Errata: Geometric superresolution using an optical rectangular mask

Mohammad Sohail
Asloob A. Mudassar
Errata: Geometric superresolution using an optical rectangular mask

Mohammad Sohail
Asloob A. Mudassar
Pakistan Institute of Engineering and Applied Sciences
Department of Physics and Applied Mathematics
45650 Islamabad, Pakistan
E-mail: sohail.dagiwal@gmail.com

This article [Opt. Eng. 51, 013203 (2012)] was originally published on 11 February 2012 with an error in Eqs. (8) and (9), where \(\text{rect}(\frac{v}{2\Delta V}) \) should have been written as \(\text{rect}(\frac{v}{\Delta V}) \). The corrected equations appear below.

On p. 2, the equation below Eq. (8) becomes

\[
\tilde{S}(v) = \left\{ G(v) \left[\sum_{k=-\infty}^{\infty} \delta(v - kp) \otimes \text{rect}\left(\frac{v}{\Delta V}\right) \right] \right\} \otimes \sum_{n=-\infty}^{\infty} \delta(v - n\Delta V).
\]

Equation (9) has been corrected to read:

\[
\tilde{S}(v) = \sum_{n=-\infty}^{\infty} \{ G(v) \otimes \delta(v - n\Delta V) \} \left\{ \left[\sum_{k=-\infty}^{\infty} \delta(v - kp) \otimes \text{rect}\left(\frac{v}{\Delta V}\right) \right] \otimes \delta(v - n\Delta V) \right\}
\]

\[
\tilde{S}(v) = \sum_{n=-\infty}^{\infty} G(v - n\Delta V) \left\{ \left[\sum_{k=-\infty}^{\infty} \delta(v - kp - n\Delta V) \right] \otimes \text{rect}\left(\frac{v}{\Delta V}\right) \right\}
\]

The sentence following Eq. (9) has been changed from “Equation (11)” to “Equation (9).” The corrected sentence reads, “Equation (9) is multiplied by the decoding mask”

Moreover, errors in equation numbers, reference numbers, and equation values were corrected in the first two paragraphs of Sec. 3. The corrected text appears as follows:

3 Simulation Results

We did the simulation for this work using Mathematica software (Wolfram Research, Inc., Champaign, IL). In this simulation we take a Gaussian function as input object with width \(X = 73 \) points in one dimension, shown in Fig. 1(a). The Fourier transform of the input object in one dimension in Fig. 1(b) is multiplied with the optical rectangular mask [period of two point pixels, shown in Fig. 1(c)] to encode the spectrum of the input object of width \(2\Delta V = 51 \) points in the Fourier domain, shown in Fig. 1(d). The mask in Ref. 1 consists of three different regions that require certain conditions be satisfied, that is, the mask is a three-region mask and all the three regions have different properties.

The manuscript was corrected online on 4 April 2012.