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Abstract. Optical spectroscopy has shown potential as a real-time, in vivo, diagnostic tool for identifying neo-
plasia during endoscopy. We present the development of a diagnostic algorithm to classify elastic-scattering
spectroscopy (ESS) spectra as either neoplastic or non-neoplastic. The algorithm is based on pattern recognition
methods, including ensemble classifiers, in which members of the ensemble are trained on different regions of the
ESS spectrum, and misclassification-rejection, where the algorithm identifies and refrains from classifying samples
that are at higher risk of being misclassified. These “rejected” samples can be reexamined by simply repositioning
the probe to obtain additional optical readings or ultimately by sending the polyp for histopathological assess-
ment, as per standard practice. Prospective validation using separate training and testing sets result in a baseline
performance of sensitivity = .83, specificity = .79, using the standard framework of feature extraction (principal
component analysis) followed by classification (with linear support vector machines). With the developed algo-
rithm, performance improves to Se ∼ 0.90, Sp ∼ 0.90, at a cost of rejecting 20–33% of the samples. These results
are on par with a panel of expert pathologists. For colonoscopic prevention of colorectal cancer, our system could
reduce biopsy risk and cost, obviate retrieval of non-neoplastic polyps, decrease procedure time, and improve
assessment of cancer risk. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3592488]
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1 Introduction
1.1 Spectral Classification for Diagnostic

Spectroscopy
The promise of optically guided biopsy using elastic-scattering
spectroscopy (ESS) in colorectal cancer screening relies on
achieving a high accuracy for detecting neoplasms, because mis-
diagnoses can be potentially costly. Both statistical and model-
based methods of spectral classification have been studied by a
number of groups.1–4

The present report focuses on improvements in pattern-
recognition and machine-learning methods, as applied to ESS,
with the complexities of biological variability in mind. The spe-
cific clinical application addressed here is the assessment of
polyps during colonoscopy for the screening/management of
colorectal cancer.

Current algorithms, based on a single classifier, have shown
the feasibility of ESS as a diagnostic tool,1, 2, 5–7 yet increased
accuracy is desired for ESS to be widely adopted in clinical
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settings, particularly for the in situ classification of polyps during
colorectal cancer screening.8 A different classifier framework,
one where the decision is made based on the input from various
classifiers, can enhance performance over a single-classifier
scheme.9–12 This field of combining multiple classifiers, or
ensemble classifiers, has garnered increased attention over the
past decade in the pattern-recognition and machine-learning
community motivated by the prospect of improving classifica-
tion performance. Ensemble classifiers are generally designed
based on different approaches for generating the base classifiers
(i.e., the set of classifiers that composes the ensemble).11 One
approach, the data level, uses different subsets of the training
data to design the base classifiers. Two common sampling
methods to achieve this include bagging and boosting,11, 13 with
AdaBoost11, 14, 15 being a well-known classifier employing the
latter method. In a second approach, the feature level, the base
classifiers are designed on different subsets of data features. This
approach was used to classify autofluorescence spectra acquired
from healthy and diseased mucosa in the oral cavity.10 Another
approach is the classifier level, where each of the base classi-
fiers is designed using a different classification method. Tumer
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et al.12 employed the classifier-level approach when classifying
fluorescence spectra for cervical dysplasia by designing ensem-
bles with different radial basis-function neural networks as base
classifiers.

An additional classification paradigm can also be used
to improve current performance levels. The misclassification-
rejection (MR) approach, known in the literature as error-
rejection, is one where the classifier identifies samples at high
risk of being misclassified, in most cases the ones lying near
the decision boundary, and as such, refrains from making a
decision on them. Thus, for a binary classification problem
there is a third possible outcome: A sample is not assigned a
class or label, and is considered as a rejected sample. The ex-
pected result is an improvement in performance relative to the
one obtained with a regular classifier at the expense of having
a percentage of the samples not classified. Rejected samples
would then have to be examined by some other method (repeat
optical measurements or biopsy) in order to obtain their clas-
sification. With this paradigm, decisions become a sequential
process, suitable for colonoscopic cancer screening, where an
initial real-time, in vivo examination of a polyp using ESS is fol-
lowed by biopsy and histopathology if it could not be classified
spectroscopically.

The idea of misclassification-rejection has been mentioned
for spectroscopic applications;16, 17 however, no formal frame-
work has been presented. The concept of misclassification-
rejection was first introduced by Chow18 for minimum prob-
ability of error classifiers, where the optimal decision rules
take the form of a threshold for the posterior probabili-
ties, assuming that the underlying probability distributions are
known. Extensions to this work have been presented for cases
where the underlying probability distributions are unknown and
estimated;19, 20 artificial neural networks;21, 22 and support vec-
tor machines (SVM).23–27 In addition, reformulations of the
SVM training problem, embedding the rejection option have
been presented.28–30 In this framework, the decision boundary
becomes a decision region that, in its simplest form, consists
of a pair of parallel hyperplanes separated by some distance.
Samples lying within this decision region are rejected. In this
paradigm, the orientation of the decision regions as well as the
distance between them are obtained during the training phase,
in contrast to previous work that has focused on methods to
threshold samples once the classifier has been designed. This
has resulted in an improvement in error-reject trade-off when
compared to simply thresholding the output after designing the
classifier. The notion of misclassification-rejection for classi-
fying spectra in “optical biopsy” schemes can be thought of
as relating to the all-too-frequent histopathology designation of
“indeterminate,” or to cases where multiple histopathology as-
sessments of the same tissue lack agreement. A different type
of “error” identification has been introduced by Zhu et al.,31

wherein principal components that relate to variations in practi-
tioner technique (e.g., probe pressure, angle) are ignored in the
classification. These differences are often variations of overall
intensity, and their removal can lead to improvement in clas-
sification performance.31, 32 Another type of error rejection is
often referred to as “outlier rejection,” in which spectra that
clearly invoked experimental error (e.g., broken probe, non-
contact with the tissue, or dirt on the probe tip) are rejected.
Both of these error types differ from our misclassification-

risk reduction, which is more akin to identifying biological
uncertainly. In our experimental approach, such outliers can
be recognized and instantly rejected at the moment of the
measurement.

1.2 Optical Biopsy in Management of Colorectal
Cancer

In the United States, colorectal cancer (CRC) is the second lead-
ing cause of cancer and cancer death for both sexes (behind lung
cancer), with nearly 150,000 new cases and 50,000 deaths annu-
ally in recent years.33 Current recommendations from multiple
professional societies advocate early detection by screening the
entire average-risk population for CRC beginning at age 50.34

Accepted screening modalities include (i) stool occult blood
or deoxyribose nucleic acid testing, (ii) flexible sigmoidoscopy
every five years (iii) colonoscopy every 10 years, and (iv) ra-
diological examination via double-contrast barium enema or
computed tomography colonography every five years. Of these,
colonoscopy emerged as the most effective method of screening
because a high-quality examination permits simultaneous detec-
tion and removal of precancerous polyps, thus modifying CRC
risk.35

The effectiveness of colonoscopic cancer prevention hinges
on the complete removal of all polyps detected during a standard-
definition white-light endoscopy (SDWLE).35–37 However, a
large proportion (up to 50%) of polyps that are removed are,
in fact, non-neoplastic by histopathology (i.e., they have neg-
ligible malignant potential). Thus, there is an inherent inef-
ficiency: Because neoplastic and non-neoplastic polyps can-
not be reliably distinguished by SDWLE alone, substantial
resources are devoted to the removal of clinically inconsequen-
tial tissue, while the actual benefit derives from the identifica-
tion and removal of premalignant lesions. Thus, there is great
need for simple, rapid, and low-cost methods for “smart” tissue
evaluation, because removing inconsequential tissue introduces
additional unnecessary time, cost, and incremental risk of bleed-
ing and perforation, to a high-demand, high-volume screening
procedure.

Optical spectroscopy has been suggested to assist endo-
scopists in classifying polyps in situ and in real time in a
simple and cost-effective manner.1–4 In particular, ESS has
shown promise for detecting dysplasia and/or cancer in various
epithelial-lined hollow organs, including the urinary bladder,38

esophagus,7, 39–42 and colon,1–3 as well as in tissues such as breast
and lymph nodes.5, 6 ESS, mediated by specific fiberoptic probes
with specific optical geometries, is sensitive to the absorption
spectra of major chromophores (e.g., oxy-/deoxy-hemoglobin)
and, more importantly, the scattering spectra, which relate to
micromorphological features of superficial tissue. ESS spec-
tra derive from the wavelength-dependent optical scattering
efficiency (and the effects of changes in the scattering angu-
lar probability) caused by optical index gradients exhibited by
cellular and subcellular structures. Unlike Raman and fluores-
cence spectroscopy, ESS provides largely microstructural, not
biochemical, information. ESS is sensitive to features such as
nuclear size, crowding, and chromaticity, chromatin granularity,
and mitochondrial and organellar size and density [Fig. 1(a)].
Because neoplasia is associated with changes in subcellular, nu-
clear, and organellar features, scattering signatures represent the
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Fig. 1 (a) Cartoon illustration of optical scattering from density gradi-
ents in cells, and (b) a diagram of the optical geometry for the fiber-optic
tissue measurements. Fiber tips are in optical contact with the tissue
surface. Only light that has scattered elastically within the epithelial
layer is collected.

spectroscopic equivalent of a histopathological interpretation.
The ESS method, however, senses morphological changes
semiquantitatively without actually rendering a microscopic
image.43, 44 In practice, ESS is a point-source measurement ob-
tained over a broad wavelength range (320–900 nm) that samples
a tissue volume of ≤0.1 mm3. Probes are comprised of separate
illuminating and collecting fibers [Fig. 1(b)] and require optical
contact with tissue being interrogated. Collected light transmit-
ted to the analyzing spectrometer must first undergo one or more
scattering events through a small volume of the tissue before
entering the collection fiber(s) in the “backward” direction. No
light is collected from surface Fresnel reflection. The standard
ESS catheter-type probe consists of a pair of fibers (each with
a core diameter of 200 μm) with a center-to-center separation
of ∼250 μm. Because of the small separation of the source and
detector fibers, the collected light predominantly samples the
mucosal layer, which is typically 300–400 μm thick in the GI
tract.

Ideally, when using elastic-scattering spectroscopy, some
form of spectral analysis is performed on the collected measure-
ments of the examined tissue. ESS was first applied in vivo in the
urinary bladder by Mourant et al.,38 where correlation of spectral
features, determined “by inspection,” for the detection of malig-
nant tissue in a retrospective analysis from a small sample size
(110 biopsy sites from 10 patients) showed the feasibility of ESS
as a diagnostic tool. Bigio et al.5 used artificial neural networks

(ANN) to classify ESS spectra from breast tissue and sentinel
nodes. Analysis resulted in sensitivities of 69 and 58%, and
specificities of 85 and 93%, for breast tissue and sentinel nodes,
respectively. In another study by Ge et al.,2 light-scattering spec-
tra of neoplastic and non-neoplastic colonic polyps could be
distinguished using multiple linear regression analysis, linear
discriminant analysis (LDA), and ANN. Sensitivities and speci-
ficities of 91% and 78%, 91% and 74%, and 79% and 91%
were obtained, respectively, for each of the three methods. Dhar
et al.1 used LDA and leave-one-out cross-validation to classify
several colonic lesions, among them adenomatous versus hy-
perplastic polyps, with a sensitivity of 84% and specificity of
84%, adenocarcinoma versus normal colonic mucosa, with a
sensitivity of 80% and specificity of 86%, and adenocarcinoma
versus adenomatous polyps, with a sensitivity of 80% and speci-
ficity of 75%. In addition to these statistical pattern-recognition
approaches, model-based classifications have been proposed,
primarily based on extracting nuclear size distribution from the
scattering spectra. These have yielded performances comparable
to statistical approaches.4, 45, 46 The advantages of using ensem-
ble classifiers and misclassification-rejection, described here,
are intended to provide diagnostic information of higher relia-
bility, with the benefit of providing an assessment of the risk
of misclassification. The resulting improved method is tested
prospectively on a naı̈ve data set.

2 Materials and Methods
2.1 Instrumentation
The ESS system and integrated forceps have been previously
described.47 Briefly, when using ESS, or any point spectro-
scopic measurement, it is essential to coregister precisely the
optical reading and the physical biopsy. With this in mind, an
endoscopic tool that integrates an ESS probe with a biopsy for-
ceps was designed. In order to incorporate an ESS probe into
the biopsy forceps, it was necessary to reduce the diameter
of the optical fibers. In previous studies, the illuminating fiber
was a 400-μm core optical fiber and the backscatter detector a
200-μm fiber. For the integrated ESS optical biopsy forceps,
two 200-μm core fibers (source and detector) were used, each
with a numerical aperture of 0.22 in air. The center-to-center
separation between the fibers was ∼250 μm. Biopsy forceps
were built with a hollow central channel that extended to the
space between the jaws (SpectraScience, San Diego, Califor-
nia) capable of accommodating the 0.470-mm diameter of the
hypotube encasing the probe (Fig. 2).

Similar to previously described ESS designs, the forceps
connect to the ESS system, which consists of a pulsed Xenon-
arc lamp (LS-1130-3, Perkin Elmer, Waltham, Massachusetts)
broadband light source, a built-in computer with custom ESS
software, and built-in spectrometer (S2000, Ocean Optics, Inc.,
Dunedin, Florida), microcontroller board and power supplies
(Fig. 3). Before each procedure, the ESS forceps and spec-
trometer were calibrated for system response by measuring
the reflectance from a spatially flat diffuse-reflector Spectralon
(Labsphere Inc., North Sutton, New Hampshire) to standard-
ize for variations in the light source, spectrometer, fiber trans-
mission, and fiber coupling. It should be noted that the endo-
scope light source (Olympus 100 series with Evis Exera I and II
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Fig. 2 (a) Two-dimensional diagram of the forcep tip is depicted. The
optical forcep is a modified traditional endoscopic jaw-type biopsy
forcep (left) with a central channel through which fiberoptic probes
can be introduced for tissue measurements (right). (b) A photograph of
a clinically-usable unit, standard biopsy forceps (left), ESS integrated
optical forceps (right).

systems) does not interfere with ESS readings, because the back-
ground light is measured separately and subtracted from the ESS
measurement.

2.2 Clinical Measurements
Data collection was performed under an ongoing IRB-approved
clinical study at the Veterans Affairs Medical Center, Boston,
Massachusetts. Subjects were recruited from among individuals
scheduled for a medically indicated screening or surveillance
colonoscopy. When a polyp or suspicious growth was encoun-
tered by the endoscopist during the procedure, the forceps jaws
were opened such that the central optical probe was placed in
gentle contact with the identified polyp and five ESS measure-
ments were taken in rapid succession. Once the optical read-
ings were obtained, the forceps jaws were closed to obtain the
physical biopsy. By using forceps with integrated ESS optics,
precise coregistration of optical readings and physical biop-
sies is assured. Three specialist gastrointestinal pathologists,
using predefined standard histopathological criteria, reviewed
each endoscopic pinch biopsy independently. The “optical biop-
sies” were then correlated to the majority classification by
histopathology.

Fig. 3 (a) Schematic diagram of the ESS system and (b) photo of
portable ESS optical biopsy system.

2.3 Data Processing and Analysis
2.3.1 Preprocessing

The spectra from the ESS measurements consist of ∼800 pixels
in the wavelength range of 300–800 nm. All spectra were prepro-
cessed before being analyzed. The five measurements taken at
each site were averaged, smoothed, and then cropped. Smooth-
ing is done by first using a moving average with a sliding window
of a size of ten points (detector pixels), and then by averag-
ing blocks of five points (corresponding to a spectral band of
∼3 nm). The spectra are then cropped from 330 to 760 nm, re-
sulting in a spectrum of 126 points. Finally, each spectrum was
normalized to the intensity at 650 nm, because we are interested
in the spectral shape and not the relative intensity.
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2.3.2 Principal component analysis

Given the high-dimensional nature of ESS data, classifiers are
designed on lower-dimensional features extracted with princi-
pal component analysis (PCA). On the basis of the Karhunen–
Loeve transform, PCA reduces dimensionality by restricting
attention to those directions along which the variance of the
data is greatest.13 These directions are obtained by selecting the
eigenvectors of the pooled data covariance matrix that corre-
spond to the largest eigenvalues. Reduction in dimensionality is
then achieved by applying the linear transformation of the form

X̃ = VT (X − μX), (1)

where V is the transformation matrix whose columns contain
the desired d eigenvectors, X is the input matrix where each
column is an observation, and μx is the mean of the data. PCA
is an unsupervised linear feature extraction method [i.e., no
measure of class separability is incorporated while finding the
principal components (PCs)]. It is worth noting that although
PCA finds components that are useful for representing the data
in lower dimensions, there is no guarantee that these components
are useful for discrimination between classes. Also, since PCA
reduces dimensionality by means of a linear transformation, the
physical meanings of the input vector’s features are effectively
lost. The data can be transformed to the original space using the
selected principal components by48

X̂ = VX̃ + μX. (2)

2.3.3 Support vector machines

Features obtained using PCA are used as inputs for our different
classifiers based on support vector machines (SVMs).49–51 Sup-
port vector machines are, in their simplest form, binary linear
classifiers, where the decision boundary obtained is a hyperplane
that has the maximum separating margin between the classes.
This allows this classifier to exhibit good generalization perfor-
mance (i.e., good performance in the presence of unseen data).49

Training support vector machines involves solving the following
quadratic optimization problem:

min
w,b,ξi

1

2
wT w + C

∑
i

ξi

s.t. yi (wT xi + b) ≥ 1 − ξi

ξi ≥ 0,

(3)

where xi is the i’th input sample, yi ∈ {–1,1} is the corresponding
class label, w is the normal to the separating hyperplane; |b|/‖w‖
the perpendicular distance from the separating hyperplane to
the origin, C is a predefined constant that controls how much
penalty is given to errors, and �i ξi the sum of deviation of
training errors. Minimizing Eq. (3) constructs the classifier

f (x) = sgn
(
wT x − b

)
, (4)

consisting of a linear separating hyperplane that minimizes the
sum of deviations of training errors and maximizes the margin,
2/‖w‖, for samples correctly classified.

2.3.4 Ensemble classifiers

When developing an ensemble classifier for classification of ESS
spectra, we intended to take advantage of the high dimensional
nature of the data. For this purpose, a feature-level approach, as
discussed earlier, is used. In this approach, the ensemble is cre-
ated by designing each base classifier on a subset of the sample
pattern’s features. An important aspect of ensemble classifiers
is diversity among the base classifiers (i.e., trying not to commit
errors on the same samples).9, 11 With this in mind, we propose
using the ensemble classifier architecture illustrated in Fig. 4.
The system consists of a number of parallel classifiers, each
trained on a region of the ESS spectrum. The design of each
of the base classifiers involves a feature extraction (PCA) step
followed by the training of a linear SVM classifier with those
particular extracted features. Diversity is introduced by train-
ing the base classifiers on different subspaces generated by the
extracted features.

The final classification, or diagnosis, is obtained by combin-
ing the outputs of the base classifiers. Because we are working
with SVM, whose output is a class label, combination rules
that fuse label classifier outputs will be used. Two combination
rules, majority-voting and naı̈ve Bayes combiner, were consid-
ered. The majority-voting rule assigns a sample the class label
that 50% + 1 or more of the base classifiers agree on. In the case
of a tie when using even numbers of base classifiers, the member
of the ensemble with the highest classification accuracy breaks
the tie. The naı̈ve Bayes combination rule is stated as follows:11

let x be a sample vector belonging to one of the possible ωk, k
= 1, . . . , c classes. Also let L be the number of base classifiers in
the ensemble. The ensemble classifies a sample x as belonging
to class ωk if σ k(x) is maximum, where

σk(x) ∝ P (ωk)
L∏

i=1

P (yi |ωk) , (5)

and yi is the output label from the i’th base classifier. For the prac-
tical application of the binary classification of non-neoplastic
(ωnon-neoplastic) versus neoplastic (ωneoplastic) tissue, and assum-
ing that, if yi = 1 the sample is classified as non-neoplastic, and
if yi = –1, the sample is classified as neoplastic by the base

Fig. 4 Proposed ensemble classifier architecture.
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classifiers, the conditional probabilities can be estimated as

P
(
yi = −1|ωneoplastic

) = Sensitivity,

P
(
yi = 1|ωneoplastic

) = 1 − Sensitivity,

P
(
yi = 1|ωnon−neoplastic

) = Sensitivity,

P
(
yi = −1|ωnon−neoplastic

) = 1 − Sensitivity,

(6)

P(ωk) are the prior probabilities and can be estimated from the
training data. Thus, this combination rule uses the performance
of each base classifier, in the form of the sensitivity and speci-
ficity, to weight their individual decision when making the final
classification.

2.3.5 Misclassification-rejection

Several methodologies that incorporate a misclassification-
rejection option in SVM classifiers have been presented by
others.23–27 Many of them accomplish this by rejecting sam-
ples that lie at a certain threshold distance from the decision
boundary or by estimating probabilistic outputs from the SVM
classifier and then applying Chow’s rule.18–20 An alternative
method of incorporating misclassification-rejection in SVMs is
to obtain both the orientation of the hyperplanes and the width
of the rejection region in the training phase.28–30 The decision
region in this SVM with embedded MR (SVMMR), is defined
as two parallel hyperplanes, where samples lying in-between
them would be rejected. To accomplish this, the SVM training
problem is reformulated by introducing a term in the minimiza-
tion problem cost function in order to approximate the empirical
error with rejections. Training is accomplished by solving the
following problem:28–30

min
w,b,ξi ,ε

1

2
wT w + C

∑
i

h (ξi , ε)

s.t. yi
(
wT xi + b

) ≥ 1 − ξi

ξi ≥ 0

0 ≤ ε ≤ 1.

(7)

This training problem is similar to the one for standard SVMs
with the addition of ε, where 2ε/‖w‖ denotes the width be-
tween the separating hyperplanes defining the rejection region,
and h(ξ i,ε) is the modified cost function reflecting the trade-
off between rejecting and misclassifying training samples. The
decision function with the rejection option then becomes

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

+1, if wT x − b ≥ ε

−1, if wT x − b ≤ −ε

0, if − ε < wT x − b < ε

. (8)

Fumera and Roli28, 29 suggested a nonconvex stepwise cost
function to account for the misclassfication-reject trade-off. As
a result, this deviates from the convex optimization problem for
standard SVM training, as it is stated that a convex approxima-
tion of this cost function would not adequately allow represent-
ing this trade-off. Rodriguez-Diaz and Castanon30 used a piece-
wise linear cost function to incorporate the misclassification-
reject trade-off in the SVM training problem. The use of this
cost function preserves the training problem as a quadratic pro-
gramming problem, as in the original SVM formulation. This
allows one to retain the global solution present in the original
SVM training problem, as well as facilitating the development
of a dual algorithm, as there is no duality gap. This latter formu-
lation is used in this paper to implement the misclassification-
rejection framework.

3 Results
3.1 Data Set
The data set consists of 494 elastic-scattering spectroscopy
(ESS) measurements from 297 polyps from 134 patients. Be-
cause our work will concentrate on binary classifiers, the sam-
ples were grouped into two clinically relevant classes, non-
neoplastic samples and neoplastic samples. Of the 297 polyps
measured 199 correspond to non-neoplastic tissue including hy-
perplastic polyps, histologically normal growths, and inflam-
matory polyps, while 98 correspond to neoplastic polyps and
adenocarcinomas. A total of 325 spectra were collected from
the non-neoplastic sites and 169 from the neoplastic sites.

The data set was divided into separate training and testing sets
for design and testing of the presented classifiers. Using the same
training and testing sets will also permit the comparison and
evaluation of the proposed classifiers in a standardized manner.
The data was partitioned by randomly assigning 80 patients
(60%) to the training set, from which 193 spectra from 111
non-neoplastic polyps and 92 spectra from 54 neoplastic polyps
were acquired and the remaining 54 patients (40%) to the testing
set, from which 132 spectra from 88 non-neoplastic polyps and
77 spectra from 44 neoplastic polyps were acquired. Table 1
summarizes the number of cases per pathology for the training
and testing sets. Figure 5 illustrates the representative spectra
for each class, as well as their standard deviation, for the training
and testing set.

3.2 Spectral Classification
To establish a performance baseline for classifying neoplastic
and non-neoplastic polyps using ESS, we used the standard
classification paradigm of dimensionality reduction followed
by classification, as this approach has been commonly used
for spectral analysis.1, 2, 5, 7, 16, 17, 52–57 The training data was used

Table 1 Data-set breakdown.

Patients Neoplastic polyps Nonneoplastic polyps Neoplastic spectra Nonneoplastic spectra

Training set 80 54 111 92 193

Testing set 54 44 88 77 132
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Fig. 5 Representative spectrum for each class: (a) training set and (b) testing set.

to compute the transformation matrix V for PCA and to de-
termine the number of PCs used to train the classifier, in this
case an SVM with linear kernel. The number of PCs was deter-
mined by performing cross-validation on the training set while
increasing the number of PCs used, and selecting the number
after which no increase in performance was observed. SVM
parameters were chosen from a finite set of values and by se-

lecting those that showed the best performance on the training
set. The full spectral range, 330–760 nm, was used and the first
15 principal components were used for classification. Results
from the testing set reveal that this classification scheme can
differentiate ESS spectra of neoplastic from spectra of non-
neoplastic lesions with a sensitivity of 0.83 and specificity
of 0.79 with an overall accuracy of 0.80. Figure 6 shows the
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Fig. 6 (a)Training set representative spectrum for each class, (b) reconstructed data using the first PC, (c) reconstructed data using PC2 to PC15, (d)
reconstructed data using PC3 to PC15, (e) reconstructed data using PC4 to PC15, and (f) reconstructed data using PC5 to PC15.
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Table 2 Performance of classifiers trained on each region.

Index Region (nm) PCs Sensitivity Specificity Accuracy

1 330–760 15 0.83 0.79 0.80

2 330–600 15 0.82 0.76 0.78

3 360–600 14 0.83 0.74 0.78

4 360–460 14 0.87 0.69 0.76

5 500–570 5 0.71 0.77 0.75

6 500–530 3 0.73 0.70 0.71

7 540–570 3 0.73 0.72 0.72

8 360–400 4 0.87 0.59 0.69

9 330–360 7 0.79 0.71 0.74

10 600–700 20 0.66 0.68 0.67

11 330–400 8 0.84 0.73 0.78

12 380–460 11 0.70 0.77 0.75

averages and standard deviations of the reconstructed dataset,
using Eq. (2), with the selected principal components. By us-
ing a single principal component, or a subset of components, to
do this transformation, the reconstructed data will express the
variance along those specific directions, revealing areas of the
spectrum found to be informative by PCA. In Fig. 6(b), it can
be seen that the variance in the data is predominant at ∼330

–600 nm when using the first PC. The variance is more con-
tained around 330–380 nm, 410–440 nm, 480–625 nm, and 650
–760 nm when using PC 2 to PC 15 [Fig. 6(c)]. In PC 3 to PC 15,
we see that it is localized around 330–360 nm, 460–500 nm, and
near 420 nm and 575 nm [Fig. 6(d)], with this trend remaining
in subsequent PCs [Figs. 6(e) and 6(f)].

3.2.1 Ensemble classifiers

To construct the ensemble classifier proposed in
Sec. 2.3.4 (Fig. 4) a series of classifiers were trained on
specific regions of the ESS spectrum, using the standard
classification paradigm, with PCA used for feature extraction
and a linear SVM for classification. This set, or subsets, of
classifiers will be used as the base classifiers in our scheme.
A total of 12 regions were chosen empirically, taking into
consideration the observations from principal component
analysis discussed earlier. Regions were selected based on
the spectral areas that exhibited the largest variance when
the data were reconstructed with specific PCs (Fig. 6). These
spectral areas are considered the most informative based on
the PCA criterion. In addition, we made sure that spectral
regions containing the hemoglobin Soret (∼400–440 nm) and
Q (∼540–580 nm) bands were included, as well as the ranges of
∼330–370 nm and ∼380–500 nm since these have been found
to be informative for distinguishing pathologies.3, 38 Table 2
summarizes the performance of the individual base classifiers.
The best performance, accuracy of 0.80 was obtained using
the full spectrum (i.e., 330–760 nm). The worst performance,
accuracy of 0.67, was obtained in the region of 600–700 nm.
Regions in the shorter wavelengths (<460 nm) exhibited better
overall performance, with the performance of 330–400 nm, Se
= 0.84, Sp = 0.73, on par with the performance when using the

Table 3 Fraction of total misclassification where region pairs misclassified the same sample.

330–760
nm

330–600
nm

360–600
nm

360–460
nm

500–570
nm

500–530
nm

540–570
nm

360–400
nm

330–360
nm

600–700
nm

330–400
nm

380–460
nm

330–760 nm 1 0.71 0.42 0.30 0.37 0.38 0.30 0.40 0.46 0.27 0.52 0.27

330–600 nm 1 0.48 0.37 0.36 0.39 0.33 0.51 0.59 0.27 0.55 0.25

360–600 nm 1 0.66 0.41 0.45 0.42 0.41 0.38 0.24 0.36 0.45

360–460 nm 1 0.32 0.35 0.39 0.44 0.42 0.24 0.40 0.42

500–570 nm 1 0.67 0.64 0.32 0.32 0.32 0.32 0.42

500–530 nm 1 0.61 0.41 0.41 0.29 0.37 0.36

540–570 nm 1 0.37 0.33 0.35 0.33 0.39

360–400 nm 1 0.53 0.25 0.56 0.26

330–360 nm 1 0.22 0.74 0.29

600–700 nm 1 0.25 0.30

330–400 nm 1 0.27

380–460 nm 1
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Table 4 Majority voting.

Base
classifiers Regions Sensitivity Specificity Accuracy

3 1,6,10 0.77 0.78 0.78

4 1,5,6,10 0.77 0.78 0.78

5 1,3,6,10,11 0.84 0.81 0.82

6 1,3,6,7,10,11 0.84 0.81 0.82

7 1,3,6,9,10,11,12 0.86 0.80 0.82

8 1,3,5,6,9,10,11,12 0.86 0.80 0.82

9 1,3,5,6,8,9,10,11,12 0.86 0.80 0.82

10 1,3,5,6,7,8,9,10,11,12 0.86 0.80 0.82

11 1,2,3,4,5,6,7,8,10,11,12 0.84 0.79 0.81

12 All 0.84 0.80 0.81

entire spectrum, Se = 0.83, Sp = 0.79. Table 3 shows, for each
pair of regions, the fraction of the total misclassifications where
both regions misclassified the same sample. It is desirable for
this metric to have a small value as ideally the base classifiers in
the ensemble commit errors on different samples, allowing for
correction of these errors as the ensemble is taken as a whole.
Although the regions were not completely independent and
uncorrelated, because some overlap among them was allowed,
it is observed that the resulting classifiers are committing errors
on different samples. Even between regions with significant
overlap (e.g., 330–760 nm and 330–600 nm, 360–460 nm, and
360–600 nm, 500–530 nm, and 500–570 nm), the fraction of
total misclassifications where both regions misclassified the
same sample was, at worst, around 0.70 (Table 3). This outcome
is meaningful in the context of ensemble classifiers because
this means that diversity is being promoted by this approach,
including cases when regions overlap.

Tables 4 and 5 show the performance obtained for different
ensembles, with a varying number of base classifiers, for the
majority voting and naı̈ve Bayes combination rules, respectively.
For each number of base classifiers, the combination of regions
with the best performance on the training set, using L base
classifiers [i.e., evaluating all ( 12

L ) possible combinations]. Using
majority voting, several ensembles, (using 7, 8, 9, and 10 base
classifiers), yielded a Se = 0.86, Sp = 0.80 and accuracy of
0.82 in classifying neoplastic and non-neoplastic lesions. Using
naı̈ve Bayes combiner, a Se = 0.84, Sp = 0.83 and accuracy of
0.83 was obtained with ensembles composed of 9, 11, and 12
base classifiers. The use of this scheme showed improve results
over the initial results of Se = 0.83, Sp = 0.79, accuracy of 0.80.

Figure 7 shows histograms of the chosen regions of the best
ensembles for the different number of base classifiers. The
most used regions were 330–760 nm, 500–530 nm, and 600
–700 nm, followed by 360–600 nm, 500–570 nm, and 330–
400 nm. Although individually some of these regions were not
the best in terms of performance, their combined performance

Table 5 Naı̈ve Bayes combiner.

Base
classifiers Regions Sensitivity Specificity Accuracy

3 2,6,10 0.61 0.83 0.75

4 1,6,9,10 0.74 0.86 0.82

5 1,5,6,9,10 0.75 0.86 0.82

6 1,2,4,6,7,10 0.77 0.83 0.81

7 1,2,4,5,6,7,10 0.78 0.85 0.82

8 1,3,5,6,9,10,11,12 0.83 0.83 0.83

9 1,3,5,7,8,9,10,11,12 0.84 0.83 0.83

10 1,2,3,4,5,6,7,10,11,12 0.79 0.82 0.81

11 1,2,3,4,5,6,7,9,10,11,12 0.84 0.83 0.83

12 All 0.84 0.83 0.83

as part of an ensemble results in improvement over any single
classifier. Also of note is the fact that the fraction of total mis-
classifications where a pair of regions misclassified the same
sample among these regions was at the highest 0.67, between
500–530 nm and 500–570 nm, and at the lowest 0.24, between
360–600 nm and 600–700 nm. This allows the ensembles to
correct some of the misclassifications made by the individual
base classifiers.

3.3 Spectral Classification with
Misclassification-Rejection

We used the misclassification-rejection paradigm to evaluate the
gain in performance as a function of the percentage of samples
withheld from classification using this scheme. The SVM for-
mulation with embedded misclassification-rejection, SVMMR,
discussed earlier was used to design the classifier. Training
was done using 15 principal components obtained from the full
spectral range of 330–760 nm as was done in Sec. 3.2 above.
Figure 8 shows the obtained sensitivity and specificity as a func-
tion of the rejection rate using this classification scheme. A trend
of increasing performance can be observed as the rejection rate
increases, with an initial sensitivity and specificity of 0.83 and
0.79 increasing to 0.89 and 0.85 with a 0.25 rejection rate, 0.91
and 0.90 with a 0.33 rejection rate and 0.93 and 0.92 with a 0.48
rejection rate. From Fig. 8, it can also be observed that this trend
levels off at around a rejection rate of 0.33; after this point, in-
creasing the rejection rate results in a small gain in performance,
as opposed to the performance gain obtained below the rejection
rate of 0.33.

3.3.1 Ensemble classifiers with
misclassification-rejection

To design ensemble classifiers using the misclassification-
rejection paradigm, we used the architecture shown in Fig. 4,
with the base classifiers designed using SVMMR. The same 12
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Fig. 7 Histograms of the chosen regions of the best ensembles for different number of base classifiers. (a) Majority voting and (b) naı̈ve Bayes
combiner.

spectral regions used in Sec. 3.2.1, as well as the number of fea-
tures extracted with PCA, were used to train the base classifiers
that comprised the ensembles. Because the different classifier
designs lead to different rejection rates and, thus performance,
we trained each of the base classifiers to have a rejection rate
of around 0.33. At this rejection rate, the better performance-
rejection trade-off was observed. Table 6 summarizes the per-
formance of the individual classifiers using SVMMR. Using
SVMMR resulted in an increase in overall accuracy of ∼10%,
when compared to the results without misclassification-rejection
(Table 6). In addition, sensitivities and/or specificities reach
close to 0.90 at this rejection level for some spectral regions. We
wish to point out that it is unlikely that better accuracy could be
obtained by any method, because these values are on par with
the “gold standard” of histopathology, in that the typical agree-
ment rate among expert pathologists for this discrimination in
colorectal biopsies is ∼90%.
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Fig. 8 Performance (sensitivity and specificity) as a function of rejec-
tion rate obtained using the error-rejection classification paradigm.

We used a two-step process for combining the decision
made by the base classifiers trained under the misclassification-
rejection paradigm, noting that in this case the output of each of
these could be either class label (neoplastic or non-neoplastic)
or “not classified.” First, it was determined whether the ensem-
ble would classify or reject the sample. The ensemble rejects a
sample if the number of base classifiers withholding from clas-
sifying the sample were greater than or equal to a threshold T
defined as

T = ceil

(
L

2

)
+ k, (9)

Table 6 Performance of classifiers trained on each region using
SVMMR.

Index Region (nm) PCs Sensitivity Specificity Accuracy Rejection

1 330–760 15 0.91 0.90 0.90 0.33

2 330–600 15 0.88 0.91 0.90 0.31

3 360–600 14 0.90 0.84 0.86 0.30

4 360–460 14 0.95 0.74 0.88 0.24

5 500–570 5 0.77 0.89 0.84 0.33

6 500–530 3 0.77 0.87 0.83 0.33

7 540–570 3 0.79 0.83 0.82 0.32

8 360–400 4 0.89 0.70 0.77 0.35

9 330–360 7 0.83 0.82 0.82 0.33

10 600–700 20 0.78 0.79 0.78 0.30

11 330–400 8 0.87 0.87 0.87 0.33

12 380–460 11 0.80 0.81 0.81 0.33
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where L is the number of base classifiers in the ensemble, and
0 ≤ k ≤ floor(L/2) is a user-defined constant, with “ceil” being
the operation of rounding a real number upward to the near-
est integer, and “floor” being the operation of rounding a real
number downward to the nearest integer. The value of T in
Eq. (9) establishes the number of base classifiers rejecting a
sample needed for the ensemble to reject that sample. As an
example, for L = 7, if k = 0, then the ensemble rejects the sam-
ple when T = 4 base classifiers reject the sample. Were k = 3,
then the ensemble rejects the sample when all base classifiers
(T = 7) reject the sample. Thus, a sample is not classified if a
majority of base classifiers, as defined by T, reject the sample.
If a sample is not rejected by the ensemble, then the majority
voting or naı̈ve Bayes combination rules is applied to the de-
cisions made by base classifiers that did not reject the sample.
Tables 7 and 8 show the results obtained using the majority
voting rule and k = 0 and k = 1, respectively. Tables 9 and 10
show the results obtained using the naı̈ve Bayes combiner and
k = 0 and k = 1, respectively. As in Sec. 3.2.1, all possible
combinations of L base classifiers were evaluated to select the
best-performing one from the training set. We used the norm
of the 2-D vector composed of the error rate (i.e., 1-accuracy)
and the rejection rate as our performance metric. With this met-
ric, we seek to find the combination of regions that minimize
both error and rejection rates. Using majority voting and k = 0,
we obtained sensitivities, specificities, accuracies, and rejection
rates of 0.89, 0.90, 0.92, and 0.26 with seven base classifiers,
0.90, 0.90, 0.90, and 0.26 with nine base classifiers, and 0.90,
0.89, 0.90, and 0.24 with 11 base classifiers; with k = 1 of 0.89,
0.90, 0.90, and 0.21 with eight and ten base classifiers, and 0.88,
0.86, 0.87, and 0.15 for nine base classifiers. Using the naı̈ve
Bayes combiner and k = 0, we obtained sensitivities, specifici-
ties, accuracies, and rejection rates of 0.87, 0.91, 0.90, and 0.26
with nine base classifiers and of 0.90, 0.89, 0.90, and 0.24 using
11 base classifiers; with k = 1 of 0.88, 0.91, 0.90, and 0.21 using
10 base classifiers and 0.89, 0.88, 0.89, and 0.20 using 12 base
classifiers.

4 Discussion
In this paper, we presented work focused on the development
of a diagnostic algorithm to provide improved classification of
neoplastic lesions from non-neoplastic lesions in the colon using
elastic-scattering spectroscopy. We started with the commonly
used classification paradigm of an initial feature extraction step,
in this case PCA, followed by classification, which in this work
was done with linear SVM. A sensitivity of 0.83, a specificity
of 0.79 and an accuracy of 0.80 were obtained with this type of
approach. We then presented two different classification frame-
works seeking to improve this performance. The first was the
use of an ensemble classifier scheme, where a number of clas-
sifiers were trained on specific regions of the ESS spectrum.
The parallel decisions made by the individual base classifiers
were then combined to obtain the final diagnosis of the mea-
sured site. In our approach, the regions of the ESS spectrum
where the base classifiers were trained were chosen empirically
and a priori. The use of this scheme yielded a sensitivity of
0.84, a specificity of 0.83 and accuracy of 0.83, an improve-
ment over the sensitivity, specificity, and accuracy of 0.83, 0.79,
and 0.80 previously achieved. The second framework presented

was the misclassification-rejection scheme. In this classification
paradigm, the classifier is trained to withhold classification when
samples are deemed to be at high risk of misclassification. Thus,
a binary classifier has three possible outcomes in this paradigm:
classify a sample as belonging to either class or not classifying
the sample at all, labeling it as rejected or undecided. The use of
this framework resulted in a sensitivity of 0.91 and specificity of
0.90, an improvement over the sensitivity and specificity of 0.83
and 0.79 initially obtained, and also better than the 0.84 and
0.83 obtained with ensemble classifiers alone. This improved
classification performance was obtained at a cost of a rejection
rate of 0.33. Finally, we presented a classifier that makes use
of both these frameworks. The classifier had an ensemble ar-
chitecture, where each of the base classifiers was trained using
misclassification-rejection. With this classifier, sensitivities and
specificities of 0.89/0.94, 0.90/0.89, 0.89/0.90, and 0.88/0.86,
were obtained for rejection rates of 0.26, 0.24, 0.21, and 0.15,
respectively. Although these sensitivities and specificities were
comparable to the sensitivity of 0.91 and specificity of 0.90
previously obtained using misclassification-rejection, there was
a significant decrease in the rejection rates from the value of
0.33. Thus, with the classifier combining the ensemble classifier
and misclassification-rejection frameworks, the overall classifi-
cation performance is improved (i.e., we are able to maintain
the same performance level, in one case improving it, while
decreasing the number of rejected samples needed to achieve
this).

An issue not addressed yet is the generalization ability of
the different classifiers presented throughout this work. Al-
though not the main objective of the presented work, assess-
ing the generalizability of the discussed classifiers can provide
insight into how, in their current form, these classifiers would
perform prospectively. We employed k-fold cross-validation,13

with three folds, to assess generalizability. In this scheme, the
data is partitioned into three sets, with two of them used for
training and the remaining one for testing. The sets are cycled
until all of them have been used for testing. Table 11 shows
the results obtained with this cross-validation and compares
them to the previous results obtained with the single testing
set. The performances obtained with cross-validation exhibit a
significant amount of variance [e.g., in the case of the single
classifier the sensitivity and specificity had a standard devia-
tion (SD) of 0.06 and 0.04 respectively, whereas for ensemble
classifiers with misclassification-rejection SD can go as high
as 0.12 and 0.04, respectively]. Results obtained from a single
testing set generally fall within the one standard deviation range
of the cross-validated results. Yet, as the classifier complexity
increases (i.e., transitions from a single classifier to ensemble
classifiers and/or misclassification rejection frameworks), it is
observed that either the results from a single testing set fall out of
this range or the variance in performance increases or both. This
exemplifies a shortcoming with the proposed frameworks: as the
classifier complexity increases, more training data are required
to properly learn the data patterns.58, 59 In general, and espe-
cially considering the significant amount of variance observed
in the cross-validated results, exhaustive validation with more
data would be required in order to design a classifier suitable
for prospective testing in clinical settings. Yet, the results from
cross-validation show improvements in performances with the
ensemble classifier and misclassification rejection frameworks
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Table 7 Majority voting, k = 0.

Base classifiers Regions Sensitivity Specificity Accuracy Rejection

3 4,5,10 0.83 0.87 0.85 0.22

4 1,4,7,10 0.94 0.85 0.89 0.37

5 2,3,4,9,10 0.88 0.86 0.87 0.26

6 1,4,5,9,10,12 0.90 0.87 0.88 0.33

7 1,2,6,7,9,10,12 0.89 0.94 0.92 0.26

8 1,2,3,4,5,6,10,12 0.91 0.91 0.91 0.33

9 1,2,3,4,5,6,9,10,11 0.90 0.90 0.90 0.26

10 1,2,4,5,6,7,9,10,11,12 0.90 0.92 0.91 0.28

11 1,2,3,4,5,6,7,9,10,11,12 0.90 0.89 0.90 0.24

12 All 0.90 0.91 0.91 0.29

introduced for spectral classification, in line with those shown
above using a single testing set.

4.1 Significance for Clinical Application to CRC
Screening

In the context of colorectal cancer screening, the ability to ac-
curately identify suspicious colonic lesions would allow non-
neoplastic polyps to be left in situ and small adenomas to be
resected and discarded without the need for histopathology be-
cause they have a very small risk of harboring cancer.60 As
seen from the presented results, ESS, mediated through inte-
grated forceps, holds such promise if measurements of colonic
lesions are accurately classified by the diagnostic algorithm

presented in this work. Yet, the use of the misclassification-
rejection paradigm, while useful in improving classification
performance, does introduce an additional design parameter to
consider: the rejection rate. Previously, concerns in designing
diagnostic algorithms were focused on obtaining acceptable sen-
sitivities and specificities. In the proposed framework, an “ac-
ceptable” rejection rate becomes an additional design parameter
and handling of “rejected” samples must be addressed.

We have not yet incorporated instant diagnostic response in
our system. If such were implemented, then, in the case of a
diagnostic rejection, the physician could take additional read-
ings on different parts of the polyp, possibly gaining a more
decisive result, and reducing the effective nonclassified rate.
Absent, the prospective study needed to address that option; the

Table 8 Majority voting, k = 1.

Base classifiers Regions Sensitivity Specificity Accuracy Rejection

3 2,9,10 0.79 0.83 0.82 0.07

4 2,4,6,10 0.85 0.84 0.85 0.12

5 3,4,5,9,10 0.86 0.82 0.84 0.07

6 2,3,4,6,9,10 0.88 0.87 0.87 0.18

7 1,2,3,4,6,9,10 0.88 0.85 0.86 0.15

8 1,2,3,4,5,6,10,11 0.89 0.90 0.90 0.21

9 1,2,3,4,5,6,9,10,12 0.88 0.86 0.87 0.15

10 1,2,3,4,5,6,7,9,10,11 0.89 0.90 0.90 0.21

11 1,2,3,4,6,7,8,9,10,11,12 0.90 0.83 0.85 0.16

12 All 0.91 0.87 0.89 0.20
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Table 9 Naı̈ve Bayes combiner, k = 0.

Base classifiers Regions Sensitivity Specificity Accuracy Rejection

3 4,5,10 0.76 0.88 0.83 0.22

4 1,4,10,12 0.88 0.89 0.89 0.37

5 1,4,5,10,12 0.89 0.87 0.88 0.25

6 1,3,4,5,6,10 0.83 0.91 0.88 0.35

7 1,2,4,6,8,10,12 0.85 0.89 0.87 0.24

8 1,3,4,6,7,8,10,12 0.87 0.86 0.86 0.31

9 1,2,4,5,6,9,10,11,12 0.87 0.91 0.90 0.26

10 1,2,3,4,5,6,7,8,10,12 0.88 0.90 0.89 0.29

11 1,2,3,4,5,6,7,9,10,11,12 0.90 0.89 0.90 0.24

12 All 0.90 0.91 0.91 0.29

Table 10 Naı̈ve Bayes combiner, k = 1.

Base classifiers Regions Sensitivity Specificity Accuracy Rejection

3 4,5,10 0.73 0.83 0.79 0.05

4 2,4,6,10 0.78 0.88 0.84 0.12

5 2,4,6,8,10 0.83 0.84 0.84 0.08

6 1,4,5,6,10,12 0.79 0.86 0.83 0.16

7 1,2,4,5,6,8,10 0.83 0.87 0.85 0.13

8 1,2,4,5,6,9,10,11 0.86 0.91 0.89 0.22

9 1,2,3,4,5,6,10,11,12 0.83 0.86 0.85 0.15

10 1,2,3,4,5,6,7,9,10,11 0.88 0.91 0.90 0.21

11 1,2,3,4,5,6,7,8,10,11,12 0.85 0.87 0.86 0.17

12 All 0.89 0.88 0.89 0.20

Table 11 Results from k-fold cross-validation compared to a single testing set. K-fold results shows as the average ± standard deviation.

k-fold cross-validation Testing set

Classifier Se Sp Rej Se Sp Rej

Single classifier 0.78 ± 0.06 0.77 ± 0.04 n/a 0.83 0.79 n/a

Ensemble classifier [1,3,5,7,8,9,10,11,12] 0.78 ± 0.07 0.80 ± 0.01 n/a 0.84 0.83 n/a

Single classifier w/Rej 0.85 ± 0.06 0.85 ± 0.04 0.36 ± 0.06 0.91 0.90 0.33

Ensemble classifier w/Rej [1,2,3,4,5,6,7,9,10,11,12] 0.82 ± 0.12 0.88 ± 0.04 0.32 ± 0.03 0.90 0.89 0.24

Ensemble classifier w/Rej [1,2,3,4,5,6,7,9,10,11] 0.82 ± 0.10 0.87 ± 0.04 0.28 ± 0.03 0.89 0.90 0.21

Ensemble classifier w/Rej [1,2,3,4,5,6,9,10,12] 0.81 ± 0.08 0.86 ± 0.02 0.24 ± 0.05 0.88 0.86 0.15
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direct approach for handling unclassified samples would be to
resect them for examination by a histopathologist. From the re-
sults shown earlier, this approach would result in 21–33% of
the samples examined by ESS being resected for histological
assessment, but would still obviate histopathology of 66% of
the samples that would otherwise be reviewed by histopatholo-
gists under current practice. We have also shown that, by using a
combined ensemble classifier with a misclassification-rejection
framework, we can potentially obtain further reductions of the
rejection rates with the same, if not a higher level of diagnostic
performance, possibly reducing the number of samples needed
to be sent for histopathological examination. In addition, any
further improvements in feature extraction and classification at
the base-classifier level, resulting from continuing study and/or
understanding of this classification problem, could potentially
serve to further improve classification performance, be it by
an increase in accuracy and/or a reduction of rejection rates.
The classifier architecture presented here (Fig. 4) could also
potentially allow the incorporation of additional information
that might be of significance in detecting neoplasia, such as
biomarkers extracted from the ESS spectrum by way of the-
oretical/empirical models of light transport in tissue61 and/or
diagnostically relevant polyp features, such as pit pattern and
size.62–64

For the health-care system, the cost savings realized could
be significant, while minimizing the risk of biopsy-related com-
plications, because fewer benign lesions would be resected. In
addition, because ESS measurements are obtained in millisec-
onds, there is the potential to reduce procedure time while
improving care, as real-time, in vivo classification enables
rapid interrogation of subtle, suspicious, and flat lesions as
well.

5 Conclusions
In this paper, we presented two spectral classification frame-
works, ensemble classifiers, and misclassification-rejection,
and applied them to the clinical problem of classifying non-
neoplastic and neoplastic colorectal lesions based on ESS mea-
surements. The result is an improvement in classification perfor-
mance when these are applied individually, and an even better
performance when used together in the development of a diag-
nostic algorithm. The capability to accurately classify colonic
lesions, as a result of this improved diagnostic algorithm, will en-
able real-time and in vivo application, while seamlessly integrat-
ing with current screening procedures. This can lead to reduc-
tions in procedure time, healthcare cost, as well as a patient risk,
because current screening involves the excision and histopatho-
logical assessment of all polyps found during a colonoscopy
procedure.
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