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Abstract

Purpose: Pathological conditions associated with the optic nerve (ON) can cause structural
changes in the nerve. Quantifying these changes could provide further understanding of disease
mechanisms. We aim to develop a framework that automatically segments the ON separately
from its surrounding cerebrospinal fluid (CSF) on magnetic resonance imaging (MRI) and
quantifies the diameter and cross-sectional area along the entire length of the nerve.

Approach: Multicenter data were obtained from retinoblastoma referral centers, providing a
heterogeneous dataset of 40 high-resolution 3D T2-weighted MRI scans with manual ground
truth delineations of both ONs. A 3D U-Net was used for ON segmentation, and performance
was assessed in a tenfold cross-validation (n ¼ 32) and on a separate test-set (n ¼ 8) by meas-
uring spatial, volumetric, and distance agreement with manual ground truths. Segmentations
were used to quantify diameter and cross-sectional area along the length of the ON, using center-
line extraction of tubular 3D surface models. Absolute agreement between automated and
manual measurements was assessed by the intraclass correlation coefficient (ICC).

Results: The segmentation network achieved high performance, with a mean Dice similarity
coefficient score of 0.84, median Hausdorff distance of 0.64 mm, and ICC of 0.95 on the
test-set. The quantification method obtained acceptable correspondence to manual reference
measurements with mean ICC values of 0.76 for the diameter and 0.71 for the cross-sectional
area. Compared with other methods, our method precisely identifies the ON from surrounding
CSF and accurately estimates its diameter along the nerve’s centerline.

Conclusions: Our automated framework provides an objective method for ON assessment
in vivo.
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1 Introduction

The optic nerves (ONs) play a vital role in visual perception by connecting the retina to the brain.
Morphologically, the ONs are thin, tortuous structures that bend from the eye globe to the optic
chiasm and exhibit shape variations as well as variable amounts of surrounding cerebrospinal
fluid (CSF) along their pathway.1,2 Pathological conditions, such as multiple sclerosis (MS),
optic neuritis, ON hypoplasia, and optic pathway gliomas can cause damage to the ON that
coincides with impaired vision.3 Furthermore, intraocular tumors such as retinoblastoma can
invade the ON, which is a poor prognostic indicator and a risk factor for metastatic disease.4

Pathologies affecting the ON can lead to structural changes such as ON atrophy or enlargement
that locally affect its diameter and volume.5–9 Hence, accurate quantification of the ON’s
diameter along the length of the nerve can provide valuable insights into the nature and
progression of various pathologies, as well as assist in treatment planning and monitoring.

Magnetic resonance imaging (MRI) is an effective imaging modality for visualizing the ONs
and detecting pathological changes due to its high soft-tissue contrast and the avoidance of ion-
izing radiation.10 Advances in MRI techniques have enabled the acquisition of high-resolution
3D T2-weighted MR images that, unlike computed tomography (CT) and T1-weighted MRI,
produce a distinct contrast between the ON and its surrounding CSF.11 However, segmenting
and quantifying the ONs is challenged by their complex morphology.12 Manual annotation by
an experienced radiologist is therefore time-consuming, labor-intensive, and prone to inter- and
intrarater variability, emphasizing the need for automatic methods for accurate ON segmentation
and quantification.

In recent years, automatic approaches for ON segmentation on MRI have been developed.
These methods typically focus on jointly segmenting the ON and surrounding CSF. Atlas-based
approaches apply registration to an anatomical reference for segmentation. Panda et al.13 pre-
sented a multiatlas labeling approach for segmenting the eyes, ONs with surrounding CSF, and
optic chiasm from high-resolution 3D T2-weighted MR images. Crouzen et al.14 developed an
MR-based organs-at-risk (OARs) segmentation atlas from cerebral T1-weighted MR scans to
automatically delineate OARs, including the ONs, for radiotherapy planning. However, their
ON segmentations required frequent manual adjustments to achieve clinical acceptability.
Statistical shape models incorporate the expected appearance and shape information of an object,
constraining its segmentation to anatomically plausible shapes. A fully automated partitioned
statistical shape model (ASM) for anterior visual pathway segmentation in both healthy and
abnormal subjects was presented by Mansoor et al.15 Their method involved extensive prepro-
cessing, including feature engineering on multisequence MRI data. Nguyen et al.16 proposed an
ASM for automatically segmenting intraocular structures, including part of the ONs, in patients
with uveal melanoma on T1-weighted MRI, obtaining accurate segmentation of the most distal
part of the ONs only. Although atlas-based approaches and statistical shape models produce
anatomically consistent results, they are generally limited by poor generalization capacity, which
especially affects ON segmentation due to the large variability in shape and appearance.13,16

Deep learning models have been proposed to advance in various medical imaging tasks,
including improving our clinical understanding of the ON.17 Automatic segmentation of the
ON using deep learning has been explored in several studies, such as for studying glaucoma
progression18,19 or diagnosing increased intracranial pressure.20,21 On MRI, deep learning tech-
niques for automatic ON segmentation have primarily been investigated in the context of OARs
segmentation for radiotherapy planning, where they have been shown to outperform atlas-based
approaches.22 Liu et al.23 implemented a 3D U-Net architecture combined with a cycle-GAN to
synthesize MR images from CT images for segmenting OARs. They demonstrated that synthetic
MR images provide complementary information and improved segmentation performance com-
pared with conventional automatic CT segmentation. A 2D U-Net was used by Mlynarski et al.24

to segment multiple OARs including the ON on contrast-enhanced T1-weighted MRI scans.
Dai et al.25 recently developed a regional convolutional neural network for segmenting
OARs on MRI, incorporating several advanced architectures, such as a deep attention feature
pyramid network and mask scoring networks, but their ON segmentation performance was low
compared with other organs included in the study. Li et al.26 proposed a parallel stages network
composed of two 2D U-Nets for segmentation of the entire anterior visual pathway, employing
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T1-weighted MR images and fractional anisotropy images for feature extraction. They targeted
the entire anterior visual pathway and did not separate both ONs and chiasm.26

To accurately quantify the ON and its disease-related changes, it is necessary to differentiate
the ON from the surrounding CSF rather than segmenting them as a single structure. Few studies
have aimed at isolating the ON from surrounding CSF to obtain precise quantitative measures of
the ON itself. One such study by Harrigan et al.27 used a multiatlas segmentation method to
initially segment the ON with CSF on T2-weighted MR images. They then employed a model
based on the difference between Gaussians to fit the intensity values of the ON and CSF in
the coronal plane, allowing for independent measurements of the ON and CSF diameter along
the length of the nerve. However, this model may not hold for high-resolution imaging, where
variable thickness of the CSF layer is expected. Another study by Feng et al.28 proposed
a segmentation method using gradient-based edge detection with skeletonization to delineate
the ON without the CSF on coronal 3D T1-weighted MRI. Their method required prior
knowledge of ON location assigned by the user. Previous methods extracted the cross-sectional
area and diameter of the ON in the coronal plane, which may result in an overestimation of
the actual size due to the tortuous structure of the ON that is not always aligned perpendicular
to the coronal plane.12

To overcome the limitations of previous methods, we propose a 3D pipeline for automatic
segmentation and quantification of the ON, while accurately differentiating it from CSF
along the entire length of the nerve. Our pipeline consists of two main steps. First, we employ
a 3D U-Net to automatically segment the ON from high-resolution T2-weighted MR images
obtained from multiple centers to allow for precise segmentation of the ON without CSF.
Second, we implement a quantification method that uses the resulting 3D segmentations to
extract ON diameter and cross-sectional area along the centerline of the nerve. This automatic
approach addresses the limitations of previous quantification methods by enabling quantitative
measurements independent of image intensity values or ON orientation. Our study demonstrates
the feasibility and effectiveness of this pipeline for automatic segmentation and quantification of
the ON, which can serve as a valuable tool for accurately characterizing the ON and its disease-
related changes on MRI.

2 Methods

2.1 Data Acquisition

Data were collected retrospectively from two retinoblastoma referral centers in Essen, Germany,
and Amsterdam, the Netherlands, as high-resolution T2-weighted MRI scans were readily
available in the pediatric retinoblastoma population. The Institutional Review Board of the
Amsterdam UMC, location VUmc, Amsterdam, The Netherlands, approved this multicenter
retrospective study with waiver of informed consent. The dataset consisted of 40 subjects (mean
age 2.83� 1.76 years), with a total of 28 healthy and 52 pathology-affected eyes. MRI data were
acquired on a 1.5-Tesla scanner (Magnetom Aera, Siemens, Erlangen, Germany) and a 3.0-Tesla
scanner (Discovery MR750, GE Healthcare, Chicago, United States). The acquisition protocol
included a high-resolution 3D T2-weighted sequence, i.e., CISS (Siemens) and FIESTA (GE).
Acquisition parameters are summarized in Table 1. Scans had anisotropic voxel sizes and
variable field of views, yet always included the patient’s head, both eyes, and the entire left
and right ON. During MR acquisition, patients were under general anesthesia. Manual ON
segmentations were performed by an experienced reader (C.M.d.B, 5 years of experience) using
3D Slicer29 (Version 4.10.1) and included the full length of the right and left ON reaching up to
the optic chiasm. Annotations were validated by two neuroradiologists (P.d.G and M.C.d.J,
17 and 10 years of experience, respectively).

2.2 Proposed Framework

The overall proposed framework is composed of three primary processes; (1) data preprocessing,
(2) ON segmentation, and (3) ON diameter and cross-sectional area quantification. The segmen-
tation network architecture is based on the U-Net, one of the most used and widely known
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architectures for medical image segmentation.30 The resulting segmentations are input to a
quantification method, which is based on centerline extraction of tubular 3D models to enable
precise cross-sectional size estimation. A comprehensive overview of the framework is shown in
Fig. 1. Each process is explained in more detail in Secs. 2.2.1–2.2.3.

2.2.1 Preprocessing

Since MRI data originated from multiple centers and imaging protocols, preprocessing proce-
dures were applied to homogenize the data. Bias field correction was applied using the N4-ITK
algorithm31 to correct for intensity nonuniformity. Due to GPU memory constraints, scans were
cropped into two smaller volumes of interest (VOI), each including one eye and its correspond-
ing ON. VOI extraction was initiated by automatic detection of the eyes’ centroids using the 3D
Hough filtering approach of the Insights Toolkit.32 To ensure consistent VOIs of the entire ON
without encompassing part of the contralateral ON, scans were rotated such that the centroids of
both eyes were aligned to correct for head rotation. An example is shown in Fig. 2. The angle of
rotation was determined between the left and right eyes’ centroids, and realignment of the scan
was performed if the angle was greater than five degrees to avoid correcting for insignificant
differences. Rotation was applied simultaneously with resampling to limit intermediate interpo-
lation using the FMRIB Software Library33 (FSL). Images were resampled to an isotropic spatial
resolution of 0.3 mm3. Subsequently, a cropping area was applied by extending the middle point
between two centroids about 50 mm posteriorly, 20 mm anteriorly, 17 mm superiorly and inferi-
orly, and 45 mm left or right to include the right or left eye and ON, respectively, based on a
representative subject (see Fig. 2). The resulting VOIs of 144 × 240 × 112 voxels were visually
inspected to verify that the ON was entirely included. Lastly, voxel values within each VOI were
normalized to have a mean of 0 and a variance of 1.

2.2.2 Segmentation

Network architecture. A 3D U-Net was implemented as segmentation network (Fig. 3).
Both the encoding and decoding part of the U-Net are assembled with five layers of convolu-
tional blocks, in which the number of features maps is gradually changed (i.e., 32, 64, 128, 256,
512). The convolutional block encompasses two 3 × 3 × 3 convolutions, each followed by
batch normalization and a rectified linear unit as activation function. In between the layers of
the encoding path, input dimensions are reduced by a 2 × 2 × 2 max-pooling with strides of
two to extract both spatial and context features. In the decoder path, layers are connected

Table 1 MRI acquisition parameters.

Amsterdam (n ¼ 25) Essen (n ¼ 15)

Manufacturer GE Medical Systems Siemens

Sequence FIESTA CISS

Repetition time (ms) 8.0 [7.0 to 8.6] 13.3 [12.1 to 13.3]

Echo time (ms) 3.5 [3.4 to 3.5] 6.6 [6.1 to 6.6]

Flip angle 40 deg 80 deg

In-plane resolution (mm) 0.27 × 0.27 [0.27 to 0.29] 0.25 × 0.25 [0.25 to 0.34]

Slice thickness (mm) 0.3 0.7

Matrix (voxels) 512 × 512 × 96 [92 to 112] 360 [340 – 420] x 320 x 64 [56 to 80]

Field strength (Tesla) 3.0 T 1.5 T

Values are presented as median [min to max range].
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Fig. 2 Example of scan rotation and VOI cropping. Scans are rotated by angle α based on their
centroid (red dots). After rotation, scans are cropped into two VOIs using the middle-point between
the centroids (orange dot). Red dotted lines represent VOI cropping area. Note: Image is 3D in
reality, while the example is 2D for visualization purposes.
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1. Preprocessing
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Fig. 1 Schematic overview of the proposed framework, performing segmentation of the ON
separate from surrounding CSF, and computation of the diameter profile in the cross-sectional
plane along the ON.
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by an upconvolution operation of 2 × 2 × 2 with strides of two to produce full-resolution seg-
mentations. At each layer in the decoding path, feature maps are concatenated with feature
maps from layers of equal resolution in the encoding path, prior to passing through the
convolutional block. These skip-connections allow the passage of low-level and high-level
features from the encoding path to the decoding path and hence regain detailed information
that was removed during downsampling. In the final layer, a 1 × 1 × 1 convolution followed
by a sigmoid activation is applied to reduce the number of output channels to the number of
labels (in our case 1: ON = 1; background = 0). Both the input and output of the network is a
144 × 240 × 112 volume with one channel. In supplementary experiments, residual units34 and
attention gating blocks35 were added to the 3D U-Net architecture to evaluate their impact on
model performance.

Model training. The dataset of each center was randomly split into two subsets for training
and testing with a partition rate of 0.8 and 0.2, respectively, corresponding to a combined total of
32 subjects (i.e., 64 eyes) in the training subset and eight subjects (i.e., 16 eyes) in the testing
subset. During training, a tenfold cross-validation analysis was conducted to assess the net-
work’s performance. Following these experiments, the network was retrained on the entire train-
ing dataset and subsequently evaluated on the test-set. To improve model robustness and avoid
overfitting, data augmentation was implemented. On-the-fly augmentation encompassed random
scaling (0.8 to 1.2, p ¼ 0.5), left-right flipping (p ¼ 0.5), intensity shifting (0.5 to 1.5, p ¼ 0.3),
additive Gaussian noise (sigma = 0.1, p ¼ 0.3), and Gaussian blurring (0.2 to 1.2, p ¼ 0.3).
A Dice loss was used as loss function for its robustness to class imbalance.36

Implementation details. Our model was implemented in Python 3.6.9 using Keras 2.1.0
with TensorFlow 2.2.0 backend. Training was executed on an NVIDIA GeForce GTX 1080 TI
GPU (11 GBmemory) using CUDA 10.1 for accelerated training. The Adam optimizer was used
for optimization and its learning rate was set to 1 × 10−3. The training batch size was restricted to
one image per batch due to GPU memory restriction. Models were trained for up to 150 epochs.
An early stopping strategy was utilized if there was no improvement in validation loss after
40 epochs. After each epoch, model weights were saved if an improvement in validation loss
was observed. Training took ∼4 h. Inference time was a few seconds per image.

Evaluation metrics. For performance evaluation, several commonly used evaluation met-
rics for medical image segmentation were used, including Dice similarity coefficient (DSC),
precision, recall, Hausdorff distance 95th percentile (HD95), average surface distance (ASD),
and intraclass correlation coefficient (ICC). Spatial agreement between automatic segmentation
and manual reference was measured by the DSC:

C

C

C

C

144 x 240 x 112 x 1 32

64

128

256

512

256

128

64

32 1 144 x 240 x 112 x 1

=

Convolutional block

3x3x3
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Normalization
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Activation

466 x 466 x 92 x 1
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1x1x1 Conv + Sigmoid

2x2x2 Max-pooling

2x2x2 Up-conv
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C Concatenation

Fig. 3 Architecture of the segmentation network. Number of feature maps is specified above
each block.
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EQ-TARGET;temp:intralink-;e001;116;735DSCðA; BÞ ¼ 2ðA ∩ BÞ
jAj þ jBj ; (1)

where A and B refer to the set of voxels in the manual and automatic segmentations, respectively.
The Hausdorff distance (HD) and ASD are effective indicators to assess contour similarity.37

HD measures the largest distance between the boundary points of the manual and automatic
segmentation. The 95th percentile of the HD is used to eliminate outliers:

EQ-TARGET;temp:intralink-;e002;116;652HD95ðA; BÞ ¼ max95%ðhdðA; BÞ; hdðB; AÞÞ; (2)

with

EQ-TARGET;temp:intralink-;e003;116;609hdðX; YÞ ¼ max
x∈X

min
y∈Y

kx − yk: (3)

The ASD measures the average distance between the two surfaces and is defined as

EQ-TARGET;temp:intralink-;e004;116;559ASDðA; BÞ ¼ 1

jAj þ jBj
�X

a∈A
dða; BÞ þ

X
b∈B

dðA; bÞ
�
: (4)

Volumetric agreement between the manual and automatic segmentation was quantified by
the ICC (two-way mixed effects, single rater).

2.2.3 Quantification

To measure the diameter and cross-sectional area along the length of each ON, segmentations
produced by the segmentation network were analyzed in 3D Slicer29 (version 5.0.3), an open-
source software for medical image computing and visualization. The workflow for ON size
quantification was scripted in Slicer’s Python interpreter for automation and consists of two
components: centerline extraction and size assessment. Extraction of the nerve’s centerline
enables diameter measurements along the length of the nerve, regardless of its orientation to
the imaging plane. First, the raw segmentation of the ON, created by the segmentation network,
was loaded into Slicer as a 3D surface model. Then, the centerline of the model was determined
using the Vascular Modeling Toolkit38 (VMTK). VMTK is an extension of Slicer that provides
modules for vascular modeling, including centerline extraction and cross-sectional analysis of
a 3D model.39 Since the tubular structure of the ON roughly resembles vascular structures, we
extended its application to ON quantification. Centerline extraction was initiated by automati-
cally identifying the model’s starting and ending points. Manual adjustments were made if auto-
matic detection was inadequate. Between these endpoints, the centerline of the model was
computed based on the Voronoi diagram, which represents the center points of the maximal
inscribed spheres inside the model.39 The extracted centerline and surface model were adopted
as input for VMTK’s cross-sectional analysis module, which measures the cross-sectional area,
its circular-equivalent (CE) diameter, and the maximum inscribed sphere (MIS) diameter at a
sampling distance of 0.1 mm along the model.

Performance evaluation. Automatic measurements of the ON’s diameter and cross-sec-
tional area were compared with manual measurements made by experienced radiologists.
Manual measurements were made on the same dataset used in this study at three measurement
points: at the level of the most anteriorly located CSF (as close to the lamina cribrosa as visually
possible) and at 3 and 5 mm posterior from this point. Agreement between automatic and manual
measurements at these points was evaluated by the mean absolute error (MAE) and ICC score
(two-way mixed effects, single rater). Since the ONs were annotated to extend into the sclera at
the level of the lamina cribrosa, the origin of the ON surface models did not exactly correspond
to the origin of the manual measurement points. To allow for fair comparison, the average offset
between the surface model origin and the manual measurement origin was found by minimizing
their MAE. Bland–Altman difference plots were created to visually analyze agreement between
manual measurements and automatic measurements.

van Elst et al.: Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net

Journal of Medical Imaging 034501-7 May∕Jun 2023 • Vol. 10(3)



To evaluate the performance of our method and compare it to existing approaches, we con-
ducted two analyses. First, the parameterized approach of Harrigan et al.27 was implemented,
which segments the ON and CSF using an atlas-based registration method and fits a multivariate
Gaussian model to estimate the ON diameter. Since the atlas is not publicly available, we
performed a manual segmentation of the ON including CSF for one representative subject.
Subsequently, we replicated their approach by fitting a Gaussian mixture model in MATLAB
(MathWorks, Natick, Massachusetts) to extract the ON from the CSF. Second, we conducted
an ablation study to compare the accuracy of our cross-sectional analysis method to existing
methods that estimate ON diameter in the coronal plane (as discussed in Sec. 1). The cross-
sectional area acs;i and the coronal area acor;i were computed for each location i along the center-
line of the ON. Let us consider the local orientation vector of the centerline of the ON ci and the
normal vector of the coronal plane vcor. Now, acor;i is expected to overestimate acs;i dependent on
the local orientation ci relative to vcor. To demonstrate this, we compute a corrected coronal area
through acor;i (ci· vcor) and an estimated angle of the centerline through arccosðci· vcorÞ. We then
computed the relative error in the estimated equivalent ON diameter as a function of the arc
length of the centerline and averaged it over all test subjects.

3 Results

3.1 Segmentation

Examples of segmentation results obtained by our method, as compared with manual segmen-
tation, are shown in Fig. 4. Each image illustrates the performance of the method on a single axial
slice. For a more comprehensive visualization of the segmentation performance in 3D, please
refer to Fig. S1 in the Supplementary Materials, which provides one segmentation example
across all slices. The average spatial agreement achieved by our model was a DSC of
0.83� 0.04 for the tenfold cross-validation and a similar DSC of 0.84� 0.04 on the test-set
(Table 2). By allowing a margin of one voxel tolerance to account for uncertainty at the borders
of the manual segmentation, the DSC was increased to 0.90 and 0.91, respectively.

Boxplots of the spatial evaluation metrics and distance metrics are shown in Fig. 5. It can be
observed that the HD is affected by some extreme outliers, which were caused by few misclas-
sified voxels far outside the ON region. These outliers can be discarded by retaining only the
largest connected component, reducing the mean HD from 2.44 to 0.66 mm on the test set.

(c)(b)(a)

Fig. 4 Visual comparison of segmentation results: (a) high performance (DSC = 0.90), (b) average
performance (DSC = 0.83), and (c) low performance (DSC = 0.75). Each image illustrates the
segmentation on a single axial slice. Green denotes the segmentation produced by our method,
and red denotes the manual ground truth.

van Elst et al.: Automatic segmentation and quantification of the optic nerve on MRI using a 3D U-Net

Journal of Medical Imaging 034501-8 May∕Jun 2023 • Vol. 10(3)

https://doi.org/10.1117/1.JMI.10.3.034501.s01


ICC scores show good (0.88) to excellent (0.95) volumetric agreement between manual refer-
ence and automatic segmentation. The results of the tenfold cross-validation analysis, as shown
in Table S1 in the Supplementary Materials, indicate that the expansion of the network archi-
tecture through the addition of supplementary blocks, i.e., residual units or attention gating,
did not result in performance improvement.

(a) (b)

Fig. 5 Boxplots of (a) spatial metrics and (b) distance metrics. DSC, Dice similarity coefficient;
HD95, Hausdorff distance 95%; ASD, average surface distance; ICC, intraclass correlation
coefficient.

Table 2 Quantitative segmentation performances for tenfold cross-validation and test set.

Metric Tenfold cross-validation (n ¼ 64) Test-set (n ¼ 16)

Spatial (mean ± STD)

DSC 0.83 ± 0.04 0.84 ± 0.03

DSC (tolerance 1 voxel) 0.90 ± 0.06 0.91 ± 0.04

Precision 0.85 ± 0.05 0.84 ± 0.04

Recall 0.82 ± 0.09 0.85 ± 0.04

Distance (median [IQR])

HD95 0.60 [0.42 to 0.86] 0.60 [0.42 to 1.02]

ASD 0.14 [0.10 to 0.17] 0.14 [0.12 to 0.17]

Volumetric

ICC 0.88 0.95

n, number of eyes; STD, standard deviation; IQR, inter quartile range; DSC, Dice similarity coefficient; HD95,
Hausdorff distance 95%; ASD, average surface distance; ICC, intraclass correlation coefficient.
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3.2 Quantification

Diameter and cross-sectional area measurements were obtained from the ON segmentations.
Figure 6 shows a graphic representation of the ON, displaying the diameter and cross-sectional
area from eye globe to optic chiasm with corresponding manual reference measurements,
as well as the corresponding 3D surface model with its centerline.

As mentioned in Sec. 2.2.3, a minor offset existed between the automatic measurements and
the manual reference points. By comparing the absolute error between the manual measurement
at the most anteriorly located CSF and the automatic measurements between 0 and 1 mm
distance of the model’s origin, an average offset of 0.7 mm was found based on MAE mini-
mization (see Fig. 7). Figure 8 shows that this offset between the ON origin and the level of the
most anteriorly located CSF is anatomically feasible. Consequently, for each subject, the three
manual measurements were compared with the automatic measurements at 0.7, 3.7, and 5.7 mm.
The MAE at these measurement points was 0.24� 0.27, 0.22� 0.24, and 0.26� 0.28 mm,
respectively, for the CE diameter and 0.42� 0.39, 0.33� 0.32, and 0.38� 0.32 mm for
the MIS diameter. Cross-sectional area measurements had an MAE of 1.0� 1.3, 1.1� 1.4,
and 1.2� 1.4 mm2, respectively. Overall ICC values for CE diameter, MIS diameter, and cross-
sectional area measurements were 0.76, 0.72, and 0.71, respectively.

Figure 9 shows the Bland–Altman difference plots of the automatic measurements compared
with the manual measurements. The vast majority of the measurements fall within the 95% limits
of agreement and their mean is approximately zero. There appears to be a slight tendency for
overestimation of the smaller sizes and underestimation of the larger sizes for both the diameter
and the cross-sectional area measurements.

Figure 10 shows the results of the model fitting procedure to the ON and surrounding CSF,
using the method of Harrigan et al.,27 in a representative subject. The model fitting accuracy is
observed to be higher closer to the eye, where homogeneous CSF surrounds the ON. However,
at more distal regions, a systematic bias and erroneous ON diameter can be observed.

(c)

(a)

(b)

Fig. 6 Example of (a) diameter and (b) cross-sectional area measurement of ON from eye globe to
optic chiasm with manual reference measurements at 0, 3, and 5 mm. (c) The corresponding ON
surface model with centerline. MIS, maximum inscribed sphere; CE, circular equivalent.
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The difference in estimated ON diameter when estimated in the coronal plane versus the
perpendicular cross-section is shown in Fig. 11. Correcting the coronal diameter with the
estimated orientation of the centerline accounts for the observed overestimation. An error of
12� 5% is observed across all subjects, with a trend of a larger error toward the periphery
of the ON.

4 Discussion

In this work, we proposed an automated framework for the segmentation and size quantification
of the ON using high-resolution 3D T2-weighted MRI sequences. Our segmentation method
achieved segmentations with a high spatial and volumetric agreement to the manual ground

Fig. 7 MAE minimization between manual measurement at the most anteriorly CSF and auto-
matic measurements. Red star represents the lowest error estimation for diameter and cross-
sectional area measurements, occurring at 0.7 mm distance from the model’s origin. MIS,
maximum inscribed sphere; CE, circular equivalent.

0.7 mm

Fig. 8 Example of manual reference measurement at the most anteriorly located CSF (red line)
versus ground truth origin at globe (green line) with an offset of 0.7 mm.
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(a)

(b)

Fig. 9 Bland–Altman difference plots of (a) diameter measurements and (b) cross-sectional area
measurements.

(d)(c)(b)(a)

Fig. 10 (a) Selected slices of segmented ON and surrounding CSF, ordered from anterior to
posterior at the level of the eye (top) to chiasm (bottom). (b) Fitted model of Harrigan et al.27 (c) ON
and CSF boundaries of the fitted model superimposed on original slice. (d) Segmentation using
our proposed segmentation method (in red color).
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truth, while distinguishing the ON from the surrounding CSF, unlike previous studies. In addi-
tion, we introduced an automatic quantification method based on centerline extraction to obtain
the ON diameter and cross-sectional area along the arc length of the nerve from the eye to the
optic chiasm.

4.1 Segmentation

Our method achieved outstanding results in ON segmentation, as demonstrated by its high spa-
tial overlap (mean DSC = 0.84) and contour similarity (medianHD < 0.65 mm and ASD beyond
voxel resolution). Comparing our results with other published methods for ON segmentation is
challenging since prior studies did not distinguish the ON from the surrounding CSF and
employed different datasets with varying imaging sequences. For example, Panda et al.13 devel-
oped a multiatlas pipeline to segment the eyes, ONs with CSF, and optic chiasm from 3D T2-
weighted MR images, reporting a best mean DSC of 0.78 and HD of 2.11 mm for the ONs.
Similarly, Mansoor et al.15 used an ASM to segment the anterior visual pathway on multise-
quence MRI data, reporting a mean DSC of 0.79 for the ONs with CSF. Feng et al.28 employed
a nonautomated gradient edge detection approach to distinguish the ON from CSF on coronal
T1-weighted MRI scans, achieving a DSC of 0.81. Deep learning approaches for ON segmen-
tation on MRI have mainly been explored in the context of radiotherapy planning and have
generally exhibited low performance for ON segmentation. For instance, Mlynarski et al.24 used
a 2D U-Net to segment multiple OARs on T1-weighted MR images, obtaining a mean DSC of
0.67 and HD of 6.3 mm for the ONs with CSF. Unlike prior studies that segmented the larger
structure of ON including CSF, our method demonstrates improved performance by accurately
segmenting the smaller structure of the ON without CSF.

The results presented in Fig. 4 demonstrate that our method performed well in achieving
spatial agreement both in regions near the eye, where the presence of CSF provided high contrast
with the ON, and in more posterior locations where CSF and other surrounding structures had
limited contrast. However, in few cases, our automatic segmentation results were inaccurate due
to issues such as disconnected components, voxel misclassifications distant from the ON region,
or incomplete segmentations not extending until the optic chiasm. To address these issues, model
refinements may be necessary, such as incorporating postprocessing procedures or utilizing
a loss function specifically designed for tubular structures to enforce model connectivity.40

The evaluation metrics show a high level of consistency between the cross-validation and
test-set results, as well as low variance within each set. Our model is thus robust and can effec-
tively handle multicenter input data derived from various MRI scanners and imaging protocols.
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Fig. 11 Ablation study. (a) Single subject results: (a.1) Estimated diameter as a function of
distance along the centerline, respectively, estimated in the coronal slice (blue line), the
perpendicular cross-sectional slice using the proposed method (dashed orange line), and
corrected diameter estimated from the coronal slice (dotted green line). (a.2) Angle between
centerline and normal line to the coronal plane. (b) Relative error in estimated diameter in
the coronal plane relative to the perpendicular cross-section, averaged over all test subjects.
The mean error (blue line) with standard deviation (gray lines) over all test subjects is plotted.
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Since the study involved a clinical dataset of a rare pathology, the amount of annotated data were
scarce. By utilizing multicenter data and extensive data augmentation techniques, we managed to
increase data variability and still achieve satisfactory and consistent results. To further enhance
the model’s robustness and applicability to different ON pathologies, future work should involve
expanding and diversifying the dataset, as well as validating the model’s performance in the
presence of ON abnormalities.

A substantial increase in DSC was achieved by allowing tolerance of one voxel to the bor-
ders. Manually annotating the boundary of the ON, despite being performed with great precision,
remains subjective and complicated, particularly in areas with limited contrast to their surround-
ings. Aside with the effect of interpolating during resampling, this may render noise and uncer-
tain manual ground truths close to the boundaries of the ON. Due to its thin and elongated
morphology, ON segmentation is more affected by these issues than other organs. Future
research could explore the use of probabilistic ground truth segmentations (i.e., continuous val-
ues between 0 and 1)41 or adapting the loss function specifically to tubular structure segmenta-
tion, such as using a centerline Dice loss.40 These approaches could enhance the segmentation
accuracy and improve its quantitative evaluation.

4.2 Quantification

The developed ON quantification method was able to accurately measure the cross-sectional area
and two diameter types, i.e., the diameter calculated from the cross-sectional area (CE diameter)
and the MIS diameter. It is important to note that the ON is not a perfectly tubular structure,
which can lead to differences between the two types of diameter measurements. Acceptable
agreement (ICC > 0.7) between manual measurements and automatic measurements was found
for all three metrics. In this study, the CE diameter showed the best agreement with the manual
diameter measurements, with an ICC of 0.76 and a consistent MAE that was less than the voxel
resolution at all three measurement locations.

The Bland–Altman plots reveal a negative mean difference, indicating a tendency for under-
estimation of ON size. Moreover, there is a small bias toward overestimating smaller ON size
and underestimating larger ON size. The observed trend of underestimation may be due to the
smoothing process performed by 3D Slicer to generate continuous surface models from raw
segmentations. The determination of the offset by the lowest MAE of the origin measurement
has likely led to an overestimation of the offset to compensate for the overall underestimation of
ON size. This has contributed to the observed bias as smaller ON sizes are generally measured at
the origin, where the ON is increasing in size, and larger ON sizes are measured at 3 and 5 mm,
where the ON is decreasing in size. Reducing the offset could mitigate the bias, resulting in
smaller ON sizes being measured at the origin and larger ON sizes being measured at 3 and
5 mm, but at the cost of increasing the MAE.

Previous studies that aimed at quantifying the ON separately from CSF on MRI scans
required manual user input to locate the ON and CSF28,42 or segmentations of the ON with
CSF.27 The method of Harrigan et al.27 was developed on lower resolution data compared to
this study (0.27 versus 0.4 mm3) and could not widely be applied to our data since it required
segmentations of the ON with CSF. Using one representative subject, we visually showed that
their model did not perform well on slices where our high-resolution data revealed that the
surrounded CSF was limited or not homogeneously distributed around the ON. Moreover, most
previous studies extracted ON size based on image intensities in the coronal plane. As we
showed in Fig. 11, extracting ON size in the coronal plane results in an overestimation of
ON size since the ON is a tortuous structure that bends toward the optic chiasm. In contrast,
our developed method based on centerline extraction and measuring ON size perpendicular to its
path avoids these limitations and only requires binary segmentations of the ON as input, making
it applicable with different segmentation methods and imaging sequences as well.

4.3 Limitations and Future Work

The dataset used in this study consisted of MRI scans obtained from retinoblastoma patients.
High-resolution 3D T2-weighted MRI scans were available for this pediatric population.
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However, this high-quality MRI data are not commonly used in clinical practice for orbital or
brain imaging. Therefore, it is important to investigate the performance of our segmentation
network using clinically available 2D T2-weighted MR images and to extend our analysis to
adult populations to enhance its applicability. In addition, since retinoblastoma typically affects
young children, our patients were scanned under general anesthesia to avoid motion artifacts.
It is important to note that if this method is applied to other ON pathologies in the future, the
impact of motion artifacts caused by ocular movement near the globe should be investigated.12

In this work, the input size of the segmentation network was adapted to the limited memory
capacity of the GPU. Enabling a larger input size could be advantageous, as it allows for the
simultaneous segmentation of both ONs and expansion to the entire optic pathway. This would
eliminate the need for preprocessing procedures, such as eye centroid detection, alignment, and
cropping of the scans. Furthermore, we adhered to a conventional 3D U-Net since attempts to
enhance its architecture with additional residual units and attention gating blocks yielded no
improvement in segmentation outcomes and required a reduction in the number of filters due
to limited GPU memory. Despite the basic nature of our method, it demonstrated high perfor-
mance and satisfactory segmentations. While more advanced variants of the U-Net could be
further explored, previous research has indicated that they may not necessarily result in signifi-
cant performance improvements and meanwhile increase complexity and require a higher
demand on computational resources.43

The ON quantification method developed in this study was validated based on manual refer-
ence measurements. However, a direct comparison with manual measurements is not straight-
forward as the offset between the model’s origin and manual reference varies for each nerve, and
manual measurements are subjective and sensitive to errors. Moreover, the validation was based
on manual measurements limited to three locations near the eye, disregarding the posterior part
of the ON. Obtaining accurate manual measurements at multiple points along the entire length of
the nerve is challenging and time-consuming, particularly near the posterior part of the nerve due
to limited contrast. Nonetheless, validation based on manual references is crucial as manual
measurements remain the standard procedure and indicate our model’s ability to realistically
quantify ON size.44,45 In future work, we aim to further validate our method and explore its
viability based on clinical outcome measures, such as differentiating healthy versus diseased
ONs, rather than manual references.

4.4 Conclusion

Our study indicates the feasibility of automatic segmentation and quantification of ON volume,
diameter, and cross-sectional area on MRI. The proposed framework has the potential for further
development toward automated characterization and objective assessment of ON pathology
in vivo.
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