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Abstract. The closeness of the experimental and theoretical values enables the development of
an in situ characterization technique to monitor and analyze the production of gold nanoparticles
(NPs), overcoming the use of high-end and expensive instrumentation. Gold NPs below the
radius size of 10 nm were successfully synthesized in accordance with a few working parameters
of pulse laser ablation in a liquid technique. In this report, the size, shape, concentration, and
aggregation properties of gold NPs were estimated by the Mie–Gans model based on a reliable
and interactive real-time absorption spectroscopy. The major features can be an important means
toward determination of efficient process measures, productivity of gold NPs generated, and
efficiency of the mass ablation rate. The accuracy in the measurement is confirmed via trans-
mission electron microscopy analysis. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JNP.9.093089]
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1 Introduction

Nanoparticles (NPs) of noble metal, especially gold (Au) NPs, represent an important
class, largely investigated to date because of their visible plasmon frequencies and minimal
reactivity. Pulse laser ablation in liquid (PLAL) has recently become one of fascinating
top-down approaches for its simplicity in generating fine micro/nanoparticles with an outstand-
ing purity and highly stable colloids.1–3 Many studies have been carried out to improve the
structure and morphology of gold colloids by engaging several processing elements,4 including
laser parameters, liquid species, physical conditions, and chamber design. When it comes to
characterizing the AuNPs, sophisticated and expensive microscopic techniques such as trans-
mission electron microscopy (TEM), atomic force microscopy, and scanning electron micros-
copy are often used. Even though it is possible to obtain the average size and mass distribution of
the particles, information in terms of concentration and aggregation of NPs is still lacking and
needs further attention. One way to overcome the drawback is by introducing a more economi-
cal, easier and faster measurement of NP through a real-time monitoring system. The aim of this
paper is to introduce an in situ analysis by monitoring and controlling the formation of AuNPs
production via a PLAL system. The synthesis of AuNPs is optimized via several working
conditions within the ablation system. Since the surface plasmon absorption (SPA) of
AuNPs is strongly dependent on the average size and concentration, UV-Vis spectroscopy
enables one to characterize the content of Au suspension by fitting the spectra according to
the Mie–Gans model.
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2 Experimental Section

2.1 Pulse Laser Ablation in Liquid

(a) A Q-switched Nd: YAG laser (pulse width, 10 ns; repetition rate, 10 Hz, operating in the
fundamental wavelength of 1064 nm) was focused on a pure Au metal plate (99.99%) through a
lens of 100 mm focal length. It was placed at the bottom of a quartz cell manufactured by
Hellma® with dimensions of 3 × 3 × 3 cm3 filled by 10 ml of deionized water. The depth
of the water layer above the target was fixed at 10 mm. The reference position between the
lens and surface target was fixed at 37 mm due to the refraction of light phenomenon.5

During the ablation process, the cuvette was rotated slowly in order to avoid craters on the sur-
face of the target. The cuvette was placed on a rotational platform (Newport®-UTR80) that
revolved at a constant speed of 5 rounds per minute (RPM) driven by a stepping motor.
Increasing the current through the motor allows increasing the speed of the rotation.

2.2 In Situ UV-Vis Spectroscopy

(a) An in situ measurement of nanoparticle is based on UV-Vis spectroscopy. In order to provide
a homogenous solution, the measurement was taken at each rotational stop. The optical absorp-
tion setup comprises a versatile broadband deuterium-halogen light source, [AvaLight-D (H)-S,
Avantes] optimized for the UV-Vis-NIR (215–2500 nm). The light source was coupled to an
optical fiber (P400-1-SR, Ocean Optics) through a collimator lens (74-UV, Ocean Optics).
The light was connected to a broad-band probe light, via an USB2000 + detector (miniature
fiber-optic spectrometer, Ocean Optics). The intensity of the spectrum was measured precisely
with the aid of Spectrasuite software (Ocean Optics).

2.3 Size, Shape, and Concentration of AuNPs

Information regarding the formation of Au suspension alternatively can be attained from the
interpretation of the UV-Vis spectrum in terms of the Mie–Gans theory.6 For particle radius,
R is much smaller compared to the wavelength of the exciting light,7 and higher-order terms
of the multipolar expansion can be ignored; no scattering is expected from the bulk. Thus,
the absorption cross sections within the dipolar approximation for a single spherical particle
with Mie model can be expressed as7
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18π
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where λ is the absorbed wavelength, V is the average volume per particle of radius R, εm is the
dielectric constant of the host medium and ε ¼ ε1 þ iε2 is the complex dielectric function of
AuNPs. Aggregated particles usually take the form of cigar-like shaped particles; hence, the
rest of the non-spherical arbitrary shape particles are treated as spheroidal particles with the
length of the three axes to be a, b, and c, where b is the smaller axis and a > b ¼ c.8 In modeling
the prolate spheroids of the aspect ratio, a∕b the dipolar extinction cross section is given by8
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where Pj is the shape factors that relate to the aspect ratio of the particles and V is the volume.
The fraction of spheroidal particles, f can be described by the distribution of aspect, a∕b that is
assumed to be in Gaussian form:7
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where σG is the standard deviation for the distribution of aspect ratios. The total number of
particles per volume, N can be determined from the Beer–Lambert law equation which is
expressed as
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A ¼ NL½ð100% − fÞσspherical þ fσspheroid�
2.303

; (4)

where A is the absorbance of the surface plasmon peak, and L is the optical path length inside
the cuvette. These three important parameters (σsphere, σspheroid, N) are adequate to define the
absorption spectra profile prior to estimating the particle dimensions along with the aggregation
contributions.9 As for the local dielectric function of gold, the reported data in Ref. 10 was used
for the corrected free mean path of small AuNPs.

Morphology and size distribution of AuNPs were observed by an energy filtered transmis-
sion electron microscopy (EFTEM) model Libra 120-Carl Zeiss, at an accelerating voltage of
120 kV. The size distribution of AuNPs was obtained by measuring diameters of more than 350
NPs in sight using “ImageJ Tool” software.

3 Results and Discussion

Figure 1(a) shows the assembly of in situ measured and calculated UV-Vis spectra of AuNPs
produced by laser ablation in deionized water. The measurement of each spectrum was char-
acterized as tabulated in Table 1. An average radius of the AuNPs was expanded and the
SPA maximum slightly blue-shifted as the ablation time increased. In literature,11 below a
size of 25 nm for Au, R is much more pronounced on the bandwidth and less dependent
upon the maximum peak, λmax of the local-field enhancement.

A longer time ablation translates to higher numbers of pulses which leads to a greater number
of particles that coexist inside a medium which is likely to induce plasmonic coupling between
the particles. Although the aggregation is minimized based on the low spheroid contributions,
large colloids are often interlinked by smaller particles to form a bigger particle radius for the
particles in the solution. The particle density, measured in molarity, M (μg∕ml), behaves in
a linear fashion as the ablation time increases as shown in the inset of Fig. 1(b). On average,
the Au mass ablation rate is found to be 2.96 μg∕min.

Continuous rotation of the surface target during laser ablation, as depicted in Fig. 2, distributes
the large colloidal particle formed in the solution and prevents the agglomeration process due to
further interaction with the laser beam. The generated Au particles are collected in the middle of
the solution and can readily undergo laser irradiation synthesis before dispersing throughout the
medium once the rotational stage stops. The fitting parameters are reported in Table 2. The SPA
maximums λmax were seen to be sharply located around 520 nm and slightly enhanced toward the
shorter spectral region. The ratio of the absorbance at different wavelengths (λmax∕λ650) can be
used to quantitatively monitor the aggregation principal without knowledge of the particle size

Fig. 1 (a) Time evolution of in situ UV-Vis measured spectra of AuNPs synthesized by PLAL
method at different time interval (colored lines) fitted to the Mie–Gan model (symbols).
(b) Calibration curve of absorbance at 380 nm with respect to gold mass concentration. Fitting
parameters are reported in Table 1.
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and concentration.12 The absorption spectra beyond 600 nm are exclusively attributed to the exist-
ence of a small amount of oblate particles. Higher values of the ratios possess a lower agglom-
eration definition between the generated particles. As the rotational speed increases, larger particles
are fragmented into smaller ones by the Coulomb explosion that leads to an average radius below
5 nm in size. On the other hand, the lower value of σG reflects the small fraction of the spheroidal
contributions. The finding suggests that the aggregation and reshaping of the AuNPs are consid-
ered to be induced by photoexcitation followed by the melting of the NPs based on the laser-liquid
interaction.13 A linear relationship between the contributions of the spheroidal particles and the
rotational speed was obtained as shown in the inset of Fig. 2. These indicate the lower contribution

Table 1 Optical properties of AuNPs at different ablation times.

Ablation time (s)
SPA peak,
λmax (nm)

Average radius,
Ravg (nm)

Concentration,
M (μg∕ml)

Spheroid,
f (%)

160 519.0 6.7 6.17 23

80 520.5 6.6 3.73 22

40 520.5 6.3 2.06 25

20 520.5 5.7 1.76 23

10 521.0 5.2 1.43 26

Fig. 2 (a) Schematic diagram of AuNPs generated based on pulse laser ablation on a rotating
surface plate immersed in deionized water. (b) UV-Vis measured spectra of AuNPs at different
rotational speed fixed at a constant time. Inset: Fraction of spheroidal contribution between rota-
tional speeds.

Table 2 Optical properties of AuNPs at different rotational speeds.

Speed (RPM) λmax (nm) λmax∕λ650 R (nm) σG Sphere (%) Spheroid (%)

0 520.4 2.38 5.8 2.4 66 34

20 519.5 2.82 5.4 2.4 71 29

40 519.3 3.32 5.7 2.2 74 26

60 519.6 4.05 5.0 2.1 77 23

80 518.3 4.77 4.3 1.9 80 20
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of the spheroidal particles and a much greater contribution from smaller sphere particles oscillating
near the surface plasmon resonance of the local electromagnetic field. Figure 3 shows a clearer
view of the absorption spectrum of AuNPs stationary both stationary (0 RPM) and rotating at 80
RPM with respect to Fig. 2(b), together with the EFTEM image. The filled area under the graph
illustrates the contribution of spherical and spheroidal particles in the solution, respectively. For 0
RPM, shown in Fig. 3(a), the Mie–Gans fitting built on the summation of both shape contributions
demonstrates an average radius of R ¼ 5.8 nm in accordance with the spheroid’s contributions of
34%. When observing the corresponding electron micrograph, the AuNPs were seen overlapping
among each other and showed the presence of cigar-like particle shapes made by several closely
bound aggregated particles. As specified by the TEM analysis, the mean radius and standard
deviation calculated from the log-normal distribution are R ¼ 5.7� 1.6 nm. This is in good agree-
ment with the Mie–Gans calculation. The optimal maximum speed was determined at 80 RPM.
Mie–Gans calculation traces with a smaller average radius of R ¼ 4.3 nm for the fraction of sphe-
roidal particles significantly diminished to 20% after the laser treatment, as shown in Fig. 3(b). This
led to the low absorbance above the 600 nm spectral range. Furthermore, the size distribution of
AuNPs tends to shift to smaller radii after the rotation speed increases. The formation of the par-
ticles observed was well separated with respect to one another and revealed a more nearly spherical
shape where the average radius and size distribution were calculated to be R ¼ 4.2� 1.3 nm. This
still provides remarkable agreement with the radius calculated with the Mie–Gans model. The
results showed that at 0 RPM, the NPs were found to aggregate, whereas at the higher rotational
speed of 80 RPM, they were found to be reduced in size and exhibited a narrower size distribution
as well as a larger number of smaller NP particles within the solution. The better size separation
offers a lower degree of polydispersity (15.5%) for a one-step AuNPs synthesis.

4 Conclusions

A simple, cost-effective, and fast calculation of fresh AuNPs formation was successfully
obtained based on the in situ measurement of the SPA spectra. The characterization method
can be a key tool for monitoring and efficiently controlling the agglomeration of AuNPs.

Fig. 3 (Top) Absorption spectrum of AuNPs synthesized by PLAL process at two separate rota-
tional speeds (black line) for (a) 0 RPM and (b) 80 RPM. Mie–Gans curve fitting (green dots),
spherical contribution (red region) and spheroids contribution (purple region) to the fitting.
(Bottom) The AuNPs size distribution fitted with a log-normal curve (red line) from EFTEM image.

Affandi et al.: In situ measurement of gold nanoparticle production

Journal of Nanophotonics 093089-5 Vol. 9, 2015



Moreover, this feature allows the determination of an optimal process control and the quality of
the mass production by PLAL. Information in terms of the average size, shape, and density was
identified through fitting the measured absorption spectra using the Mie–Gans approach which
compared well with TEM analysis.
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