region of observation. And on the contrary,
moving the mirror M2 to increase the separation a led to a decrease in the
radius of the rings and therefore more rings in the observation region. When
the displacement is followed slowly, in fractions of a wavelength, the effect
when a increases is that the rings emerge from the center and the effect
when a decreases is that the rings converge toward the center, as shown in
Fig. 3.21 for a¼ 300l, a¼ (300þ 1/4)l, a¼ (300þ 1/2)l, a¼ (300þ 3/4)l, and
a¼ 301l. An analogous situation holds if R2 < R1.

Approximation to calculate the radius of the rings
The radii of the fringes that have the maximum irradiance are given by
Eq. (3.47). In many practical situations in interferometry, the separation of
the secondary sources is found to be much smaller than the radii of curvature
R1 and R2, i.e., DR ≪ fR1, R2g, and the size of the region in which the
interference pattern is observed is also much smaller than the radii of
curvature R1 and R2. In this case, the distance of the virtual sources S1 and S2
to a point on the observation screen can be approximated as

s1 ¼ R1 þ D1 (3.50)

and

s2 ¼ R2 þ D2, (3.51)

with

D1 ¼
r2

2R1
(3.52)

and

D2 ¼
r2

2R2
, (3.53)

Figure 3.21 Interference patterns for different separations (a¼ 300l, 300.25l, 300.50l,
300.75l, and 301l; l¼ 632.8 nm) in the interferometer shown in Fig. 3.18 when the
observation screen is at z0¼ 100 mm. The scale of the axes is in millimeters.
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where r is the radial distance of the observation screen point with respect to
x¼ 0 and y¼ 0. D1 and D2 are the distances of the wavefronts of radii R1 and
R2 to the observation screen point in the second order of approximation.

Thus, the difference (s2 – s1) in Eq. (3.44) for a point on the observation
screen is

s2 � s1 ¼ R2 � R1 þ
r2

2

�
1
R2

� 1
R1

�
: (3.54)

Therefore, the circles of maximum irradiance on the observation screen are
obtained when

DR
�
1� r2

2R1R2

�
¼ ml: (3.55)

And the radius of the circles as a function of m is

rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðDR�mlÞR1R2

DR

r
: (3.56)

Again, the maximum value of m (circular fringe closest to the center) is given
by m¼DR/l¼ a/l.

Whereas the exact value of the radii of the circles of maximum irradiance
can be obtained from Eq. (3.47), Eq. (3.56) serves to obtain the values of
the radii of the circumferences in the second-order approximation. To
compare the results given by the two equations, recall that R1¼ z0� a/2 and
R2¼ z0þ a/2. The results obtained with Eqs. (3.47) and (3.56) are compared
for the first circular fringes when a¼ 0.5 mm and z0¼ 100 mm, with l¼ 632.8
nm, in Fig. 3.22.

Figure 3.22 Comparison of the radii of circles of constant irradiance calculated with the
exact form [Eq. (3.47)] and the approximate form [Eq. (3.56)] for the first 11 circular fringes,
when a¼ 0.5 mm and z0¼ 100 mm, with l¼ 632.8 nm.
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The separation between two consecutive fringes, taken as the difference of
the radii of the circles of maximum irradiance, can be evaluated from
computing rm – rmþ 1. Let us first perform the subtraction of the squares:

r2m � r2mþ1 ¼ 2l
R1R2

DR
: (3.57)

Rewriting the left side as (rm – rmþ 1)(rmþ rmþ 1) and defining the separation
between two consecutive fringes as Dr¼ (rm – rmþ 1) and the mean value of
the radii as r ¼ ðrm þ rmþ1Þ∕2,

Dr ¼ l

r

R1R2

DR
: (3.58)

Note that we have omitted the subscript m in Dr and r, because the right-hand
side of Eq. (3.57) does not depend on m. Equation (3.58) shows how the
separation between fringes decreases inversely proportional to the position
(radius) of the fringes as we move away from the center of the interferogram.
Finally, if DR ≪ fR1, R2g, then R1R2 � z20, and Eq. (3.58) can also be
written as

Dr ¼ l

r

z20
a
: (3.59)

In practice, r can be taken as the radius of the dark ring between the two
bright fringes for which the separation is to be measured, where a is twice the
difference in the separation of the mirrors (with respect to the beamsplitter)
and z0 is the geometrical mean of the radii of curvature of the interfering
wavefronts.

3.3.2 Parallel fringe approximation with the Michelson interferometer

If the interferometer shown in Fig. 3.10 is illuminated by spherical waves,
keeping the mirror separation the same, i.e., (d2 – d1)¼ 0, the secondary point
sources S1 and S2 would be seen as illustrated in Fig. 3.23. The sources S1 and
S2 are at the same axial distance from the observation screen but have a
transverse separation a0, which depends on the angle of tilt a/2 of the mirrors.

The interference pattern on the observation screen consists of fringes
whose maximum irradiance follows curves resulting from the intersection of
the hyperboloids of revolution with the plane on the observation screen,
similar to those shown in the example in Fig. 3.17 (except for the names of the
axes). In Fig. 3.23, if z0 is the axial distance between the sources {S1, S2} and
the observation screen, and a0 is the separation between S1 and S2, the
separation of the fringes along the x direction on the observation screen will
be given by Eq. (3.48), but the name of the parameters will be changed to

181Interference



y0 → z0 and a → a0, and the name of the variable will be changed to zm → xm.
Therefore, for the geometry of the interferometer shown in Fig. 3.23, the
position of the interference fringes in the x direction is

xm ¼ ml

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z20

a02 �m2l2
þ 1

s
, (3.60)

where a0 depends on the angle of tilt according to

Figure 3.23 A Michelson interferometer with mirrors M1 and M2 tilted at a small angle. The
two mirrors are at the same distance from the beamsplitter.
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a0 ¼ 2ðO2OþOSÞ sina: (3.61)

The distance between point O2 and the midpoint of sources S1 and S2 is
(a0/2)/tan a; hence, z0 is

z0 ¼
a0

2 tana
þ ðO2OþOOPÞ: (3.62)

In the case where a0 ≪ ðO2OþOSÞ and in turn a0 ≪ fR1, R2g, tan a can
be approximated as sin a. In the observation region where the square of the
maximum number of lateral fringes is much smaller than the square of
mmax ≡ a0∕l, Eq. 3.60 can be approximated by xm ¼ mlz0∕a0, which
corresponds to a pattern of evenly spaced parallel straight fringes. According
to Eq. (3.62), the separation between fringes would be

Dx ¼ l

2 sina
þ l

a0
ðO2OþOOPÞ: (3.63)

This equation is similar to Eq. (3.37), which was obtained for plane wave
interference. The difference is that if in the interferometer shown in Fig. 3.10
the observation screen moves axially, the separation of the fringes does not
change. But if in the interferometer shown in Fig. 3.23 the viewing screen is
moved axially (changing OOP), the fringe spacing changes. The addend
lðO2OþOOPÞ∕a0 acts as a scale factor in the separation of the fringes. The
first addend of Eq. (3.63) is identical to Eq. (3.37).

In conclusion, the wavefronts that reach the observation screen in the
interferometer shown in Fig. 3.23 resemble plane wavefronts when

Figure 3.24 An interference pattern generated by spherical waves in a Michelson
interferometer when one of the mirrors is tilted. The axial separation of the sources S1 and
S2 is a ¼ 400l, and the lateral displacement of the source S2 is x0 (¼ a0/2) ¼ 0.03 mm.
The scale of the axes is in millimeters.
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a0 ≪ fR1, R2g and the observation region has dimensions such that
m2 ≪ m2

max, where m is the number of lateral fringes.
Finally, if only one of the mirrors in the interferometer shown in Fig. 3.18

is rotated, a lateral displacement of the center of the rings is observed, as
shown in Fig. 3.24, where the axial separation of the sources S1 and S2 is
a¼ 400l and the mirror M2 rotates by an angle that laterally displaces the
source S2 by x0ð¼ a0∕2Þ ¼ 0.03mm. If the angle of tilt is increased, the center
of the rings moves out of the observation region and the fringe patterns
approach straight parallel fringe patterns.

3.4 Practical Aspects in the Michelson Interferometer

In the previous sections of this chapter, the Michelson interferometer was used
as an optical tool to study, in some detail, the interference patterns generated
by the superposition of plane waves and spherical waves. The Michelson
interferometer is one of many interferometers that can be used for this
purpose. In any case, the goal is to generate two secondary waves from one
primary wave, so that interference is guaranteed (provided that the optical
path difference between the beams is not greater than the coherence length).
The use of an interferometer goes beyond the explanation of the interference
patterns of plane or spherical waves. Its power is applied in the evaluation of
surfaces or wavefronts, either to characterize the same surfaces or to measure
some other parameter such as the refractive index or optical aberrations. For
this type of application, one of the beams is taken as the reference beam, while
the other beam is used to analyze the optical element to be measured. Most
commonly, the reference beam is flat or spherical. In practice, some
drawbacks arise with the generation of the reference beam due to the optical
quality of the interferometer’s components and its configuration. In this
section, some practical elements of the Michelson interferometer are
considered: the point source, the collimating lens, the mirrors, the peak–
valley error (as a measure of the quality of the optical surfaces), and an
example of a Michelson interferometer.

Point source
Let us suppose that we want to illuminate the interferometer with a plane wave,
as shown in Fig. 3.8. To do this, we should have a point source S. This is already
a first precaution because physically we can build small sources, but not point
sources (mathematically speaking), and with a very narrow spectral band (laser),
but not a Dirac delta function. Now let us not dwell on that and assume we have
a quasi-monochromatic source� small enough to be considered a point source.

�A source is said to be nearly monochromatic if its bandwidth Dl is much smaller than the
value of the wavelength centered on the bandwidth, i.e., Dl∕l ≪ 1.
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Collimating lens
The next thing is to select a collimating lens to generate a plane wave. A first
option could be a simple lens (positive or negative) with spherical faces,
aligned and with its primary focus coinciding with the point source. Because
the point source is on the optical axis, the only aberration present will be
spherical. Although the aberration can be reduced by optimally shaping the
lens (correctly choosing the radii of curvature of the lens faces), it is not
possible to eliminate this aberration. A better option is to use an achromatic
doublet. In addition to correcting chromatic aberration for two colors
(spectral lines F and C, Appendix C), this type of lens, greatly reduces
spherical aberration. This may already be a good solution. But if full
correction of spherical aberration is desired, an aspherical lens for finite
(primary focal point) and infinite conjugates can be designed. This solution is
not always possible due to its high cost. Finally, there is an aspect that has not
been mentioned, which has to do with the finite extension of the wavefront. In
the previous sections, it was assumed that the wavefront has a circular edge (as
is usually the case, either by the edge of the collimating lens or by a diaphragm
that is placed before or after the lens to determine the size of the cross section
of the beams). This physical limitation on the wavefront extension causes edge
diffraction, so the wavefront is not strictly a plane in its entirety.

Beamsplitter
This element has been represented with a diagonal line, which of course is
another idealization. In practice, this element is usually a plate with parallel
faces made of glass or another material. When an oblique ray hits the plate,
the ray refracted to the other side of the plate exits at an angle equal to that of
the incident ray, but with a lateral shift, as shown in Fig. 3.25. This is not a
problem when the interferometer is illuminated with collimated light
(Fig. 3.8), because any ray associated with the wavefront is shifted by the
same amount, so the output remains a plane wavefront. However, when
illuminated with a spherical wave (Fig. 3.18), the rays are refracted according
to the angle of incidence, giving rise to an aberrated wavefront.

Figure 3.25 Deviation of the ray in a plate of parallel faces.
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To calculate the lateral shift of the refracted ray, suppose that the plate of
parallel faces is separated by a distance d and is made of a material with
refractive index nt. Let us place a point source S at a certain distance from the
plate. The line orthogonal to the faces, which passes through S, defines the z
axis. Now consider a ray diverging from S with a tilt angle ui, as shown in
Fig. 3.25. The back projection of the refracted ray leaving the second face
passes through the point S0. Therefore, an observer behind the plate will see that
the refracted ray comes from point S0 and not from S. The separation between S
and S0 is the measure of the z-axis deviation of the refracted ray, dz ¼ S0S. At
the point of incidence of the first face of the plate, the vectors ni ŝi and ntŝt
associated with the incident and refracted rays satisfy the vector form of Snell’s
law [Eq. (2.75)], so G ¼ nt cos ut � ni cos ui. Considering similar triangles,

G

nt
¼ dz

d∕ cos ut
, (3.64)

then

dz ¼ d
�
1� ni cos ui

nt cos ut

�
: (3.65)

The deviation from dzjui¼0 ¼ dð1� ni∕ntÞ is shown as a function of the angle
of incidence ui for d¼ 1 mm, ni¼ 1, and nt¼ 1.5168 (BK7 glass), with
l¼ 587.56 nm, in Fig. 3.26. The curve shows that as the angle of incidence
increases, point S0 moves away from S and toward the plate.

In interferometers, the beamsplitter plates can be nitrocellulose mem-
branes (pellicles), thin plates (a few millimeters thick), and cubes formed by
two right prisms (Fig. 3.27). In all three options, one side will have a thin film
coating to increase reflection and create beamsplitters of, e.g., 50% reflection

Figure 3.26 Deviation of a refracted ray in a plate of parallel faces with a thickness equal to
1 mm.
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and 50% transmission. The pellicles are very thin (�2 mm), so the deflection
of the refracted rays can be considered negligible. This element is very close to
the idealization that we have made of the beamsplitter. The drawback is that
they are elements that must be handled carefully so as not to break the
membrane and must be protected from dust. They are a good solution in
closed systems free of mechanical vibrations. Thin plates are very common in
interferometers. One of the beams will pass through the plate once, while the
other must pass through it three times, which must be taken into account
when using low-coherence sources. Cube beamsplitters are made up of two
right prisms joined at their diagonal faces (Appendix E). One of these faces is
coated with a thin film to increase reflection. Unlike thin plates, the two rays
pass through the cube the same number of times.

In short, by using collimated light to illuminate the interferometer, any of
these beamsplitters can be used. But if the light used diverges from a point
source, the best option would be the pellicle. However, the usual option is a thin
plate. The cube beamsplitter is not a good choice if the radius of curvature of
the wavefront reaching the cube is comparable to the side of the cube. Because
the deflection of rays in a plate is a function of the angle of incidence, this effect
is similar to the spherical aberration that affects rays converging to form an
image on a spherical refracting surface, as shown in Fig. 1.88. So, in a thick
plate, such as the dividing cube, the end result is that an incident spherical
wavefront upon refraction takes a shape other than spherical, i.e., an aberrated
wavefront (aspherical wavefront). For the point source in the optical axis of the
interferometer shown in Fig. 3.18, the aspherical wavefront will have symmetry
of revolution, so the interference patterns generated on the observation screen
will be rings of interference, but their spatial distribution will be different from
that of spherical wave interference.

Mirrors
After the beamsplitter, mirrors M1 and M2 follow. They are flat mirrors,
i.e., sheets of glass with the flat face covered with a metallic film, usually
aluminum, but silver and gold are also found. To protect the metallized face

(a) (b) (c)

Figure 3.27 Beamsplitters from Thorlabs, Inc (www.thorlabs.com): (a) pellicle, (b) plate,
and (c) cube.
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from oxidation, dust, or dirt (fingerprints), a thin (half-wavelength) film of
dielectric material, such as silicon oxide, is usually deposited. This is a layer
that allows the surface to be cleaned.

Peak–valley error
Now let us consider an aspect that affects all the optical elements previously
mentioned. In practice, what is meant by a spherical or flat optical surface? In
the manufacturing process, polished surfaces (like a mirror) very close to the
mathematical surface design can be obtained. The deviation between the real
surface and the mathematical surface gives a measure of the optical quality of
the surface. For example, an optical plane of precision l/4 refers to a polished
surface whose deviations from a reference plane do not exceed one-fourth of
the nominal wavelength. Although l/4 may seem like a small quantity, it
implies a considerable change in the irradiance distribution. A change in l/2
implies going from a bright area to a dark area. Let us suppose that the
interferometer shown in Fig. 3.8 is wanted, with optical elements of quality
l/4. By adjusting the distance of the mirrors from the beamsplitter to have an
optical path difference equal to 2(d2 – d1)¼ml, a fully illuminated region is
expected on the observation screen. However, this is not the case, but rather
an illuminated region with some less luminous and even dark areas will be
observed. For best results, the quality of the optical elements should be
changed, e.g., to a precision of l/10, l/20, or l/100.

3.4.1 Laboratory interferometer

A Michelson interferometer built in a laboratory with optical elements of
precision l/4 is shown in Fig. 3.28. The point source is a laser beam (He-Ne,
l¼ 632.8 nm) focused on a small hole (pinhole) of about 15 mm. The objective
of focusing it on the hole is to eliminate the high spatial frequencies present in
the beam, thus obtaining an approximately homogeneous illumination. This is
discussed in Chapter 4. A circular stop is then placed to set the extent of the
interferogram to approximately 25 mm in diameter when the light is
collimated. Then there is the collimating lens, which in this case is an
achromatic doublet with a focal length of 300 mm. This lens is mounted on an
axial slider to facilitate beam collimation, which is achieved when the primary
focus of the lens coincides with the point source. The axial slider also
makes it easy to change the beam collimation to obtain spherical wavefronts.
At 225 ±1 mm from the lens is the center of a beamsplitter cube (point O in
Fig. 3.8), with a 50 mm side made of BK7 glass. Next, the flat aluminum
mirrors are placed, as shown in the figure, 125 ± 1 mm from the center of the
cube. Mirror 2 is mounted on another axial slider with which the optical path
difference between the rays in the interference region can be changed. Each of
the mirrors is supported by a mount that has two fine-thread screws with
which the mirror can be tilted. Finally, there is the observation screen,
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125 ± 1 mm from the center of the cube. The observation screen is ground
glass (translucent). Interferograms on the observation screen are recorded
with a photographic camera (not shown in the figure).

With this interferometer, the interference patterns shown in Fig. 3.29 are
generated. In (a), the two mirrors are approximately the same distance from
the center of the beamsplitter cube and, furthermore, the light beams are
collimated and aligned (the path difference between the collimated beams is

Figure 3.28 A Michelson interferometer. Mirror 2 is mounted on an axial slider.

(a) (b) (c)

Figure 3.29 Experimental interference patterns. In (a) and (b) the beams are collimated,
and in (c) the beams are divergent spherical. (a) The optical path difference is approximately
zero, and the mirrors are aligned; (b) the optical path difference is approximately zero, and
one of the mirrors is tilted at a small angle; (c) keeping the mirrors aligned, the collimating
lens moves away from the beamsplitter cube (40 mm) and the mirror M1 also moves away
about 60 mm. The scale of the axes is in millimeters.
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approximately zero). However, the observation region does not have a
homogeneous or symmetric illumination. This is an example of how the
precision of the surfaces of the optical elements used to generate the
interferogram (of l/4) affects its quality. To obtain this interferogram, mirrors
were adjusted until the illuminated region without interference fringes was
obtained. In (b), a pattern of parallel straight fringes is obtained by tilting the
mirror 2 at a small angle. In reality, the fringes are somewhat distorted, which
is more noticeable on the lower left side. This is also a result of the quality of
the optical surfaces of the interferometer and shows that the two interfering
wavefronts are not strictly flat. In (c), the mirror 2 moves axially about 60 mm
away from the beamsplitter cube and the collimating lens moves about 40 mm
away from the cube. By moving the collimating lens, the wavefront exiting the
lens is divergent spherical and its center of curvature will be 1950 mm from the
lens. Now the lens is about 265 mm from the center of the cube.

Taking into account these distances, the distance of the observation
screen, and the additional optical path due to the beamsplitter cube (with
refraction index �1.51), R1¼ 2641 mm and R2¼ 2761 mm. Therefore,
DR¼ 120 mm, where mmax¼DR/l¼ 189633 is the value of m corresponding
to the central zone shown in Fig. 3.29(c). In this figure, three circular fringes
are counted and the radius of the third one is estimated to be about 15 mm.
This can be verified from Eq. (3.56), by substituting DR¼mmaxl and
m¼mmax� 3 for the third fringe in

rm3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6lR1R2

DR

r
¼ 15.19 mm,

which agrees very well with the experimental estimate.
In conclusion, a real planar reference beam will be a wavefront distorted

by an amount similar to the deformations of the optical surfaces of the
beamsplitter and the planar mirror that sends the reference beam to the
observation region. For a spherical reference beam, the effect of the thickness
of the beamsplitter must also be taken into account. The other beam of the
interferometer, also initially affected by the beamsplitter, can be used to assess
the optical quality of an element, e.g., a flat or spherical mirror. The optical
quality of the reference beam will determine the accuracy with which the
surfaces under test can be measured. In the example shown in Fig. 3.29(c), the
cube effect is negligible because the angle of the marginal ray turns out to be
0.37°, which gives an axial deviation of the ray of 0.34 mm.

3.5 Interference in a Plate of Parallel Faces

In the interferometer shown in Fig. 3.8, what an observer sees from the
observation screen is a pair of parallel reflecting flat surfaces separated by a
distance 2(d2� d1). The light reflected by the two surfaces generates an
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interference pattern in the plane of observation. A system that emulates the
previous one is a plate with parallel faces. Now the reflected and transmitted
light will be on the faces of the plate, and it is possible to observe interference
on both sides of the plate: if it is on the same side as the light source, it is said
to be reflection interference, but if it is on the side where there is no light
source, it is said to be transmission interference. To see this, let us consider
Fig. 3.30, which shows the incidence of a ray with an angle ui on a plate of
refractive index nl and thickness d, immersed in a medium of index ni.

At each of the interfaces, there will be multiple reflected and transmitted
rays. The amplitudes of the waves associated with light rays are given by the
Fresnel equations, Eqs. (2.96–2.99). In Fig. 3.30, r and t denote the reflection
(r⊥ or r||) and transmission (t⊥ or t||) coefficients when light passes from the
medium of refractive index ni to the medium of refractive index nl, and r0 and
t0 denote reflection and transmission coefficients when the light passes from
the medium of refractive index nl to the medium of refractive index ni.

3.5.1 Stokes relations

The relations between r and r0 and between t and t0 are obtained from the
Stokes relations, which are deduced from the illustrations in Fig. 3.31. In (a),
the reflection and transmission of a ray of amplitude E0 incident at an angle ui
at an interface separating two media of refractive indices ni and nt are shown.
The amplitude of the reflected wave would be rE0, and the amplitude of the
transmitted wave would be tE0. Taking into account the principle of
reversibility (or reciprocity), if two rays are sent in opposite directions to
the reflected and transmitted rays in (a), with amplitudes rE0 and tE0,
respectively, the incident beam with amplitude E0 must again be obtained but
going in the opposite direction. In (b), the incident ray is opposite the reflected
ray in (a), but has the same amplitude. This ray will have a reflection and a

Figure 3.30 Reflection and transmission in a plate of parallel faces.
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transmission with amplitudes r2E0 and trE0, respectively. On the other hand,
in (c), the incident ray is opposite the transmitted ray in (a), but has the same
amplitude. This ray will also have a reflection and a transmission, but with
amplitudes r0tE0 and tt 0E0, respectively. If the principle of reversibility holds,
then

r2 þ tt0 ¼ 1 (3.66)

and

trþ r0t ¼ 0: (3.67)

Therefore,

tt0 ¼ 1� r2 (3.68)

and

r0 ¼ �r: (3.69)

These last two equations are called Stokes relations and are especially useful
for adding the amplitudes of the multiple reflected and transmitted waves
shown in Fig. 3.30. The reflected/transmitted irradiance will be the square
modulus of the sum of the reflected/transmitted waves, including the optical
path difference between consecutive waves.

3.5.2 Multiple-wave interference

This section will consider the superposition of the multiple reflected and
transmitted waves (rays) shown in Fig. 3.30.

(a) (b) (c)

Figure 3.31 Stokes coefficients. Reflection and transmission of (a) a wave of amplitude E0,
(b) a wave of amplitude rE0, and (c) a wave of amplitude tE0.
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Interference by reflection
For the reflected irradiance,

I r ¼
ϵ0c
2

ðErE∗
r Þ, (3.70)

with

Er ¼ rE0 þ tr0t0E0eid þ tr03t0E0ei2d þ tr05t0E0ei3d þ · · · þ , (3.71)

and E∗
r the conjugate of Er. The phase d depends on the optical path difference

L between two consecutive reflected rays, i.e., d¼ 2pL/l. Now,
Eq. (3.71) can be rewritten as

Er ¼ rE0 þ tt0r0E0eid½1þ r2eid þ ðr2Þ2ei2d þ ðr2Þ3ei3d þ · · ·þ�: (3.72)

And in a more compact form,

Er ¼ rE0 þ tt0r0E0eid
XQ
q¼0

ðr2eidÞq, (3.73)

where q¼ 0, 1, 2,. . . defines the reflection qþ 2, and Qþ 2 is the total number
of reflections. The sum in Eq. (3.73) represents a geometrical series whose
ratio is r2eid and with a modulus ≤1. The sum of such series is given by

1� ðr2eidÞQþ1

1� r2eid
: (3.74)

If the number of reflections is much greater than 1 (there will be infinite
reflections if ui¼ 0 or if the plate has infinite extension), the sum reduces to
1/(1� r2eid). With this in mind and taking the Stokes relations into account,
the reflected field will be

Er ¼ rE0

�
1� eid

1� r2eid

�
: (3.75)

Finally, the irradiance of the multiple reflected waves [Eq. (3.70)] is given by

I r ¼ I0

�
4Rsin2ðd∕2Þ

ð1� RÞ2 þ 4Rsin2ðd∕2Þ
�
, (3.76)

where I0 ¼ ϵ0cðE0Þ2∕2 and the reflectance R¼ r2.
To calculate the phase d, let us consider Fig. 3.32. The optical path

difference between the two reflected beams would be

L ¼ nlðABþ BCÞ � niAD: (3.77)
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From similar triangles, AB ¼ BC ¼ d∕ cos ut and AD ¼ ð2d tan utÞ� sin ui.
Then the phase d¼ 2pL/l is given by

d ¼ 2p
l

�
2nld
cos ut

� ð2d tan utÞni sin ui
�
: (3.78)

Using Snell’s law and simplifying,

d ¼ 2p
l

ð2nld cos utÞ: (3.79)

Interference by transmission
For the case of transmitted waves (Fig. 3.30), the resulting sum is

Et ¼ tt0E0 þ tr02t0E0eid þ tr04t0E0ei2d þ · · · þ , (3.80)

i.e.,

Et ¼ tt0E0½1þ r2eid þ ðr2Þ2ei2d þ · · ·þ�: (3.81)

Analogous to the derivation of the reflected multi-wave irradiance, the
transmitted multi-wave irradiance is given by

I t ¼ I0

� ð1� RÞ2
ð1� RÞ2 þ 4Rsin2ðd∕2Þ

�
: (3.82)

Equations (3.76) and (3.82) are complementary when there is no
absorption.

Case 1. Plane wave interference.
A first result that can be observed is when the plate is illuminated by
(coherent) monochromatic plane waves in a direction orthogonal to the plate,

Figure 3.32 Geometry for calculating the optical path difference between two consecutive
reflections.
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i.e., when ui¼ 0 and therefore ut¼ 0. In Fig. 3.33(a), a situation is shown in
which a plane wave bounded by a diaphragm D is incident orthogonally to a
plate of thickness d. If the interference behind the plate is observed in one
plane (parallel to the plate), the situation is similar to that of the Michelson
interferometer shown in Fig. 3.8 and a homogeneously illuminated region will
be seen. But if a lens L is added and the observation screen is moved to the
secondary focal plane of the lens, a bright spot will be observed. In both cases,
the irradiance would be given by Eq. (3.82) and depends on the thickness of
the plate. In Fig. 3.33(b), the interferometer is designed to observe the
interference of the multiple waves reflected by the faces of the plate. With the
help of the beamsplitter, the reflected waves are deflected toward the lens L,
which focuses the light on the observation screen. The irradiance would be
given by Eq. (3.76).

For g(t)¼ 1, Fig. 3.9 shows how the transmitted irradiance in the
observation plane changes as the separation between the mirrors changes. In
this case, the irradiance contrast is 1. By changing the thickness of the plate in
Fig. 3.33(a), a modulation of the irradiance in the observation plane (focal
plane) is also obtained. Figure 3.34 shows the value of the irradiance in the
focal plane as a function of the thickness of the plate (on the order of the
wavelength) for three values of the reflection coefficient r: 0.2, 0.56, and 0.96.

In particular, the reflection coefficient r¼ 0.2 (rk ¼ �r⊥) is obtained for a
glass plate (nl¼ 1.5, l¼ 632.8 nm) immersed in air, when ui¼ 0. The
modulation of the irradiance behaves similarly to that of the irradiance
shown in Fig. 3.9, for g(t)¼ 1, in the Michelson interferometer. The difference
is in the contrast of the modulation, given that in the case of the plate, it is
low, equal to 0.08. This resemblance is no accident. When r¼ 0.2, then

(b)(a)

Figure 3.33 Axial interference of multiple plane waves on a plate with parallel faces:
(a) transmitted and (b) reflected.
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r2¼ 0.04 and r4¼ 0.0016, so ðr2Þ2ei2d, and the other higher order addends do
not contribute significantly to the sum of Eq. (3.81). Thus, in this low
reflectance case (R¼ 0.04), the interference is determined only by the first two
transmitted beams, i.e.,

Et ¼ tt0E0½1þ r2eid�, (3.83)

and the irradiance will be (omitting the term r4)

I t ¼ I0ð1� RÞ2
�
1þ 2R cos

�
4p
l

nld
��

: (3.84)

This expression is analogous to Eq. (3.29) of the interference of two plane
waves when |g|¼ 1 and t ¼ 2ðd2 � d1Þ∕c.

Thus, when the reflectance of the faces of the plate is low (as in a glass
plate), the effective interference of the multiple transmissions resembles the
interference of two waves. If the reflectance increases, other addends will be
added and the result will move away from that corresponding to two waves.
To increase reflectance, one option is to increase the refractive index of the
plate. In practice, however, not much can be improved, as high refractive
indices are around 2.5 (e.g., in diamonds), giving reflectances of around 0.18.
To achieve reflectances such as those shown in Fig. 3.34, of 0.31 (r¼ 0.56) or
0.92 (r¼ 0.96), thin metallic or dielectric films are deposited on the faces of the
plate.

In the case where the reflection coefficient is r¼ 0.96, the interference
result changes remarkably compared with the case where r¼ 0.2. The maxima
irradiance (I0) is obtained when the thickness of the plate is a multiple of half a

Figure 3.34 Modulation of the irradiance of multiple transmitted waves in the focal plane
[Fig. 3.33(a)] when the reflection coefficient r of the faces of the plate is 0.2, 0.56, and 0.96.
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wavelength divided by the refractive index of the plate (same as for two
waves), but the irradiance values decay rapidly when a little change in the
thickness of the plate is produced. In other words, the most prominent
irradiance values are found only in very narrow bands.

In the case of multiple reflected waves [Fig. 3.33(b)], an analogous
situation is obtained, as shown in Fig. 3.35, for the same values of
the reflection coefficient. Irradiance minima (zero) are obtained when the
thickness of the plate is a multiple of half a wavelength divided by the
refractive index of the plate (same as for two waves). Now when r¼ 0.2,
the irradiance contrast is equal to 1, as in Fig. 3.9, for g(t)¼ 1. And when
r¼ 0.96, there are narrow bands where the irradiance is around zero, but then
irradiance values increase rapidly when the thickness of the plate changes a
bit. This is the working principle of antireflection thin films.

Note that the transmission (Fig. 3.34) and reflection (Fig. 3.35) graphs are
complementary, resulting in conservation of energy if there is no absorption in
the plate.

Case 2. Interference of spherical waves I
Let us now consider a spherical wave incident on the plate with parallel faces.
As we have already seen, there is a pattern of circular fringes when the
Michelson interferometer is illuminated with a spherical wave. Something
similar happens in the case of the plate, but the structure of the fringes
depends on the reflectance of the faces of the plate. Consider the configuration
shown in Fig. 3.36 in which the transmission interference fringes are observed.

In (a), the interference at a point on the screen is caused by the
superposition of rays arriving at different angles. In (b), a lens is inserted
into the setup and the observation screen is placed in the secondary focal

Figure 3.35 Modulation of the irradiance of multiple reflected waves in the focal plane
[Fig. 3.33(b)] when the reflection coefficient r of the faces of the plate is 0.2, 0.56, and 0.96.
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plane of such a lens. The interference now occurs at one point on the
observation screen due to overlapping rays hitting the lens at the same
angle. Whereas in (a) the circular interference fringes are observed for any
position of the observation screen along the optical axis (nonlocalized
fringes), in (b) the circular interference fringes are observed focused in the
focal plane of the lens (localized fringes).

First, let us see the formation of the interference fringes in configuration
(b), since the required algebra has already been developed in Eq. (3.82). To
obtain this equation, the incidence of a ray with a certain angle was considered
in Fig. 3.30. Then, from Fig. 3.33(a), the specific case of ui¼ 0 was examined:
the irradiance given by Eq. (3.82) is observed at the secondary focal point. If
now in the configuration shown in Fig. 3.33(a) we assume that ui ≠ 0, the
interference of the multiple waves of the inclined plane ui will be seen at an off-
axis bright point at the radial position f tan ui, where f is the lens focal distance.
This is what happens with the multiple transmitted rays corresponding to a
divergent ray from S in Fig. 3.36(b), with ui ≠ 0: the transmitted rays will be
focused at a point located at f tan ui. Taking into account the symmetry of
revolution around the optical axis, what we would have is a pattern of rings.
The radii of the circles of maximum irradiance will be given by

rm ¼ f tan um, (3.85)

where

sin um ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l � ðml∕2dÞ2

q
ni

, (3.86)

according to Eq. (3.79), when d¼ 2mp. The maximum value of m, mmax, will
be the nearest integer to 2nld/l. Moving away from the center, the value of m
decreases. Thus, with m¼mmax – 1, mmax – 2, . . . , the interference rings of the
center are identified.

(a) (b)

Figure 3.36 Interference of multiple transmitted waves on a plate with parallel faces when
illuminated by a spherical wave. (a) Nonlocalized fringe formation. (b) Localized fringe
formation.
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To compare the interferograms generated by spherical waves with the
Michelson interferometer and with the parallel plate interferometer, let us
assume that in the Michelson interferometer shown in Fig. 3.18 the separation
of the mirrors is a/2¼ 0.25 mm and the glass plate has a thickness d¼ (a/2)/nl,
with nl¼ 1.5 (for l¼ 632.8 nm). The interferogram obtained with the
Michelson interferometer, when the distance between the midpoint of the
virtual sources and the observation screen is z0¼ 100mm, is shown in
Fig. 3.16. And the interferograms that are obtained when using a lens of focal
length f¼ 65.65 mm for r¼ 0.2 (glass plate without reflective coatings), r¼ 0.5,
and r¼ 0.9 are shown in Fig. 3.37. The focal length was set to this value taking
into account the angle subtended by the first interference ring in the pattern
shown in Fig. 3.16. The radius of this ring is r790¼ 1.88 mm. On the other hand,
for the plate, the corresponding angle with the first ring is u790¼ 1.61°
[Eq. (3.86)], which gives a focal length equal to 65.65 mm [Eq. (3.85)].

In the interferograms shown in Fig. 3.37, the position of the rings (the
radius of the circles of maximum irradiance) is the same. This is because they
do not depend on the reflection coefficient [Eqs. (3.85) and (3.86)]. However,
the reflection coefficient determines the width of the circular fringes. The
greater the effective number of interfering beams (which occurs as the
reflection coefficient increases), the smaller the width of the fringes. When
r¼ 0.2, the pattern looks like the two-spherical wave pattern shown in
Fig. 3.16, but the contrast is low, C¼ 0.08. In the plate, as the reflectance of
the faces increases, the contrast of the fringes also increases. Thus, with
r¼ 0.5, C¼ 0.47; and with r¼ 0.9, C¼ 0.98.

For reflection interference, the configuration shown in Fig. 3.33(b) can be
used, but illuminating with a spherical wave. In this case, the irradiance
maxima occur when d¼ 2mp ± p. Reflection interference patterns generated
with the same parameters as those used in the transmission interference
example are shown in Fig. 3.38. As expected, these interferograms are the

(a) (b) (c)

Figure 3.37 Transmission interferograms generated by a plate with an optical thickness of
0.5 mm for r ¼ 0.2, r ¼ 0.5, and r ¼ 0.9, using a lens with a focal length of 65.65 mm. The
scale of the axes is in millimeters.
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complement of the transmission interferograms. Unlike the transmission
interferograms, the contrast of the interference fringes in the reflection is C¼ 1
because the dark areas have zero irradiance value.

The irradiance of the interferogram shown in Fig. 3.37(a) was calculated using
r¼ 0.2 regardless of the angle. Strictly speaking, this should not be the case
because the reflection and transmission coefficients depend on the angle, according
to the Fresnel equations [Eqs. (2.96–2.99)]. However, in the example under
consideration, the range of the angle of incidence with which the interference
pattern is generated goes from 0 to 10°, and for that range the value of r changes
very little, around 2% (Fig. 2.13). Even for larger angles, the variation remains
small, so for the first interference rings it suffices to take the reflection coefficient
equal to that of ui¼ 0. This also applies to plates with reflective coatings.

At first glance, the interferograms shown in Figs. 3.16 and 3.37(a) are
similar. This can be verified if we compare the radial positions of the
interference rings [Eqs. (3.47) and (3.85)]. A comparison of the radial position
of the first 12 interference rings in the Michelson interferometer, when a¼ 0.1
and 0.5 mm, and the first 12 interference rings on the plate of parallel faces,
when 2dnl¼ 0.1 and 0.5 mm, is shown in Fig. 3.39. In fact, when a¼ 0.5 mm,
the radial position of the rings of the two interferograms is approximately the
same. However, when decreasing to, e.g., a¼ 0.1 mm, the interference rings
generated with the Michelson interferometer have a smaller radius compared
with the rings generated with the plate.

Case 3. Interference of spherical waves II
Let us now consider the configuration shown in Fig. 3.36(a). Suppose that
three rays (labeled 1, 2, and 3) diverge from the point source S, as shown in
Fig. 3.40. In transmission, there will be multiple rays parallel to the incident
rays. In Fig. 3.40, only three transmitted rays are drawn for each incident ray.

In each case, the first of the transmitted rays suffers a lateral deviation
produced by the plate of thickness d. The backward extensions of the first

(a) (b) (c)

Figure 3.38 Reflection interferograms generated by a plate with an optical thickness of
0.5 mm for r¼0.2, r¼0.5, and r¼ 0.9. The scale of the axes is in millimeters.
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transmitted rays (solid gray lines) converge approximately at the point S01.
Also in each case, the second of the transmitted rays undergoes a lateral
deviation produced by an equivalent plate of thickness 3d. The backward
extensions of the second transmitted rays (straight gray lines with equal
segments) converge approximately at the point S02. The third of the
transmitted rays experiences, in each case, a lateral deviation produced by
an equivalent plate of thickness 5d. The backward projections of the third
transmitted rays (long and short gray straight segments) converge approxi-
mately at the point S03. And so on it continues for the other transmitted rays.
The extensions of the jth ( j¼ 1, 2, 3, . . . ) transmitted rays do not converge

Figure 3.39 Radius (r) of the first 12 interference rings of spherical waves with the
Michelson interferometer ( o ) when a¼ 0.5 and 0.1 mm and with a plate with parallel faces
(⋆) when 2dnl¼ 0.1 and 0.5 mm.

Figure 3.40 Refraction of three rays diverging from the source S together with some
transmitted rays.
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exactly at a point (S0j) because the axial deviation experienced by the refracted
rays depends on the angle of incidence, according to Eq. (3.65).

For the analysis that follows, let us assume that the axial prolongations of
the jth transmitted rays converge at the point S0j. This implies that the angle of
incidence of the rays diverging from S and reaching the plate is small. With
this in mind, the rays arriving at a point P on the screen appear to come from
multiple virtual sources located at S01, S

0
2, S

0
3, : : : , as shown in Fig. 3.41(a).

Therefore, the interference at P is produced by the superposition of rays with
different angles. Thus, the superimposed rays at P are rays emerging from the
source S at different angles. So how is it possible that the refracted rays meet
at point P? This is possible if the different rays experience different internal
reflections in the plate, as shown in Fig. 3.41(b). For example, three rays
arrive at point P2 [Fig. 3.41(a)]: the ray that appears to come out of S01 arrives

(a)

(b)

Figure 3.41 (a) Virtual sources. Rays arriving at point P appear to come from multiple
virtual sources located at S0

1, S
0
2, and S0

3. (b) Real rays. The interference at a point on the
observation screen results from the superposition of rays with different angles and with
different numbers of internal reflections in the plate.
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after having been transmitted by both sides of the plate without reflecting
internally (ray in black); the ray that appears to leave S02 arrives after being
transmitted in the first face, then internally reflected from the second face,
plus internally reflected from the first face, and transmitted from the second
face (segmented gray ray); and the ray that appears to leave S03 arrives after
being transmitted from the first face, then internally reflected from the second
face twice, plus internally reflected from the first face twice, and transmitted
from the second face (ray on solid gray). This will happen progressively for the
rays that emerge from the other virtual sources.

The separation between two consecutive virtual sources can be calculated
with the help of Fig. 3.40. Let us consider extensions of the corresponding
transmitted rays with one of the rays diverging from S, as shown in Fig. 3.42.
From the geometry of the figure, the separation between any pair of
consecutive sources is constant. By defining this separation as a, a ¼ S01S

0
2 ¼

S02S
0
3 ¼ : : : ¼ S0jS

0
jþ1. It is also true that B1B2 ¼ A1A2 ¼ A2A3 ¼ : : : ¼

AjAjþ1. Therefore, for any pair of consecutive sources ( j and jþ 1),
tan ui ¼ B1B2∕a. Because B1B2 ¼ 2d tan ut,

a ¼ 2d tan ut
tan ui

: (3.87)

Equation (3.87) says that the separation between the virtual sources varies
with the angle of incidence. However, in a practical situation, limiting the
angles of incidence to small values (around 10°) so that cos ui � 1 and
cos ut � 1 allows the change from tan ut/tan ui to sin ut/sin ui. Using Snell’s law,

a ¼ 2d
ni
nl
, (3.88)

which is independent of the angle. Thus, in this situation the interference of
spherical waves in the configuration shown in Fig. 3.36(a) can be seen as the
superposition of spherical waves that diverge from multiple virtual sources

Figure 3.42 Geometry to calculate the distance between two consecutive virtual sources.
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uniformly separated by a distance of 2dni/nl along the optical axis. The
distance from the virtual source S0j to the plate (front face) turns out to be

zj ¼ zS � dz0 þ ðj � 1Þa, (3.89)

where zS is the distance between the point source S and the plate, and dz0 is
the axial deviation given by Eq. (3.65), with nt¼ nl for ut¼ 0.

Based on this, the optical field for a point P on the observation screen at
radial distance r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(omitting the time phase term vt and the initial

phase term) will be

Et ¼ tt0
E†

0

s1
eiks1 þ tr2t0

E†

0

s2
eiks2 þ tr4t0

E†

0

s3
eiks3 þ · · · þ , (3.90)

or, more compactly,

Et ¼ tt0E†

0

XJ
j¼1

r2ðj�1Þ e
iksj

sj
, (3.91)

where sj is the distance between the virtual source S0j and the point P, and J is
the total number of reflections (J → `). Assuming that the distance between
the plate and the observation screen is dþ zP, then

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

j þ r2
q

, (3.92)

with

Rj ¼ zj þ d þ zP: (3.93)

As in cases 1 and 2, the reflection coefficient determines the weight with
which each addend intervenes in the sum. For example, for the glass plate
without reflective coating, by just taking the first two addends, the transmitted
irradiance would be

I t ¼ ð1� RÞ2
�
I1 þ I2R2 þ 2R

ffiffiffiffiffiffiffiffiffi
I1I2

p
cos

�
2p
l

ðs2 � s1Þ
��

, (3.94)

where I1 ¼ ϵ0cðE†

0∕s1Þ2∕2 and I2 ¼ ϵ0cðE†

0∕s2Þ2∕2. This irradiance is analo-
gous to Eq. (3.44), except for the contrast of the fringes, which is low for the
plate case. By increasing the reflectance of the plate, there will be substantial
contributions from more addends and the irradiance resulting from the
superposition of J transmitted beams (J → `) can no longer be written in a
simple way, as is done in Eq. (3.82) in the case of the superposition of parallel
beams.

204 Chapter 3



To see the difference between the interferogram obtained with the
configuration shown in Fig. 3.36(a) and the interferogram obtained with
the configuration shown in Fig. 3.36(b), let us compare the profile of the
interferogram shown in Fig. 3.37(b), which is obtained when r¼ 0.5, and the
profile of the interferogram expressed in Eq. (3.91), with the same value of r.
For the calculation of the second profile, the following parameters were set:
d¼ 0.25nl (in mm), nl¼ 1.5, and ni¼ 1.0. With this, the virtual sources are
separated by a¼ 0.5 mm. The distances zS¼ 50 – dz0 and zP¼ 50 – d, both in
mm, were also fixed. In Fig. 3.43, the two profiles for the first six rings are
shown as a function of the radial coordinate: in black, the one obtained with
the interferometer shown in Fig. 3.36(a), and in gray dashed, the one obtained
with the interferometer shown in Fig. 3.36(b). Two things stand out: the first,
moving away from the center, the irradiance maxima separate; second, the
rings in the black interferogram fade (going away from the center). The
separation between the maxima corresponds to that shown in Fig. 3.39 for
a¼ 0.5. Although the calculation of the black profile must be done with J → `,
using the first 12 addends of the sum of Eq. (3.91) is more than sufficient
because the 12th addend turns out to be �0.0001% of the second addend.�

Equation (3.94) is completely analogous to Eq. (3.44), which implies that
the radii of the circles of maximum irradiance for the interferometer shown in
Fig. 3.36(a), with r¼ 0.2, coincide with the radii of the interference rings
generated by two waves in the Michelson interferometer. On the other hand, if
the effect of increasing the reflectance of the plate translates into a thinning of
the interference rings while maintaining the radius of the circles of maximum
irradiance, then it can be anticipated that the circles of maximum irradiance in

Figure 3.43 Profiles of the interferograms obtained with the interferometers shown
in Figs. 3.36(a) (in black) and (b) (in gray dashed).

�Another example: if the reflection coefficient is r ¼ 0.9, the first 68 addends are required so
that the last addend is approximately 0.0001% of the second addend.
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the interferometer of Fig. 3.36(a) are also calculated with Eq. (3.47). In terms
of the interference by reflection, a result similar to that shown in Fig. 3.38 will
also be obtained because, of course, it will be the complement of the
interferograms generated by transmission.

3.5.3 Two-wave interference

It has already been mentioned that in a plate with parallel flat faces, when the
reflectance of the faces is low, in practice, only the first two reflected or
transmitting waves interfere. In both cases, the analysis of the formation of
interference fringes can be carried out by considering the two virtual sources
that are generated by reflection or by transmission. This section deals with a
situation of special interest: the interference of the first two spherical waves
reflected by a plate of low reflectance (r � 0.2). This case will allow us to
analyze the interference produced by extended polychromatic light sources.

According to the previous sections, there are two possible configurations
in which to observe the interference, which are illustrated in Figs. 3.44(a)
and (b). So there are two virtual sources (on the opposite side to the source S)
generated by the reflection on each of the faces of the plate. In (a), two rays
arrive at P at different angles from the virtual sources. For any point P on the
source side the same will happen, so there will be interference fringes
anywhere on the source side (nonlocalized fringes). In (b), two parallel rays
are focused by the lens at P; therefore, there will only be interference fringes in
the focal plane (localized fringes) that depend on the angle of the rays (fringes
of equal inclination).

In this section, we consider fringe formation for the configuration shown
in Fig. 3.44(a). With the help of Fig. 3.45, it is possible to see that, due to the
symmetry around the optical axis (the line through S and the virtual sources),
the interference fringes in a plane orthogonal to the optical axis containing P
are circular. The separation between the virtual sources a ¼ S01S

0
2 is given by

(a) (b)

Figure 3.44 Interference by reflection: (a) nonlocalized fringes for any point P and
(b) localized fringes in the focal plane of the positive lens.
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a ¼ 2d tan ut∕ tan ui [Eq. (3.87)], and the radius of the interference rings is
given by Eq. (3.47), with z0 ≥ ðSOþ a∕2Þ.

The formation of an interference ring in an observation plane at a certain
distance z0 . ðSOþ a∕2Þ is shown in Fig. 3.45(a). Changing the distance z0
changes the scale of the rings (Fig. 3.15). In the limit, when the observation
plane coincides with the first face of the plate [z0 � ðSOþ a∕2Þ], the fringes
will have the smallest possible size [Fig. 3.45(b)]. If the plate has irregularities
in its optical thickness (refractive index variations and geometrical thickness
variations), the interference fringes are distorted. In particular, if the
observation plane coincides with the first face of the plate, then the
interference fringes in that plane will allow the irregularities of the sheet to
be measured with respect to the pattern of regular rings that would be
obtained for an ideal plate with parallel flat faces. Furthermore, if the distance
from the source S to the plate is such that the wavefronts are practically flat,
then the interference pattern will be a topographic map of optical thickness
(similar to contour lines on geographic maps). This allows direct measurement
of the optical quality of the plate.

In addition to the above, an experiment to observe reflection interference
from a glass plate (n¼ 1.51) is shown in Fig. 3.46. In (a), the complete setup is
shown: a laser beam (He-Ne, 632.8 nm), a focusing lens (focal length, 8 mm),
a microscope slide (1 mm thick), an imaging lens (150 mm focal distance and
60 mm in diameter), and an observation screen (frosted glass). The laser beam
is focused with the positive lens to generate the point source. The diverging
light (spherical wave) reaches the plate where the two relevant reflections for
the interference take place. In (b), a detail of the plate is shown to which a
label (with the word “óptica”) has been placed that will serve to form the

(a) (b)

Figure 3.45 Fringe formation by reflection. (a) Circular fringe in an observation plane at a
certain distance from the plate. (b) Circular fringe in an observation plane close to the first
face of the plate.
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image of the plate on the observation screen. In (c), the interference pattern on
the display screen is shown when the imaging lens has been removed;
i.e., when light travels freely from the plate to the display screen. In (d), the
image of the interference pattern is observed just on the first side of the plate.
For this, the imaging lens is used. Sure enough, the label image next to the
interferogram can be seen. Because the fringes are not localized, in (d) we have
a scaled version of (c). This interferogram shows the defects of the plate that
can be caused by variations in the refractive index or by irregularities in the
flatness of the faces.

It is worth noting that the aperture of the imaging lens must be large
enough to collect all (or nearly all) of the reflected beams on the slide if the full

Figure 3.46 (a) Experimental setup to view reflection interference in a plate. (b) Detail of
the plate with a label (the word “óptica”). (c) Interferogram on the observation screen about
60 cm from the plate, without the imaging lens. (d) Image (formed with the imaging lens) of
the interferogram on the first side of the plate.
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interferogram is to be observed. If instead of this lens one of our eyes is placed
to look at the plate, the interferogram will not be seen because the beam of
rays that enters is very small, limited by our pupil.

3.6 Interference from N Point Sources

In the previous sections, the phenomenon of interference by two point sources
through the Michelson interferometer and by J point sources with J → `
through a plate with parallel faces has been considered. Increasing the number
of sources, with a number that tends to infinity, and making the contribution
of each wave to the interference relevant lead to a thinning of the interference
rings. If the reflectance approaches 1, the fringe profile tends to a distribution
of very narrow bands (like Dirac deltas).

This section will study the intermediate case: the interference of coherent
waves with each other generated by N point sources (2 <N < `). In particular,
there will be two situations to deal with: a set of sources evenly spaced in the
axial direction, as shown in Fig. 3.47(a), and an array of evenly spaced sources
in the transverse direction, as shown in Fig. 3.47(b). In both cases, let us
assume that the point sources have the same amplitude and initial phase, so
the field at a point P on the observation screen becomes (omitting the time
term vt)

E ¼ E†

0

XN
j¼1

eiksj

sj
: (3.95)

In a way, interference with the first source array has already been
discussed in the previous section. The distance sj is determined by Eq. (3.92),

(a) (b)

Figure 3.47 An array of N point sources: (a) axial and (b) transversal.
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sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

j þ r2
q

,

where Rj is the radius of curvature of the wavefront with the center at Sj and
the vertex at point O on the observation screen. The radial distance
r ¼ ðx2 þ y2Þ1∕2 measures the separation between O and P. If a is the
separation between consecutive sources, then

Rj ¼ R1 þ ðj � 1Þa: (3.96)

Normalized interference patterns (and their profiles) are shown in
Fig. 3.48 when a¼ 1000l, l¼ 632.8 nm, R1¼ 100 mm, and N¼ 2, 3, and 5.
As expected, increasing the number of sources decreases the width of the
fringes. But now there is a remarkable fact: between the maxima of the
brightest fringes, fringes of much lower intensity appear. The first fringes
are called primary maxima, and the second fringes are called secondary
maxima. In fact, there are (N – 2) secondary maxima between two
consecutive principal maxima. As the number of sources increases, the
intensity of the secondary maxima decreases, and if N → `, the secondary
maxima disappear and there will be very narrow (diffraction-limited) fringes,
as shown in Fig. 3.37(c).

(a) (b) (c)

Figure 3.48 Interference of spherical waves generated by 2-, 3-, and 5-point sources
located axially and uniformly separated by a distance a¼ 1000l. The distance from the first
source to the observation screen is R1¼ 100 mm.
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For the second array of point sources [Fig. 3.47(b)], the radii of curvature
of the wavefronts with the vertices in the observation screen are equal to z0.
Assuming that the linear array of sources is set along the x direction, the
distance from the source Sj to the point P will be

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ ðx� ðj � 1ÞaÞ2 þ y2

q
: (3.97)

Normalized interference patterns (and their profiles) for 2- and 4-point
source arrays are shown in Fig. 3.49. In (a) and (b), the sources are a¼ 8l
apart and at a distance z0¼ 50 mm from the observation screen. Again, going
from two to four sources, the major fringes become thinner and two minor
fringes emerge, but the position of the principal fringes is maintained. In (c),
the quantities a and z0 for the set of four sources have been multiplied by 10,
but the observation region is the same as in (a) and (b). With this change, the
interference pattern changes the shape of the fringes from hyperbolic to
straight lines. Now the principal fringes are the same distance apart, and of
course, the secondary maxima are still visible.

3.6.1 Plane wave approximation

In the array shown in Fig. 3.47(b), when the observation region is much
smaller than z0, the waves from the N sources when they reach the observation

(a) (b) (c)

Figure 3.49 Interference of spherical waves generated by 2- and 4-point source arrays
located laterally. (a and b) The distance of the sources from the observation screen is
z0¼50 mm, and the sources are uniformly separated by a distance a¼ 8l. (c) The distance
of the sources from the observation screen is z0¼ 500 mm and the sources are uniformly
separated by a distance a¼ 80l, but the same observation region of (a) and (b) is
maintained.
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screen can be approximated by plane waves. This explains why in Fig. 3.49(c)
the fringes resemble a pattern of equally spaced straight fringes.

If, in addition to the condition mentioned above, the extension of the line
array of sources satisfies ðN � 1Þa ≪ z0, then the amplitudes of the N waves at
point P will be approximately equal and sj in the denominator of Eq. (3.95)
can be changed to z0. By limiting the analysis to the x direction,

sj ¼ z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2ðj � 1Þxaþ ðj � 1Þ2a2

z20
,

s
(3.98)

which in first approximation is

sj ¼ z0 þ
x2

2z0
� ðj � 1Þxa

z0
: (3.99)

With this, Eq. (3.95) can be written as

E ¼ E†

0

z0
eikz0eikx

2∕2z0
XN
j¼1

e�ikxðj�1Þa∕z0 : (3.100)

Defining I0 ¼ ðϵ0c∕2ÞE†2
0 ∕z20, the irradiance I ¼ ðϵ0c∕2ÞðE∗EÞ is

I ¼ I0

				
XN
j¼1

e�ikxðj�1Þa∕z0
				
2

: (3.101)

The sum turns out to be

XN
j¼1

e�ikxðj�1Þa∕z0 ¼ 1� e�ikxNa∕z0

1� e�ikxa∕z0
, (3.102)

which can be rewritten as

e�kðN�1Þa∕2z0 i2 sinðkxNa∕2z0Þ
i2 sinðkxa∕2z0Þ

: (3.103)

In the end, the irradiance is

I ¼ I0

�
sinðkxNa∕2z0Þ
sinðkxa∕2z0Þ

�
2
: (3.104)

Principal maxima
The zeros in the denominator of Eq. (3.104) determine the position of the
principal maxima. These are obtained by
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ka
2z0

x ¼ mp, (3.105)

where m is an integer. Then, the irradiance at these points would be

I ¼ I0

�
sinðNmpÞ
sinðmpÞ

�
2
: (3.106)

Because both the denominator and the numerator become zero for m integer,
from L’Hôpital rule,

lim
m→integer

�
sinðNmpÞ
sinðmpÞ

�
¼ N cosðNmpÞ

cosðmpÞ ¼ �N: (3.107)

Therefore,

I ¼ N2I0 (3.108)

is the value of the principal maxima found in

xm ¼ m
lz0
a

: (3.109)

That is, the separation between consecutive maxima turns out to be

Dx ¼ lz0
a

: (3.110)

There are other zeros in the numerator, between the zeros in the
denominator, which are given by

N
ka
2z0

x ¼ m0p, (3.111)

with m0 (integer) < N, located at

xm0 ¼ m0

N
lz0
a

: (3.112)

Thus, there will be (N – 1) minima (I¼ 0) between two consecutive principal
maxima. Consequently, there should be (N� 2) secondary maxima inter-
spersed with the minima.

The profile of the interference patterns for N¼ 2-, 3-, and 5-point sources
is shown in Fig. 3.50 when a¼ 80l, z0¼ 1000 mm, and l¼ 632.8 nm. In all
cases, because it is assumed that the amplitude of the sources is the same, the
irradiance produced by a source at a point on the observation screen is I0.
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The results shown in Fig. 3.50 are the basis for diffraction gratings, a topic
that is covered in Chapter 4.

3.7 Interference with Extended Light Sources

Until now, our focus in the previous sections has been limited to the
interference of waves emitted by a monochromatic point source. This
situation is very common in the laboratory, where we have laser sources and
optical elements to form a point source. Outside the laboratory, white light
(sunlight) interference can be seen in soap bubbles or oil films in water. In
both cases, there should be a thin film with a thickness of about half the
coherence length of light. Direct or diffuse sunlight illuminating the thin film
arrives from different directions and can be modeled as an extended
incoherent source, i.e., a set of spatially distributed incoherent point sources.
The color interference pattern recorded by a camera focusing on an oil film on
wet asphalt on a rainy day is shown in Fig. 3.51.

To explain the formation of the fringes shown in Fig. 3.51, consider Fig.
3.52, which shows a plate with parallel plane faces, of index nl, resting on a
block of index nm. An extended source, represented by the curve where S and
S0 are, illuminates the plate. Let us analyze this figure in parts. First, suppose
that there is only the point source S, which generates a pattern of nonlocalized
fringes. Pay attention to the interference pattern near the front face of the
plate, as in Fig. 3.45(b). Changing S for another point source S0, analogously
to the case of the source S, there would be another pattern of nonlocalized
fringes. If the two sources are left active, assuming that the two sources are
incoherent with each other, there will be a superposition in P of the

Figure 3.50 Interference pattern profile of N ¼ 2, 3, and 5 equally spaced point sources of
equal amplitude.
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interference patterns generated individually by each source. By adding other
incoherent sources between each other, until completing the extended source,
the effect of the superposition of the different interference patterns will be an
illuminated region without modulation of the irradiance by interference;
i.e., with the extended source, the nonlocalized interference fringes that might
be observed with a point source disappear.

Returning to the situation with only the point source S, the nonlocalized
interference fringes near the front face of the plate can be observed by imaging
the plate through a lens L, as shown in Fig. 3.52. If the aperture diaphragm is
small (as in the eye or in a photographic camera), the region illuminated by S
that can be observed is limited to point P and its neighborhood. This
neighborhood is defined by the rays leaving S, striking the plate, and reflecting
through the aperture diaphragm. The angular size of the neighborhood is
defined by the angle subtended by the virtual image of the aperture diaphragm
(the image generated by the first face of the plate) with respect to the source S.

Let us assume that the neighborhood of point P is very small. The
interference at P can be explained as the superposition of the chief ray (axis-
like line) reflected from the first face of the plate and the neighboring ray
reflected from the second face, with both rays leaving S. Rays leaving S at
other angles do not fall within the neighborhood of P. To see the interference
in other regions of the plate, rays from other sources are needed, e.g., with the
source S0, interference in P0 can be observed. By considering all the point
sources that make up the extended source, the full interferogram would be

Figure 3.51 Interference generated by an oil stain on wet asphalt (water) with white light
(sun).
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observed, similar to what happens with a single point source (and a large
aperture lens). Now the size of the observation screen (field stop) defines the
region in which the interferogram would be seen.

Finally, if the point sources are polychromatic, each color satisfies the
interference conditions, and because the position of the fringes depends on
the wavelength, the final result is color fringes. As the wavelength increases,
the size of the interference fringes decreases [Eq. (3.56)].

Reflection interference fringes generated by the film of air between two
microscope slides are shown in Fig. 3.53. In (a), fringes on an observation
screen separated from the slides by about 25 cm when illuminated with a point
source (l0¼ 632.8 nm) are shown. In (b), fringes on the slides recorded with a
photographic camera when illuminated with white light are shown. To
generate the air wedge, a very small drop of water was placed near the edge of

Figure 3.52 Interference fringes with an extended source.

Figure 3.53 Reflection interference patterns generated by the film of air between two
microscope slides put in contact. (a) Fringes on an observation screen (25 cm from the
slides) when illuminating with a point source (wavelength, 632.8 nm). (b) Fringes recorded
by a camera when the microscope slides are illuminated with white (solar) light.
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one of the slides, and then the other slide was placed on top of the first and
mechanical pressure was exerted on the slides, thus spreading the drop of
water. Beyond the boundary of the water stain there is air, and it is there that
the interference fringes are observed. The two patterns in (a) and (b) are
observed in a direction close to the normal of the sliders. When the color
fringes are viewed from another angle, the position of the fringes changes,� as
shown in Fig. 3.54. In (a), the fringes are observed at an approximate angle of
10° with respect to the normal of the slides, which can be considered close to
the normal. In this case, the fringes are called fringes of equal thickness and
can be used to make a topographic map of the air film. In (b) and (c),
the photographic camera was tilted approximately 45° and 70°, respectively.
This change in fringe size depends not only on the change in the optical path
in the angled film, but also on the thickness of the layer above it. In the case of
the oil film shown in Fig. 3.51, there is no other medium (other than air), so
changing the viewing angle changes the size of the fringes less noticeably.

Thus, with light from an extended polychromatic source, localized color
fringes can be seen on a film (of air, soap, oil, etc.). Viewed in the direction
normal to the film, we essentially have fringes of equal thickness.

3.7.1 Artificial extended sources

Direct and diffuse white light (sun) are an example of an extended source, in
which the point sources are practically at infinity. One way to obtain an
extended artificial source is through the use of a polished glass (diffusing plate),
i.e., a glass plate to which one or both smooth surfaces have been modified
through a sanding process (using some abrasive material, such as silicon oxide).
Therefore, the plate is seen as a translucent surface (like the viewing screen used
in Fig. 3.46 to see interferograms). By illuminating the polished glass, the
microroughnesses of the sandblasted face act as secondary light sources that

(a) (b) (c)

Figure 3.54 Interference fringes with white light (sun) when viewed from different angles
with respect to the normal of the slides.

�The phase difference changes in a similar way to that expressed by Eq. (3.79) for parallel rays.
As the angle of incidence increases, the phase difference decreases, so the fringes increase in size.
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emit roughly spherical waves. Illumination can be done with an extended source
(white light, incandescent lamp, discharge lamp, etc.) or with a spherical wave
generated by a laser. The first case is usually used to homogenize the lighting.
The second case is used to get an extended monochromatic source, but now the
different secondary point sources are coherent with each other. The
superposition of the fields generated by the multitude of these secondary
coherent sources generates an interference pattern with a grainy (random)
structure known as a speckle pattern. The average size of the speckles depends
inversely on the size of the illuminated region on the frosted glass. In general, to
obtain an extended monochromatic source, the illumination region has to be of
a size such that the average size of the speckles is very small, and what is
observed is a homogeneous illumination (of very small grains).

Michelson interferometer with an extended source.
An example of artificial extended source interference common in teaching
laboratories employs a Michelson interferometer and a diffuser plate
illuminated with a discharge lamp (usually sodium or mercury vapor lamps).
In these lamps, most of the emitted radiation occurs in a few spectral lines;
e.g., for the sodium lamp, most of the radiation is around the 589.0 and 589.6
nm lines (hence its intense yellow color).

A schematic of the Michelson interferometer illuminated by the extended
source S (lamp-illuminated diffusing screen) is shown in Fig. 3.55(a). The
source S is a collection of mutually incoherent point sources with random
initial phases. Mirrors M1 and M2 generate the virtual images S0

1 and S0
2 of

(a) (b)

Figure 3.55 (a) A Michelson interferometer illuminated with an extended source S.
(b) Illustration of the virtual images S0

1 and S0
2 of the extended source S generated by the

mirrors M1 and M2, seen from the lens L.
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the source S, which are seen one after the other from the observation screen,
as shown in Fig. 3.55(b). Assuming that the coherence length of the lamp is
greater than the separation between S0

1 and S0
2, the waves emitted by the

virtual point sources S01 and S02 (images of the point source S in S) interfere.
This occurs for all virtual point sources. But there would not be interference
between waves emitted by the different point sources in S. Consequently,
without the lens L, no interference fringes will be seen on the observation
screen. With the help of lens L, by placing the observation plane in the focal
plane of the lens, interference fringes of equal inclination can be observed.
These fringes are the result of the superposition in intensity of the patterns
generated by each point source in S. Equations (3.85) and (3.86), with
nl¼ ni¼ 1, describe these fringes.

The interference between two microscope slides, when pressed with a
pencil tip, is shown in Fig. 3.56. Based on what is covered in this section, the
reader is invited to make a qualitative description of the formation process of
the color fringes and the thickness of the air film between the slides.

3.8 Young Interferometer I

In the eighteenth century, the corpuscular theory of light developed by
Newton prevailed. Although a wavelike behavior of light was already
observed, the difficulty of observing diffraction (as it was already known in
sound or in surface waves of water) motivated Newton to develop a
corpuscular theory of light, which was accepted thanks to Newton’s scientific
reputation. Around the same time, other scientists such as Christiaan Huygens
(1629–1695) and Robert Hooke (1635–1703) advocated wave theories of light.
A little earlier, Francesco Grimaldi (1618–1663) discovered the diffraction of
light through small openings, which suggested a wavelike behavior of light.
Despite this background, there was no strong evidence that Newton’s

Figure 3.56 An interference pattern between two microscope slides when pressed with a
pencil and using white light (sun).

219Interference



corpuscular theory was wrong. In 1803, Thomas Young (1773–1829)
performed an experiment that seriously challenged the corpuscular theory [4].

The modern version of Young’s interferometer is illustrated in Fig. 3.57.
The general scheme is shown in Fig. 3.57(a). The illumination source S is an

(a)

(b)

(c)

Figure 3.57 Young’s experiment. (a) Geometry of the experiment. In screen 1, there is a
small hole to let through some of the light emitted by the extended source S of size s. On
screen 2, there are two other holes, S1 and S2, also small, which in turn allow part of the light
that diverges from S0 to pass through. Light diverging from holes S1 and S2 is superimposed
on the display screen. (b) Simplified scheme with point sources at S0, S1, and S2.
(c) Geometry for the calculation of the optical path difference.
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extended source of size s. At distance zs is screen 1, which has a small hole
(S0). Then, at a distance zp from screen 1 there is screen 2, which contains two
other identical holes (S1 and S2) separated from each other by the distance a.
Finally, at distance z0 from screen 2 is the observation screen. The size of S0
determines the spatial correlation of the fields in S1 and S2. If S0 is a point
source, there will be the maximum spatial correlation between S1 and S2. On
the other hand, the sizes of S1 and S2 determine the diffraction modulation of
the interference pattern on the observation screen. The analysis of the
interference pattern, taking into account the geometry of the holes and the size
of the light source, is covered in Chapter 4.

In what follows, let us consider the ideal situation where the holes are so
small that it can be assumed that there is one primary point source at S0 and
two secondary point sources at S1 and S2, as shown in Fig. 3.57(b). In Young’s
experiment, it is typical to have symmetry about the optical axis, so that S1
and S2 are the same distance from the optical axis and therefore S0S1 ¼ S0S2.
Thus, on the observation screen, there will be a superposition of the spherical
wavefronts that diverge from S1 and S2. This situation is discussed in
Section 3.3. Some interference patterns are shown in Fig. 3.17 by changing the
distance between the sources S1 and S2, and the distance between the sources
and the observation screen.

Assuming that the source is monochromatic with wavelength l and
greater coherence length than the optical path difference at P,
i.e., lc . jðS0S2 þ S2PÞ � ðS0S1 þ S1PÞj ¼ jS2P� S1Pj [Fig. 3.57(c)], the irra-
diance maxima on the screen along the x0 direction are given by

x0m ¼ ml

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z20

a2 �m2l2
þ 1

s
, (3.113)

according to Eq. (3.48), changing y0 → z0 and zm → x0m. The parameter m
labels the interference fringes. Thus, m¼ 0 corresponds to the central fringe,
m¼ 1, 2, 3, . . . corresponds to the fringes on the right (left) side of the central
fringe according to their order, and m¼ –1, –2, –3, . . . corresponds to the
fringes on the left (right) side of the central fringe according to their order. In
Young’s experiment, z0 ≫ a ≫ l holds. If the region in which the interfero-
gram is observed has an extent much smaller than z0, the observed fringes are
evenly spaced parallel fringes (as in the right image in Fig. 3.17 when the
separation between the sources and the observation screen is 200 mm and
a¼ 32l). In this case, the position of the mth fringe can be obtained by
making the corresponding approximations in Eq. (3.113), i.e.,

x0m ¼ m
z0l
a

, (3.114)

and the separation between two consecutive fringes would be
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Dx0 ¼ z0l
a

: (3.115)

These results [Eqs. (3.114) and (3.115)] were also obtained in Section 3.6
[Eqs. (3.109) and (3.110)], in which spherical wavefronts were approximated
by planar wavefronts, an approximation also found in Young’s experiment.
With this in mind, the irradiance on the observation screen of Young’s
experiment is given by Eq. (3.104) with N¼ 2, i.e.,

I ¼ I0

�
sinðkx0a∕z0Þ
sinðkx0a∕2z0Þ

�
2
, (3.116)

with I0 ¼ ðϵ0c∕2ÞE†

0
2∕z20, where E†

0 is the field amplitude (per unit length) of
sources S1 and S2. Using the trigonometric identity sin(2a)¼ 2 sin a cos a in
the numerator of Eq. (3.116) leads to

I ¼ 4I0

�
cos

�
pa
z0l

x0
��

2
: (3.117)

Another approximate way to determine the irradiance is obtained
directly from Fig. 3.57(c). Taking into account the condition z0 ≫ a, the
field at P due to S1 is E1ðPÞ ¼ ðE†

0∕z0Þeiks1 and the field at P due to S2 is
E2ðPÞ ¼ ðE†

0∕z0Þeiks2 . Therefore, the irradiance at P, given by I ¼ ðϵ0c∕2Þj
E1ðPÞ þ E2ðPÞj2, would be

I ¼ 2I0½1þ cosðkðs2 � s1ÞÞ�: (3.118)

Approximating s2 � s1 � aa � ax0∕z0 leads to

I ¼ 2I0

�
1þ cos

�
2pa
lz0

x0
��

, (3.119)

which is equivalent to Eq. (3.117).

3.8.1 Division of wavefront and division of amplitude

In Young’s interferometer there is a remarkable fact as to how to generate the
two secondary sources S1 and S2 compared with the Michelson interferometer.
In the Michelson interferometer (as in the plate with parallel faces), the
secondary sources are virtual images of a primary source obtained by the
beamsplitter and the mirrors M1 and M2 (Fig. 3.18). The beamsplitter divides
the amplitude of the incident wave (into a reflected wave and a transmitted
wave). Interferometers based on this principle are also called amplitude-
splitting interferometers. In contrast, in Young’s interferometer, the secondary
sources S1 and S2 are obtained by isolating regions of the wavefront emitted
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by the primary source S0. Secondary sources are then said to be obtained by
dividing the wavefront. Interferometers based on this principle are also called
wavefront-splitting interferometers.

In amplitude-splitting interferometers, the secondary sources are copies of
the primary source, so the interference between the secondary waves depends
on the temporal correlation of the superimposed fields. If the delay time
between the waves is greater than the coherence time (Fig. 3.6), no
interference will be observed. In the case of wavefront-splitting interferom-
eters, the interference also depends on the spatial similarity of the optical
fields in S1 and S2. The spatial correlation of the fields in S1 and S2 measures
the spatial coherence of the waves. In particular, in Young’s interferometer,
the size of the observation region of the interferogram is usually such that for
any point P within the region, the coherence length is greater than the optical
path difference, so the coherence of interference waves is basically determined
by the spatial correlation of the fields in S1 and S2. Thus, coherence has two
aspects, one temporal and one spatial, which can be measured with the help of
Michelson’s interferometer and Young’s interferometer, respectively.

3.9 Other Interferometers

An interferometer can be said to be an optical system that splits a primary
wave in amplitude or wavefront into two or more secondary waves, and then,
after the secondary waves have traveled different optical paths, they are
superimposed to observe a pattern of interference. The geometry of the fringes
accounts for some parameters of the interferometric system, e.g., quality of
the optical surfaces, homogeneity of the optical glass components (variation
of the refractive index), curvatures of the surfaces, etc.

In this section, some types of interferometers other than the Michelson
and Young interferometers are described.

3.9.1 Fabry–Pérot interferometer

Figure 3.58 shows a system consisting of two flat mirrors, a spacer ring about
0.5 mm thick, and a cylindrical support. Mirrors are thick (wedge-shaped)
plates of glass with a metallic (aluminum) coating on one side to produce high
reflectance (0.9 < r < 1). The spacer ring is placed in the middle of the two
mirrors (in contact with their metallized faces) guaranteeing a fixed distance
between the mirrors. The mirror and ring assembly is placed inside the
cylindrical support and adjusted. This device is known as a Fabry–Pérot
interferometer, in its simplest form. The operation of the interferometer is
explained with the concepts developed for the plate with parallel faces, but
with nl¼ 1 (air between the mirrors).

A schematic of an experimental setup is shown in Fig. 3.59(a) for
simultaneously observing interference fringes (nonlocalized) by reflection and
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Figure 3.58 A basic Fabry–Pérot interferometer. It consists of two flat mirrors of semi-
silvered glass on one of the faces, a spacer ring (�0.5 mm thick), and a cylindrical support
that adjusts the mirror system with the spacer in the middle.

(a)

(b) (c)

Figure 3.59 (a) Optical system for simultaneously observing reflected and transmitted
interference. (b) Reflection interferogram on screen 1. (c) Transmission interferogram on
screen 2.
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transmission with the Fabry–Pérot interferometer shown in Fig. 3.58. A laser
beam is focused at the center of a hole about 3 mm in diameter located in an
opaque screen (screen 1). The point source S will be there. The divergent
spherical wavefront is transmitted and reflected several times at the
interferometer plates. The interferograms seen by reflection on screen 1 and
by transmission on screen 2 are shown in Figs. 3.59(b) and (c), respectively. In
(b), the dark dot corresponds to the hole in which the point source is located.
In effect, the two interferograms complement each other, as in Figs. 3.37(c)
and 3.38(c).

Fabry–Pérot interferometer as a resonant cavity
A very important application of the Fabry–Pérot interferometer is in lasers,
where the interferometer is the resonant cavity. To see this, let us consider
Fig. 3.34, which shows that for r¼ 0.96, a very narrow band of transmitted
irradiance is obtained. This figure is based on the thickness of the plate.
However, if the thickness of the plate is fixed and the irradiance is plotted as a
function of the frequency of the wave, a similar plot is obtained, since the
phase given in Eq. (3.79) also depends linearly on the frequency n ¼ c∕l. That
is, for very high reflectances of the mirrors, the transmitted irradiance only
occurs in very narrow frequency bands, which explains the high degree of
monochromaticity of lasers.

This book does not deal with the details of the Fabry–Pérot interferometer
as a resonant cavity, which can be found in specialized works on lasers [5]. An
introduction to the subject can also be obtained by consulting elementary
optics books [6].

3.9.2 Antireflective thin film

One application of parallel face plate interference is in antireflective coatings.
The simplest system consists of a plate of parallel faces whose thickness is of
the order of a wavelength, called a thin film, placed on top of another plate of
parallel faces, called a substrate, as illustrated in Fig. 3.60.

Figure 3.60 A thin film on a substrate. When the film thickness is d ¼ l/4nd, Er1 and Er2
interfere destructively.
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The reflected field is Er1 ¼ r1E0 on the first face and Er2 ¼ t1r2t01E0 on the
second face. Thus, the total reflected field (omitting the reflection at the base
of the substrate) would be

Er ¼ r1E0 þ t1r2t01E0eid,

where

d ¼ 4pnd
l

d:

The reflected irradiance would be

I r ¼ I0R,

with I0 ¼ ðϵ0c∕2ÞE2
0 and the reflectance

R ¼ r21 þ ðt1t01r2Þ2 þ 2r1t1t01r2 cos d:

At normal incidence, the reflection and transmission coefficients (for the
parallel polarization state) are

r1 ¼
nd � n
nd þ n

; r2 ¼
n0 � nd
n0 þ nd

; t1 ¼
2n

nd þ n
; t01 ¼

2nd
nd þ n

:

In practice, it is common to use MgF2 (magnesium fluoride), whose index
is nd¼ 1.38, for the thin film. If this film is deposited on a glass substrate
(n0 ¼ 1.5) and n¼ 1 (air), the relation n < nd < n0 holds, so the reflectance takes
a minimum value when d¼p; i.e., the thickness of the film must be

d ¼ l

4nd
:

With a little more work, we find that the minimum takes the value of zero if

n2d ¼ n0n:

For example, for the glass substrate, the thin film should have a refractive
index of 1.22, somewhat less than the refractive index of MgF2.

3.9.3 Newton and Fizeau interferometers

In general, any arrangement of two contacting optical surfaces illuminated
with monochromatic light is called a Newton interferometer [7]. The name
given to this type of interferometer comes from the first reported experiments
by Newton [8] of bringing a pair of telescope lenses into contact. In this
experiment, Newton observes colored circular fringes centered on the contact
region. Something similar to this is shown in Fig. 3.56, where the center of the
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colored fringes is at the tip of the pencil. These circular fringes are also called
Newton’s rings.

The basic setup for observing Newton’s rings is shown in Fig. 3.61. A lens
with spherical faces is placed in an optical reference plane (peak–valley error,
l/100). The surfaces in contact, spherical surface 1 and flat surface 2, form a
film of air. An extended monochromatic source (mercury discharge lamp) is
used to illuminate the surfaces in contact. The interference pattern formed by
the superposition of externally reflected waves in the optical plane (surface 2)
and internally reflected waves in the lens (surface 1) is observed with the help
of a lens L. With this configuration, the quality of the curved surface of the
lens that is in contact with an optical reference plane is examined. If the face
of the lens is spherical, there will be an interference pattern made up of
circular rings. The radius of the mth bright ring is given by

rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1∕2ÞlR

p
, (3.120)

and the radius of the mth dark ring will be

rm ¼
ffiffiffiffiffiffiffiffiffiffi
mlR

p
, (3.121)

where R is the radius of curvature of the spherical surface 1 and m¼ 0, 1, 2,. . .
It is left as a task for the reader to derive Eqs. (3.120) and (3.121). Note that
now the central fringe is labeled m¼ 0 (where the contact region is), whereas
for fringes generated by two virtual sources, as in Fig. 3.16, the value of m for

Figure 3.61 A mount to observe Newton’s rings generated by the curved face of the lens in
contact with an optical reference plane.
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the central fringe depends on the relationship between the separation of the
virtual sources and the wavelength.

The configuration in Fig. 3.61 can also be used to assess the quality of the
flat surfaces of other optical elements (lenses, planes, prisms); e.g., in the
process of polishing the flat surfaces of a prism [Fig. 3.62(a)], the quality of
the surfaces can be checked by putting the surface to be evaluated in contact
with the optical plane of the Newton interferometer shown in Fig. 3.61. In
Fig. 3.62(b), the fringe pattern obtained for the diagonal surface of one of the
prisms in Fig. 3.62(a) is shown. Because the fringes have the same thickness, a
map of the topography of the surface under analysis can be obtained.

In general, the reference surface should have a similar shape to the surface
to be evaluated by the interference fringes. If the shape of the two surfaces

Figure 3.62 (a) Polishing of the diagonal surfaces of two right prisms. (b) Interference
fringes generated by the diagonal surface of one of the prisms in (a) when it comes into
contact with the optical reference plane of the Newton interferometer.

Figure 3.63 Scheme of the Fizeau interferometer to evaluate a test surface that is
separated by a distance t from the optical reference plane.

228 Chapter 3



differs by a large number of wavelengths, there will be many fringes and the
imaging system will not be able to resolve them.

If in practice it is not possible to place the two surfaces in contact, a
variation of the optical system shown in Fig. 3.61 can be made, as shown in
Fig. 3.63 (Fizeau interferometer). The light source must have a coherence
length greater than twice the separation t between the optical reference plane
and the test surface. Therefore, it is common to use a laser beam focused in S.
The interference fringes will be of equal thickness.
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