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Abstract. Radar coincidence imaging (RCI) is a high-resolution imaging technique without the limitation of rel-
ative motion between target and radar. In sparsity-driven RCI, the prior knowledge of imaging model requires to
be known accurately. However, the phase error generally exists as a model error, which may cause inaccuracies
of the model and defocus the image. The problem is formulated using Bayesian hierarchical prior modeling, and
the self-calibration variational message passing (SC-VMP) algorithm is proposed to improve the performance of
RCI with phase error. The algorithm determines the phase error as part of the imaging process. The scattering
coefficient and phase error are iteratively estimated using VMP and Newton’s method, respectively. Simulation
results show that the proposed algorithm can estimate the phase error accurately and improve the imaging
quality significantly. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Radar coincidence imaging (RCI), motivated by classical
coincidence imaging in optical systems, is a novel staring
imaging technique.1–3 RCI can obtain focused high-resolu-
tion image without the limitation of target relative motion
and operate under the observing geometry of forward-
looking/staring, with significant potentials for resolution
enhancement, interference, and jamming suppression. In
RCI, the temporal-spatial stochastic waveforms are transmit-
ted, thus the spatial variety of wavefront is increased, so the
super-resolution within a beam emerges.

In RCI, sparse recovery is widely used as the scatterers of
target, which are often distributed sparsely in many radar im-
aging applications. Solving the linear inverse problem with a
sparsity constraint depends on the perfect prior knowledge of
the system. However, phase error among the transmitter–
receiver pairs exists generally since perfect synchronization
is impossible for a multitransmitter configuration in RCI,4

because of plenty of factors, such as isolated local oscillators.
Phase error results in the dictionary mismatch and induces
the performance to degrade considerably, as the imaging per-
formance depends on presetting an appropriate sparsifying
dictionary based on an accurate prior known model.

Various studies have been presented on phase error. The
Cramer–Rao bound for MIMO radar target localization with
phase errors has been derived.5,6 To compensate the phase
error, several eigenstructure-based methods are proposed.7–11

These methods are less sensitive to phase error but lack
adaptation to demanding scenarios with low signal-to-noise
ratio (SNR), limited snapshots, and spatially adjacent
sources.12 Recently, sparse recovery and compressive
sensing13 are introduced into signal processing by exploiting

the sparsity. A sparsity-driven iterative method for joint syn-
thetic aperture radar (SAR) imaging and phase error correc-
tion in a nonquadratic regularization-based framework is
proposed in Ref. 14. The method cycles through steps of
sparse recovery and phase error compensation, and the idea
is widely used in SAR/inverse synthetic aperture radar
(ISAR) imaging and MIMO radar imaging with phase
error. Inspired by the idea of sparsity-driven iterative method
introduced in Ref. 14, a sparse autocalibration imaging
(SACI) method is presented to solve the RCI with gain-
phase error.3 From the Bayesian statistics perspective, sparse
imaging via expectation maximization algorithm and sparse
self-calibration method via iterative minimization (SSCIM)
algorithm are proposed, respectively, to alleviate the influ-
ence of phase synchronization mismatch by exploiting the
maximum a posterior (MAP) criterion.15,16 Likewise,
MAP estimator is also used into ISAR imaging by exploiting
the sparseness prior of ISAR image,17–19 while the phase
error is corrected via modified quasi-Newton algorithm.
To realize array calibration and direction-of-arrival estima-
tion, a unified framework based on sparse Bayesian learning
(SBL) is formulated and a sparse Bayesian array calibration
method is then proposed in Ref. 12. Using variational
Bayesian inference (VBI), an array autocalibration SBL
algorithm in the full conjugate Bayesian framework is pro-
posed to achieve DOA estimation with gain/phase errors in
Ref. 20. In Ref. 21, an autocalibration algorithm via varia-
tional Bayesian expectation maximization is presented to
solve the problem of multiplicative perturbation.

In this paper, we focus on the sparsity-driven RCI with
phase error and propose a self-calibration variational mes-
sage passing (SC-VMP) algorithm in SBL framework.
The merit of SBL is its flexibility in modeling sparse signals
that can not only promote the sparsity but also exploit the
possible structure of the signal to be recovered.22 As exact*Address all correspondence to: Xiaoli Zhou, E-mail: zhouxiaoli@nudt.edu.cn
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Bayesian inference is typically intractable, approximations
are needed, such as evidence procedure23 and VMP.24

Using Bayesian hierarchical prior, the scattering coefficient
is assigned an appropriate prior, i.e., three-level (3-L) hier-
archical Gaussian-Gamma-Gamma (G-Ga-Ga) prior. Then,
we propose a self-calibration imaging algorithm for joint im-
aging and phase error calibration in SBL framework. The
algorithm involves an iterative method, which cycles through
steps of target reconstruction and phase error estimation,
where VMP and Newton’s method are adopted, respectively.
Numerical simulations show that the algorithm realizes the
imaging robustly and achieves both high resolution and out-
standing imaging quality in the presence of phase error and is
also simple to implement without changing the algorithm
parameters.

The rest of the paper is organized as follows. In Sec. 2, the
RCI model with phase error in the range-azimuth space is
presented. Section 3 presents the SC-VMP algorithm in
detail. In Sec. 4, the performance of the proposed method
is verified by numerical examples. Finally, Sec. 5 concludes
the paper.

2 Radar Coincidence Imaging Model with
Phase Error

In this paper, RCI can be realized by a multitransmitter con-
figuration to transmit time-independent and group-orthogo-
nal waveforms.1 Consider a RCI system with M transmitters
and one receiver, each transmitter emits an independent sto-
chastic waveform. The RCI geometry is illustrated in Fig. 1.
The imaging plane is a range-azimuth space. In sparsity-
driven RCI, the continuous imaging plane is discretized to
generate K small grid-cells with uniform size and shape.
Denote βk by the scattering coefficient of the scattering
center exactly located at the prediscretized k’th grid-cell
center, i.e., rk and βk ¼ 0 for the grid-cell without scattering
center.

As the backscattering of a radar target in the high-fre-
quency region can be approximated as coming from a few
dominant scattering centers,25 the target is assumed to be
composed of a very limited amount of strong scattering cen-
ters, the number of which is much smaller than that of grid
cells in the image plane.19 Thus, the RCI image is spatially

sparse, which can be exploited to achieve super-resolution,
denoising, and feature extraction.26

The echo is a linear combination of all the scatterers’
reflected waveforms from all the transmitters. Considering
the phase error, the echo at the receiver can be expressed as

EQ-TARGET;temp:intralink-;e001;326;697yðtÞ ¼
X
k∈S

XM
m¼1

βkejφmStmðt − τkmÞ þ wðtÞ; (1)

where StmðtÞ is the signal emitted by them’th transmitter, φm
is the phase error between the m’th transmitter and the
receiver pair. wðtÞ, an independent complex Gaussian ran-
dom process, denotes the noise at the receiver. τkm is the
propagation delay corresponding to the m’th transmitter
and receiver with respect to the k’th scatterer. In addition,
the RCI formula needs a detecting signal,1 which is simply
structured as

EQ-TARGET;temp:intralink-;e002;326;563Sðt; rkÞ ¼
XM
m¼1

ejφmStmðt − τkmÞ: (2)

Thus, the echo can be expressed as the superposition of
the detecting signals, i.e., yðtÞ ¼ P

k∈SβkSðt; rkÞ. After sam-
pling the echo, the imaging equation can be given as follows:
EQ-TARGET;temp:intralink-;e003;326;485

y ¼ S · βþ w2
666664
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.
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3
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where N is the number of samples, S is the dictionary in
sparse recovery framework, y, w and β are the echo, noise,
and unknown scattering coefficient vector, respectively.

Fig. 1 RCI geometry.
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Under the assumption of sparse prior of the target, the
imaging model shown in Eq. (3) is a typical linear model
used in most sparse recovery applications. However, the
dictionary S obtained from practical applications is inevi-
tably disturbed by perturbations, which cannot be known
accurately in practice, e.g., phase error. Then, S can be
rewritten as SðφÞ involving the phase error φ, where
φ ¼ ½φ1; · · · ;φM�T . Then, Eq. (3) can be rewritten as

EQ-TARGET;temp:intralink-;e004;63;664y ¼ SðφÞ · βþ w: (4)

Involving the generally unknown parameter φ, SðφÞ is
a parameterized unknown dictionary and then β could not
be reconstructed directly based on the conventional sparse
recovery algorithms. Therefore, a self-calibration imaging
algorithm, which is presented in the following section, is pro-
posed to solve the problem.

3 Self-Calibration Variational Message Passing
Conventional sparsity-driven radar imaging methods assume
that the model contains no error and the dictionary is pre-
cisely known, which is not realizable in most application
scenarios. In the presence of phase error, the structure of
the dictionary is destroyed, which leads to the direct use
of sparse recovery methods failure. In this section, the
SC-VMP algorithm calibrating the phase error is presented.
This algorithm is formulated in a Bayesian hierarchical prior
model, and works by jointly reconstructing the target and
estimating the phase error, where VMP and Newton’s
method are adopted, respectively.

3.1 Hierarchical Prior Model
The hierarchical representation of sparsity-inducing prior
allows us to choose simple and analytically tractable
probability density functions (PDFs), and results in the con-
struction of efficient yet computationally tractable iterative
inference algorithms with analytical derivation of the infer-
ence expressions.27

The graphical representation of RCI model priors is
shown in Fig. 2. To recover β in Eq. (4), we model it as hid-
den (unobserved) variable and assign it a 3-L hierarchical
G-Ga-Ga prior typically to induce sparsity:

EQ-TARGET;temp:intralink-;e005;63;288pðβjαÞ ¼ CN ðβj0;ΛÞ ¼ 1

πK detðΛÞ expf−βHΛ−1βg; (5)

EQ-TARGET;temp:intralink-;e006;326;752pðαjη; εÞ ¼
YK
k¼1

Γðαkjε; ηÞ; (6)

EQ-TARGET;temp:intralink-;e007;326;713pðη; a; bÞ ¼ Γðηja; bÞ; (7)

where CN ð· jμ;ΣÞ denotes the complex Gaussian distribu-
tion with mean vector μ and covariance matrix Σ.
α ¼ ½α1; α2; · · · ; αK�T , Λ ¼ diagðαÞ, αk is the prior variance
of βk and Γðαkja; bÞ is the gamma distribution with param-
eters a and b. Then, 3-L prior model involves three free
parameters, i.e., ε, a, and b. Here, we set ε ¼ 0, a ¼ 1,
and b ¼ 10−6, which strongly promotes a sparse estimate
and make the prior for η noninformative.27

Compared with the two-layer (2-L) prior model, the 3-L
prior model considers η as random variable specified by a
distribution and incorporates it into the inference framework.
This leads to additional degrees of freedom in controlling the
sparsity property of the resulting inference scheme.27

In addition, the measurement noise is assumed to be com-
plex Gaussian with zero-mean and variance α−10 , to allow
conjugate-exponential analysis. Then, the following 2-L
hierarchical Gaussian-Gamma (G-Ga) prior is assigned:

EQ-TARGET;temp:intralink-;e008;326;500pðwjα0Þ ¼ CN ðwj0; α−10 IÞ ¼ ðπα−10 Þ−K expf−α0kwk22g;
(8)

EQ-TARGET;temp:intralink-;e009;326;455pðα0; c; dÞ ¼ Γðα0jc; dÞ: (9)

Encoded by the graphical model shown in Fig. 2, the joint
PDF of the model [Eq. (4)] is of the form:

EQ-TARGET;temp:intralink-;e010;326;407pðy; β; α0; α; η;φÞ ¼ pðyjβ; α0;φÞpðα0ÞpðβjαÞpðαjηÞpðηÞ:
(10)

3.2 Variational Message Passing
In this part, we present the VMP algorithm to estimate β.
Denote Ω ¼ fβ;α; η; α0g as the set of hidden variables. In
Bayesian inference framework, the exact posterior distribu-
tion pðΩjy;φÞ ¼ pðy;Ω;φÞ∕pðyÞ is intractable since pðyÞ
cannot be expressed explicitly. VBI28 could be used to
find a tractable distribution qðΩÞ that closely approximates
the true posterior distribution pðΩjy;φÞ by minimizing
the Kullback–Leibler divergence (KLD) between them.29

Fig. 2 A graphical representation of the model priors.

Journal of Electronic Imaging 013018-3 Jan∕Feb 2016 • Vol. 25(1)

Zhou et al.: Radar coincidence imaging with phase error using Bayesian hierarchical prior modeling



A structured mean field approximation over pðΩjy;φÞ is
further assumed as

EQ-TARGET;temp:intralink-;e011;63;730qðΩÞ ¼ qðβÞqðαÞqðηÞqðα0Þ: (11)

VBI is carried out using VMP24 in this paper. VMP is an
iterative scheme that uses a message passing procedure on
a graphical model and attempts to compute the auxiliary
PDF. The variational distributions fqðβÞ; qðαÞ; qðηÞ; qðα0Þg
are iteratively updated in VMP procedure to monotonically
decrease the KLD and thus, the convergence is guaranteed.

The updates of fqðβÞ; qðαÞ; qðηÞ; qðα0Þg are similar to
those in Ref. 27, the derivation detail is shown in
Appendix A. It can be concluded that the posterior distribu-
tions of β and αk are complex Gaussian distribution and gen-
eralized inverse Gaussian (GIG) distribution, respectively,
while both η and α0 obey a Gamma distribution.

Based on the derivation of fqðβÞ; qðαÞ; qðηÞ; qðα0Þg, the
optimal approximated distribution qðΩÞ can be obtained by
iteratively calculating Eqs. (19), (20), (23), (25), and (26)
until convergence.

3.3 Phase Error Estimation
In the presence of phase error, the convergence of SC-VMP
is not a direct result of VMP. Consider the phase error φ as
an unknown deterministic parameter as it is not varying
generally during the entire coherent processing interval.6

Then, the resulting algorithm can be interpreted as a varia-
tional EM algorithm.28

In VMP framework, the phase error can be estimated from
the maximum likelihood:

EQ-TARGET;temp:intralink-;e012;63;409φ⌢ ¼ argmax
φ

hln pðy;Ω;φÞiqðβÞqðα0ÞqðαÞqðηÞ; (12)

where hpðxÞiqðxÞ denotes the expectation of pðxÞ with
respect to a density qðxÞ. After simplification, Eq. (12)
can be rewritten as φ⌢ ¼ argmin

φ
fky − SðφÞβk22g and then

changed to

EQ-TARGET;temp:intralink-;e013;63;311φ⌢ ¼ argmin
φ

fky − SðφÞμk22 þ trð½SðφÞ�HSðφÞΣÞg: (13)

Define fðφÞ ¼ ky − SðφÞμk22 þ trf½SðφÞ�HSðφÞΣg as the
objective function. Clearly, Eq. (13) is a nonlinear least-
squares problem, which is not tractable to obtain the
closed-form expression. To solve the problem, we resort
to Newton’s method to update the parameter,30 which reveals
the behavior of phase error with no approximation being
required. The updated φ⌢ estimate is

EQ-TARGET;temp:intralink-;e014;63;189φ⌢ ¼ φ − ½∇2fðφÞ�−1½∇fðφÞ�; (14)

where∇fðφÞ and∇2fðφÞ represent the gradient and Hessian
with respect to the phase error, respectively. The derivations
of ∇fðφÞ and ∇2fðφÞ are shown in Appendix B.

3.4 Algorithm Description
In SC-VMP procedure, each iteration consists of matrix
inversion and matrix-vector multiplication in Eqs. (19) and
(20), which leads to expensive computational burden in case

of large number of grid cells. Besides, VMP suffers from low
rate of convergence. Hence, a fast implementing approach is
developed.

In conventional SBL, many of the prior precisions of
coefficients, i.e., hα−1k iqðαÞ, typically take on quite large val-
ues upon convergence, which implies that the corresponding
coefficients are quite small and in turn the contributions of
the corresponding bases could be negligible. Thus, the cor-
responding bases could be removed from the model to realize
sparsity when hα−1k iqðαÞ exceeds a certain large threshold αth.
Then, the computational complexity of SC-VMP can be
drastically reduced. Therefore, to speed up the algorithm,
the pruning of the current basis set Θi can be achieved via

EQ-TARGET;temp:intralink-;e015;326;609Θiþ1 ¼ fkjhα−1k iqðαÞ < αth; k ∈ Θig; (15)

where Θiþ1 denotes the basis set after pruning. Because of
basis pruning, the computational burden is reduced, the
convergence speed is improved, and the sparsity of the
reconstruction results is enhanced.

In addition, we terminate the algorithm if kμiþ1 − μik2∕
kμik2 < γ or the maximum number of iterations Imax is
reached, where γ is a user-defined tolerance and the super-
script i refers to the iteration index.

Based on the above discussions, the procedure of SC-
VMP algorithm is given in Algorithm 1.

3.5 Discussion
After investigating the SC-VMP algorithm in depth, we pro-
vide some discussions to gain insight into the algorithm.

1. Compared with related work: Similar with most of the
sparsity-based methods for radar imaging with phase
error presented in Refs. 3, 12, 14–21, the proposed
SC-VMP algorithm also employs the alternating
strategy to update the sparse scattering coefficients
and phase error iteratively. The methods listed in
Refs. 3, 14–19 can be summarized as l1-based regu-
larization method, where a sparsity-inducing Laplace
prior is directly imposed on the signal, then the sparse

Algorithm 1 SC-VMP algorithm.

Input: y, Sðφ ¼ 0Þ, Imax, αth, γ, fa; b; c; dg

Initialization: i ¼ 0, φ ¼ 0, Θ0 ¼ fk jk ¼ 1; · · · ; Kg

while not converged do

1): VMP procedure: Update Σ, μ, hα−1k iqðαÞ, hαk iqðαÞ, hηiqðηÞ, hα0iqðα0Þ
form in Eqs. (19), (20), (23), (25), and (26), where k ∈ Θi

2): Newton’s method: Estimate φ from Eq. (14), and update SðφÞ

3): Prune the bases: Θiþ1 ¼ fk jhα−1k iqðαÞ < αth; k ∈ Θig

4): i ¼ i þ 1 and check for convergence: kμi − μi−1k22∕kμik22 < γ or
i ¼ Imax

end while

Output: reconstructed scattering coefficient vector β͡ ¼ μ
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solution is exploited from the MAP estimation, which
corresponds to the point estimate of the sparse scatter-
ing coefficient. Comparably, the SC-VMP utilizes the
hierarchical modeling procedure to encode signal
sparsity and achieve better sparse solutions, which
could obtain the approximate posterior distribution
and is regarded as a full Bayesian method. During
the procedure, the statistical information is used to
enhance the estimation performance and avoid con-
verging to a shallow local minimum, due to the utiliza-
tion of higher order statistical information (such as the
estimation covariance matrix) in the full Bayesian
framework. Besides, the proposed algorithm can prop-
erly utilize uncertainty information during iterations
to ameliorate the error propagation problem, which
means the estimation error of the sparse signal would
degrade the estimation accuracy of phase error during
iterations. Inevitably, the error propagation problem
exists generally in these methods as the point estimate
of the sparse scattering coefficient and phase error
are updated alternately. Furthermore, different from
the methods in Refs. 14, 20, and 21, we resort to
Newton’s method to update the phase error, as it is
not tractable to obtain the closed-from expression
for updating the parameter when solving the nonlinear
least-squares problem expressed in Eq. (13).

2. Convergence: Since the SC-VMP algorithm can be
interpreted as a variational EM algorithm, the update
of β and φ will monotonically decrease the KLD
and the negative expected log-likelihood function,
respectively, until convergence. Thus, the (marginal)
likelihood monotonically increases during the itera-
tions and the convergence is guaranteed.28 More-
over, the possibility of converging to a local minimum
is reduced due to the utilization of higher order stat-
istical information.

3. Computational complexity: The main computational
burden at each iteration of SC-VMP procedure
comes from the update of β in VMP procedure and
the update of φ in Newton’s method. Two main
time-consuming operations are the matrix inversion
and matrix-vector multiplication whose computational
complexity are oðK3Þ and oðK2Þ, respectively. This
can incur a high computational cost when K is large.
Fortunately, the grid pruning could reduce the compu-
tational burden and improve the convergence speed, as
the remaining grid number after pruning decreases
fast. Additionally, the computational cost can be also
controlled by restricting the maximum number of
iteration.

4 Numerical Simulations
In this section, simulations are carried out to verify the SC-
VMP algorithm. An X-band RCI radar system with carrier
frequency of 10 GHz is considered. The transmitters are
configured as a uniform linear array with M ¼ 16 and the
interelement spacing d ¼ 0.5 m. The transmitters emit
independent frequency-hopping (FH) waveforms with the
bandwidth of 500 MHz. A range-azimuth imaging plane,
covering 40 m × 40 m, is discretized to 40 × 40 grid cells.
Further, there are supposed to be 17 point scatterers in the
imaging plane.

4.1 Illustrative Example
In this part, the proposed SC-VMP algorithm is used to
reconstruct the target image. For comparison, we also give
the results obtained by four sparse-based imaging methods,
i.e., VMP-3L, SSCIM,16 sparsity-driven autofocus (SDA)
method14 and SACI3 method. VMP-3L is presented in Sec. 3.
During the numerical experiments, the phase error randomly
varied at ½−45 deg; 45 deg�, and the SNR is fixed at 15 dB.
The experiments are performed on a computer with Intel
Core CPU i3-4130 at 3.4 GHz and 4 GB of memory.

Figure 3 shows the true image and target images recon-
structed by VMP-3L, SSCIM, SDA, SACI, and SC-VMP. It
can be concluded that our proposed SC-VMP algorithm
achieves superior imaging performance over the other four
algorithms tested above. As shown in Fig. 6(f), the target
is reconstructed perfectly without any spurious scatterers.
Comparably, the other four algorithms suffer from imperfect
reconstruction performance, and the reconstructed images
are defocused with some spurious scatterers and the strength
of scattering centers is not reconstructed exactly, although
the target profiles are clear, which makes the images recog-
nizable. Comparing the list algorithms, the difference is
mainly focused on the method to reconstruct the scattering
coefficients (see Sec. 3.5 for details). For SSCIM, SDA, and
SACI, they suffer from the effect of phase error and the sig-
nal energy spills over the imaging plane because of the
dictionary mismatch caused by phase error, as shown in
Figs. 3(c)–3(e), while our proposed SC-VMP utilizes the
hierarchical modeling procedure and is considered as a
full Bayesian method. More importantly, the method is
less sensitive to the phase error, as shown in Fig. 3(b). In
addition, the phase error is estimated and compensated per-
fectly by the SC-VMP algorithm, as shown in Fig. 4. Then,
we could conclude that exploiting the phase error improves
the performance of SC-VMP. Consequently, benefiting from
full utilization of the sparsity prior and phase error calibra-
tion, the image quality shown in Fig. 3(f) is improved sig-
nificantly, compared with the images reconstructed by other
algorithms.

To evaluate the numerical complexity of the proposed
algorithm, we record the runtime of the five algorithms dur-
ing the simulations, and the result is shown in Table 1. We
can see that SSCIM is time consuming for their heavy com-
putational complexity, because the scattering coefficients
are reconstructed by basis pursuit denoising algorithm. As
orthogonal matching pursuit is employed in the iterations,
SACI shows the best computational efficiency. The other
three algorithms, i.e., VMP-3L, SDA, and SC-VMP, are
all Bayesian-based algorithms and their computational com-
plexity lies about the same level. Thus, it can be observed
that our proposed algorithm does not show superior perfor-
mance over other algorithms from the perspective of compu-
tational complexity. However, the SC-VMP algorithm can be
improved to make it more computationally effective, which
will be investigated in our future work.

4.2 Performance of Self-Calibration Variational
Message Passing Algorithm

To evaluate the performance of the proposed algorithm, we
introduce two criterions, i.e., the relative imaging error (RIE)
and probability of successful imaging (PSI). RIE is defined
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as 20 log10ðkβ
⌢
− βk2∕kβk2Þ, where β and β

⌢
are the true and

estimated scattering coefficient vector, respectively. To

define PSI, a metric Δ ¼ min ðβ
⌢
ÞΛ∕max ðβ

⌢
ÞΛ31 is given

first, where ðβ
⌢
ÞΛ contains the values that β

⌢
carries at the

correct basis set Λ and ð ¯β
⌢
ÞΛ takes 0 at Λ and takes the

same values as β
⌢
at every other indices. Δ > 1 can guarantee

exact estimation of the scatter’s position, which means a suc-
cessful imaging trial. Hence, PSI is defined as the percentage
of successful imaging trials.

First, we quantitatively analyze the performance of the
aforementioned five algorithms versus SNR, and the result
is shown in Fig. 5. It can be seen that the RIEs decrease
quickly with the increase in SNR, which implies that the
image quality is improved as the SNR increases and the algo-
rithms are sensitive to noise, especially in low SNR regimes.
Comparing with other algorithms, the RIE obtained by
SC-VMP is much lower when SNR ≥ 0 dB. Besides, it is
worth noting that in Fig. 5(b), the SC-VMP outperforms
other reported algorithms with a higher PSI, especially
SNR > 5 dB can guarantee the target reconstruction for
SC-VMP (PSI ≥ 96% in this case). Thus, SC-VMP exhibits
significant performance gains over other algorithms in terms
of both metrics, by compensating the phase error, whereas its
performance is sensitive to SNR. More precisely, both the
scattering coefficients estimation and phase error estimation
are seriously affected by noise. The scattering coefficients
are reconstructed by VMP-3L whose performance is
shown in Fig. 5, while the performance of phase error esti-
mation is given by Fig. 6, which shows the normalized
mean square error (NMSE) of phase error, NMSE is defined
as 20 log10ðkφ

⌢
− k2∕kφk2Þ. We can see that low SNR

results in high estimation error, which means that the
phase error cannot be compensated accurately, and the target
reconstruction would be degraded accordingly.

Next, we investigate the robustness of SC-VMP against
the hopping frequency number and the scope of phase error.
In this paper, the sampling interval is setup as the FH dura-
tion, which means hopping frequency number is equal to
the number of samples N. The scope of phase error is
½−φmax;φmax�, where φmax ¼ ½15k�° ðk ¼ 1; · · · ; 9Þ is the

Fig. 3 RCI with phase error. (a) True image; (b) VMP-3L; (c) SSCIM; (d) SDA; (e) SACI; (f) SC-VMP.

Fig. 4 True and estimated phase error.

Table 1 Runtime of the five algorithms.

Algorithm VMP-3L SSCIM SDA SACI SC-VMP

Runtime (s) 48.3941 411.2841 42.6616 6.0714 62.3943
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maximal value of phase error. For each scope of phase error,
100 independent trials are conducted and φm is randomly
distributed within the scope.

As is clear from Fig. 7, the performance improves as the
hopping frequency number increases, for both high imaging
quality and high PSI. More independent hopping frequencies
could provide more information of resolvability for RCI,
which would also lead to the robustness of imaging.

Besides, the algorithm is sensitive to the scope of phase
error. When the phase error increases, the convergence
of SC-VMP degrades, then the phase error could not
be estimated exactly and calibrated perfectly. Thus, the
imaging performance degrades severely, especially when
φmax ≥ 90 deg.

5 Conclusion
RCI is a high-resolution imaging technique, while its perfor-
mance degrades seriously in the presence of phase error. The
SC-VMP algorithm is proposed in this paper to realize the
target reconstruction and phase error calibration simultane-
ously in SBL framework. Bayesian hierarchical prior is used
in the proposed algorithm, where the scattering coefficient is
modeled statistically and estimated iteratively to achieve
sparsity. As an iterative algorithm, SC-VMP cycles through
steps of target reconstruction and phase error estimation,
where VMP and Newton’s method are adopted, respectively.
The proposed algorithm can estimate the phase error
accurately and improve the reconstruction performance
significantly. Besides, it requires no prior information and
provides superior and robust imaging performance for vari-
ous imaging scenes and system parameters, which shows the
potential for the algorithm to be applied in practical RCI or
other imaging radar systems.

Fig. 6 NMSE of phase error versus SNR.

Fig. 5 Comparison of metrics versus SNR. (a) RIE and (b) PSI.

Fig. 7 Comparison of metrics versus the hopping frequency number and the scope of phase error:
(a) RIE and (b) PSI.
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Appendix A: Implementation of Variational
Message Passing Procedure
During the VMP procedure, the hidden variables Ω ¼
fβ;α; η; α0g can be updated individually.

1. Update of qðβÞ. It is obvious to conclude from Eq. (8)
that the echo y obeys a complex Gaussian distribution
and the likelihood function of the observation can be
formulated as

EQ-TARGET;temp:intralink-;e016;63;650p½pðyjβ; αo;φÞ� ¼ CN ðyjSβ; α−10 IÞ: (16)

According to Ref. 27, the approximated posterior
of β can be expressed as

EQ-TARGET;temp:intralink-;e017;63;597qðβÞ ∝ expfhln pðyjβ; α0;φÞiqðα0ÞhpðβjαÞiqðαÞg:
(17)

Substituting Eqs. (5) and (16) into Eq. (17), we
can conclude that β obeys a complex Gaussian
distribution:

EQ-TARGET;temp:intralink-;e018;63;518qðβÞ ∝ CN ðβjμ;ΣÞ; (18)

where the mean μ and covariance Σ are given by

EQ-TARGET;temp:intralink-;e019;63;476Σ ¼ ðhα0iqðα0ÞSHSþ hΛ−1iqðαÞÞ−1; (19)

EQ-TARGET;temp:intralink-;e020;63;444μ ¼ hα0iqðα0ÞΣSHy: (20)

2. Update of qðαÞ. The approximated posterior of α can
be given by

EQ-TARGET;temp:intralink-;e021;63;391qðαÞ ∝ expfhpðβjαÞiqðβÞhln pðαjηÞiqðηÞg: (21)

Then, we substitute Eqs. (5) and (6) into Eq. (21) and
obtain qðαÞ as

EQ-TARGET;temp:intralink-;e022;63;336qðαÞ ∝
YK
k¼1

αε−2k expð−α−1k hjβkj2iqðβÞ − αkhηiqðηÞÞ;

(22)

where hjβkj2iqðβÞ ¼ jμkj2 þ Σkk. Thus, qðαÞ is the
product of GIG PDFs with order p ¼ ε − 1. The
moments of GIG distribution are given in closed
form for any n ∈ R:

EQ-TARGET;temp:intralink-;e023;63;228hαnkiqðαÞ¼
�hjβkj2iqðβÞ

hηiqðηÞ

�n
2
κpþn

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hηiqðηÞhjβkj2iqðβÞ

q �

κp

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hηiqðηÞhjβkj2iqðβÞ

q � ;

(23)

where κυð·Þ is the modified Bessel function of the sec-
ond kind with order υ. The case of n ¼ −1 in Eq. (23)
gives the evaluation of hΛ−1iqðαÞ used in Eq. (19), and
the case of n ¼ 1 gives the calculation of hαkiqðαÞ used
in Eq. (25).

3. Update of qðηÞ. The approximated posterior distribu-
tion of η is obtained by

EQ-TARGET;temp:intralink-;e024;326;752qðαÞ ∝ expfhpðαjηÞiqðηÞpðη; a; bÞg: (24)

It can be seen that the posterior distribution of
η is a Gamma distribution: qðηÞ ¼ ΓðηjKεþ a;P

K
k¼1 hαkiqðαÞ þ bÞ, while the mean of η is

EQ-TARGET;temp:intralink-;e025;326;697hηiqðηÞ ¼
Kεþ aP

K
k¼1 hαkiqðαÞ þ b

: (25)

4. Update of qðα0Þ. It can be shown that qðα0Þ ¼
Γðα0jN þ c; hky − S · βk22iqðβÞ þ dÞ. The first moment
of α0 is

EQ-TARGET;temp:intralink-;e026;326;619hα0iqðα0Þ ¼
N þ c

hky − S · βk22iqðβÞ þ d
: (26)

Appendix B: Derivation of Estimating
Phase Error
In this part, we derive the gradient ∇fðφÞ and Hessian
∇2fðφÞ, which are used in Eq. (14) to estimating the phase
error φ. For convenience of derivation, ∇fðφÞ is decom-
posed by two parts, i.e., fðφÞ¼f1ðφÞþf2ðφÞ, where
f1ðφÞ ¼ ky − SðφÞμk22 and f2ðφÞ ¼ trf½SðφÞ�HSðφÞΣg.
Then, we have

EQ-TARGET;temp:intralink-;e027;326;460∇fðφÞ ¼ ∇f1ðφÞ þ ∇f2ðφÞ; (27)

EQ-TARGET;temp:intralink-;e028;326;430∇2fðφÞ ¼ ∇2f1ðφÞ þ ∇2f2ðφÞ: (28)

After derivation and simplification, the gradient and
Hessian matrix can be computed as

EQ-TARGET;temp:intralink-;e029;326;382½∇f1ðφÞ�m ¼ −2 Imf½S
⌢
tmðφmÞμ�

H
w
⌢g; (29)

EQ-TARGET;temp:intralink-;e030;326;347½∇f2ðφÞ�m ¼ trðjf½SðφÞ�HS
⌢
tmðφmÞ − ½S

⌢
tmðφmÞ�

H
SðφÞgΣÞ;

(30)

EQ-TARGET;temp:intralink-;e031;326;304½∇2f1ðφÞ�mm ¼ 2Ref½S
⌢
tmðφmÞ · μ�

H
w
⌢g

þ 2kS
⌢
tmðφmÞ · μk

2
; (31)

EQ-TARGET;temp:intralink-;e032;326;251½∇2f1ðφÞ�ml ¼ 2Ref½S
⌢
tmðφmÞ · μ�

H½S
⌢
tlðφlÞ · μ�g; m≠ l;

(32)

EQ-TARGET;temp:intralink-;e033;326;208½∇2f2ðφÞ�mm ¼ trðf2½S
⌢
tmðφmÞ�

H½S
⌢
tmðφmÞ�

− ½S
⌢
tmðφmÞ�

H
SðφÞ− ½SðφÞ�H½S

⌢
tmðφmÞ�gΣÞ;

(33)

EQ-TARGET;temp:intralink-;e034;326;142

½∇2f2ðφÞ�ml¼ trðf½S
⌢
tmðφmÞ�

H½S
⌢
tlðφlÞ�

þ½S
⌢
tlðφlÞ�

H½S
⌢
tmðφmÞ�gΣÞ; m≠ l; (34)

where Reð·Þ and Imð·Þ denote the real and imaginary parts,
respectively. trð·Þ is the trace operator. ½a�m is the m’th
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element of a, ½A�ml denotes the ðm; lÞ-th element of A.

S
⌢
tmðφmÞ ¼ ½S

⌢
tmðr1;φmÞ; · · · ; S

⌢
tmðrK;φmÞ�, S

⌢
tmðrk;φmÞ ¼

ejφm ½Stmðt1 − τkmÞ; · · · ; StmðtN − τkmÞ�T , and w
⌢ ¼ y − SðφÞμ.
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