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Abstract. We present an automatic mutual information (MI) registration method for mobile LiDAR and panora-
mas collected from a driving vehicle. The suitability of MI for registration of aerial LiDAR and aerial oblique
images has been demonstrated under an assumption that minimization of joint entropy (JE) is a sufficient
approximation of maximization of MI. We show that this assumption is invalid for the ground-level data. The
entropy of a LiDAR image cannot be regarded as approximately constant for small perturbations. Instead of
minimizing the JE, we directly maximize MI to estimate corrections of camera poses. Our method automatically
registers mobile LiDAR with spherical panoramas over an approximate 4-km drive, and is the first example we
are aware of that tests MI registration in a large-scale context. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.OE.54.1.013108]
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1 Introduction
Image-to-range registration is a prerequisite for many appli-
cations. The registration result is critical not only for texture-
mapping three-dimensional (3-D) models of large-scale
scenes, but also for applications such as image-based upsam-
pling of range data,1–4 image-guided range segmentation,5,6

and 3-D scene modeling.7 The problem of image-to-range
registration involves the alignment of two-dimensional
(2-D) images with 2-D projections of 3-D range data, con-
sisting of estimating the relative camera pose with respect to
the range sensors.

There has been a considerable amount of research in
registering images with range data. Existing methods include
keypoint-based matching,8–10 structural features-based
matching,11–14 and mutual information-based registration.15

The range data include terrestrial or aerial LiDAR, and the
images include vertical or oblique aerial images and ground-
level images.

Keypoint-based matching8,10 is based on the similarity
between laser intensity images and corresponding camera
images. First, each pixel of the laser intensity image is
encoded with its corresponding 3-D coordinate. Then, fea-
ture points are extracted by using either SIFT16 or Förstner
operators17 from both images. A robust matching strategy
based on RANSAC18 and/or epipolar geometry constraint
is employed to determine the correspondence pairs for com-
puting the fundamental matrix. Sensor registration is then
achieved based on a robust camera spatial resection. Ding
et al.9 registered oblique aerial images with a 3-D model
generated from aerial LiDAR data based on 2-D and 3-D
corner features in the 2-D images and 3-D LiDAR model.
The correspondence between extracted corners was based
on a Hough transform and generalized M-estimator sample
consensus. The resultant corner matches are used in Lowe’s

algorithm19 to refine camera parameters estimated from a
combination of vanishing point computation and GPS/IMU
readings. In general, the feature point extraction and robust
matching are the key to a successful registration for this type
of approach.

Instead of matching points, structural feature-based
methods11–14 match structural features in both 2-D and 3-
D space to estimate the relative camera pose. Direct match-
ing single line features is error-prone because of the noise in
both LiDAR and image data as well as the robustness of
the detection algorithms. High-level structural features are
helpful to increase the robustness of both detection and
matching. Wang and Neumann14 registered aerial images
with aerial LiDAR based on matching so-called “3
Connected Segments” in which each linear feature contains
three segments connected into a chain. They used a two-
level RANSAC algorithm to refine the putative feature
matches, and estimated camera pose using the method
described in Ref. 20. Liu et al.11–13 extracted so-called “rec-
tangular parallelepiped” features, which are composed
of vertical or horizontal 3-D rectangular parallelepipeds
in the LiDAR and 2-D rectangles in the images, to estimate
camera translation with a hypothesis-and-test scheme.
Camera rotation was estimated based on at least two
vanishing points. Since vanishing points are required,
their methods work well for ground-level data but are
not efficient to handle aerial data with a weak perspective
effect.

All the above methods are dependent on either the strong
presence of parallel lines to infer vanishing points, or avail-
ability of feature pair correspondence, which limits their
applicability and robustness. A recent method15 using statis-
tical metrics, such as mutual information (MI),21 as a simi-
larity measure for registering oblique aerial images and aerial
LiDAR does not require any feature extraction process.
This method searches for the optimal camera pose through
maximizing the MI between camera images and different
attributes of LiDAR such as the LiDAR intensity images,

*Address all correspondence to: Ruisheng Wang, E-mail: ruiswang@ucalgary
.ca

Optical Engineering 013108-1 January 2015 • Vol. 54(1)

Optical Engineering 54(1), 013108 (January 2015)

http://dx.doi.org/10.1117/1.OE.54.1.013108
http://dx.doi.org/10.1117/1.OE.54.1.013108
http://dx.doi.org/10.1117/1.OE.54.1.013108
http://dx.doi.org/10.1117/1.OE.54.1.013108
http://dx.doi.org/10.1117/1.OE.54.1.013108
http://dx.doi.org/10.1117/1.OE.54.1.013108
mailto:ruiswang@ucalgary.ca
mailto:ruiswang@ucalgary.ca


depth maps, or a combination of both. Instead of using fea-
tures, the MI method evaluates statistical measures using all
the pixels in both images, which avoids the problems of
feature extraction and correspondence. Thus, MI registration
method holds the potential to be a robust solution.

This paper deals with the problem of the registration
between mobile LiDAR and spherical panoramas. The
data acquisition platform is designed such that mapping
between the LiDAR and spherical camera system is
approximately known through mechanical measurements.
However, because of vibration induced by motion of the
platform and deformations arising from temperature
changes, significant registration errors can still occur, requir-
ing estimation of the true mapping parameters.

In this paper, we use a portion of the LiDAR and spheri-
cal panoramas (i.e., one-sixth of the entire panorama) for
MI computation as we project them onto a plane with a
view port of 940 × 452 pixels through OpenGL rendering.
In contrast to Mastin et al.,15 we explicitly use the MI metric
as the similarity measure. In their work, which involved
the registration of aerial LiDAR with oblique images, it
was assumed that the entropy of the LiDAR images
remained approximately constant for small perturbations.
Under this assumption, minimizing the joint entropy (JE)
is equivalent to maximizing the MI. However, as we
show in Sec. 3, this approach does not appear to work
for the case of ground-based applications such as those con-
sidered in this paper. The statistics of the data are such that
the constant entropy assumption breaks down, invalidating
the use of JE.

The algorithm presented in this paper is fully automatic
and has been designed to run efficiently on a metropolitain
LiDAR/spherical image database using different representa-
tions of LiDAR from those in Mastin et al. We are not aware
of any other examples of MI registration that have been
attempted on this scale.

2 Data Acquisition
Data are collected from a mobile mapping system shown
in Fig. 1, which is composed of a 360 deg LiDAR sensor
(Velodyne HDL-64E), six high-resolution cameras, a
Ladybug 3 camera, GPS, inertial measurement unit (IMU),
and distance measurement instrument. The Velodyne LIDAR
sensor consists of 64 lasers mounted on the upper and lower

blocks of 32 lasers each and the entire unit spins and gen-
erates over 1 × 106 pps. The sensor can spin at rates ranging
from 5 to 20 Hz, and the default is 10 Hz with a 905-nm
wavelength. The Ladybug 3 covers more than 80% of a
full sphere, with six high quality 1600 × 1200 Sony charge-
coupled device sensors, and provides up to 12 MP images
at 15 fps. All of these sensors are georeferenced through
a GPS and an IMU.

3 Method
We start with the work of Mastin et al.15 that registers aerial
LiDAR with aerial oblique images based on MI. LiDAR
intensity images that normally look very similar to gray-
scale camera images with, of course, a much lower resolu-
tion. This correlation makes MI a suitable measure to
evaluate their similarity. In Ref. 15, they define pðx; yÞ and
lðx; yÞ as the intensity camera image and projected LiDAR
features, respectively, on the xy image plane. For a specific
camera matrix T, the projected LiDAR features are given by
lT . MI-based registration methods find the optimal camera
matrix that maximizes the MI between camera images and
projected LiDAR features

TMI ¼ arg max
T

Iðp; lTÞ: (1)

They use a generic camera model, the finite projective
camera as described in Ref. 20. Under this camera model,
a point in space is mapped to the point on the image
plane by

P ¼ KR½Ij − C�; (2)

where C ¼ ½Cx; Cy; Cz�T is the camera center, I is the
identity matrix, and R is the camera rotation matrix.
R ¼ RxðγÞRyðβÞRzðαÞ is given by the three rotation matri-
ces, where α, β, and γ are the Euler angles representing
yaw, pitch, and roll. The matrix K is the camera calibration
matrix.

In this paper, we show that their assumption is invalid for
the ground-based case, as small perturbations in camera
pose have larger effect on the LiDAR rendering in the
ground-level data. The entropy of a LiDAR image cannot
be regarded as approximately constant for small perturba-
tions. This is demonstrated by a perturbation analysis,
which shows how the normalized MI and JE vary around
the initial registration in terms of altered camera poses
as shown in Fig. 2. We select four representative scenes
for this test from Fig. 8. Since the correct registration
value should be near the initial registration, we set all
parameters at their initial values and vary each parameter
to view the shape of the cost functions. The range of camera
parameter perturbations is �2 units, meters for translation
and degrees for orientation. The step size for the perturba-
tion analysis is 0.1 units, for a total of 40 measurements for
each of the charts shown in Fig. 2. As shown in the figures,
the x-axis corresponds to relative displacement and the y-
axis corresponds to the normalized value of MI. The traces
labeled 1, 2, 3, and 4 in Fig. 2(a)–2(l) correspond to images
1, 4, 5, and 8 in Fig. 8, respectively. The remaining
trace, data5, rendered as a solid black line in each chart,Fig. 1 NAVTEQ TRUE mobile mapping system.
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corresponds to the mean values of the other traces and
indicates the general trend. Note that in all cases, the nor-
malized MI yields an unambiguous maximum, whereas
the JE measure is ambigous in most cases. Hence, our con-
clusion is that JE is an inappropriate metric for use in the
case of ground-level data.

3.1 Coordinate Framework

Our panoramic images are generated from a Ladybug III sys-
tem consisting of six Fisheye cameras, and the individual
images are then stitched together via α blending. The result-
ing mosaic is transformed into a spherical panorama via
a cylindrical equidistant projection as shown in Fig. 3(a).
To generate a linear perspective image, such as the one cor-
responding to the spherical panorama in Fig. 3(a) and shown
in Fig. 3(b), the panorama is mapped onto a sphere and
viewed from the center (virtual camera).

Both LiDAR and image data are georeferenced. We first
convert the geographic coordinates (latitude and longitude)
into Earth-centered, Earth-fixed (ECEF) coordinates, and
then they are transformed into local tangent plane (LTP)
coordinates. All computations are based on LTP coordi-
nates. Each LiDAR point p ¼ ðx; y; zÞT in LTP coordinates
is converted into spherical coordinates ðθ;φÞ by Eq. (3)

θ ¼ arccos

�
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

�
; φ¼ arctan 2ðy; xÞ; (3)

where θ is the inclination ðθ ∈ ½0; π�Þ, and φ is the azimuth
ðφ ∈ ð−π; π�Þ. Each point’s corresponding location in the
panoramic image ðr; cÞ is computed by Eq. (4)

r ¼ int

�
θ

π
H

�
; c ¼ int

��
φ

2π
þ 0.5

�
W

�
; (4)

where H and W are the height and width of the panoramic
images, respectively.

3.2 Mutual Information Registration

MI methods have been widely used for the multimodal
registration problem in the medical imaging domain (e.g.,
registration of CT and MRI). Recently, they also have been
applied to the problem of registering airborne LiDAR data
with oblique aerial images.15 The MI of two random varia-
bles X and Y can be defined as

IðX;YÞ ¼
Z
Y

Z
X
pðx; yÞ log

�
pðx; yÞ

p1ðxÞp2ðyÞ
�
dxdy; (5)

Fig. 2 Probe analysis on camera translation and orientation parameters for evaluation of normalized
mutual information (MI) and joint entropy (JE): (a) X displacements MI. (b) X displacements JE.
(c) Roll displacements MI. (d) Roll displacements JE. (e) Y displacements MI. (f) Y displacements
JE. (g) Pitch displacements MI. (h) Pitch displacements JE. (i) Z displacements MI. (j) Z displacements
JE. (k) Yaw displacements MI. (l) Yaw displacements JE.
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where pðx; yÞ is the joint probability density function of X
and Y, and p1ðxÞ and p2ðyÞ are the marginal probability den-
sity functions of X and Y, respectively. The problem here is
to estimate the correction of the relative camera pose
between the LiDAR sensor and the Ladybug camera. The
spherical panorama is chosen as a fixed image, because
the camera view point has to stay in the center of the sphere
to generate perspective images. Once the camera moves out
of the sphere center, the spherical image will be distorted.
The LiDAR image is selected as a moving image, where

new LiDAR images are generated at each iteration during
the optimization process. Both LiDAR and spherical images
are rendered onto a plane from the camera center using
OpenGL for the MI evaluation under a pinhole camera model.
The perspective camera image is generated by rendering the
spherical panorama with a view port of 940 × 452 pixels.
The LiDAR dataset is normally very large. In our experi-
ments, each scene contains 8 × 106 LiDAR points. To make
3-D rendering efficient, we also integrate the OpenGL ren-
dering of the LiDAR features into the registration pipeline to
speed up the optimization process.

We use three different representations of the LiDAR data
with spherical panoramas for evaluating MI. The first repre-
sentation of LiDAR is the projected LiDAR points with
intensity information [see Fig. 4(b)]. We call it a LiDAR
intensity image which looks similar to a gray-scale camera
image. We use 256 bins for representing LiDAR intensity
images. The second representation is the projected LiDAR
points without intensity information [see Fig. 4(c)]. We
use two bins for representing the binary images. The third
is the depth map of the LiDAR point cloud [see Fig. 4(d)].
The point cloud is rendered with depth intensities with
256 bins, where brighter points indicate a further distance
to the camera center. We use gray-scale camera images
instead of color images [see Fig. 4(a)] for the MI compu-
tation. Note that the bin size in each of the three cases is
determined by quantization, e.g., 8-bits for intensity and
1-bit for the binary image corresponding to the LiDAR pro-
jection in the image plane. The choice of normalization for
depth on the interval [0, 255] was empirically determined.
We did not investigate the effect of different quantizations
in this study.

We use the Nelder-Mead downhill simplex method22 to
optimize the cost function as it does not require derivatives
of the cost function. It is a commonly used nonlinear opti-
mization technique that is well suited to multidimensional,
unconstrained minimization as is the case here. As it is appli-
cable only to convex minimization, we must ensure that
the initial starting point is in the vicinity of the correct local
minimum. In practice, we know the approxiate rotation and

Fig. 3 (a) Spherical panorama generated from six spherical images.
(b) Linear perspective view corresponding to the spherical panorama.

Fig. 4 Camera image and three representations of LiDAR point clouds in a same scene: (a) camera gray-
scale image, (b) LiDAR intensity image, (c) LiDAR points, (d) LiDAR depth map.
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translation parameters by virtue of measurements of the data
acquisition platform, making finding a suitable starting point
straightforward.

4 Experiments
For the experiments, we made the algorithm automatically
run through an approximate 4-km drive. The driving routine
is shown with the light blue line in Fig. 5(a). An illustration
of the collected data is shown in Fig. 5(b), where the distance

between each sperical panorama is around 4 m. The test data
were collected in the northwestern suburban of Chicago,
Illinois, which include residential, urban streets, and high-
way scenes. The data are in binary format containing around
4 GB LiDAR data (about 226 × 106 points) and 1 GB pano-
ramic images (814 spherical panoramas). We use the camera
views perpendicular to or parallel to the vehicle driving
direction to generate perspective images. Figure 6 illustrates
the camera views vertical to the vehicle driving direction.
The distance between each camera (e.g., C1, C2) is around
4 m as the images are taken around every 4 m. The camera
views parallel to the driving direction are similar to Fig. 6
except the camera view points to the front.

For our analysis, we selected 10 representative urban
scenes shown in Fig. 8 for the evaluation using the three dif-
ferent representations of the LiDAR data described earlier.
Images 1 and 2 show a parking lot in a commercial area (pos-
sibly shopping mall) from differnet viewpoints. Images 3 and
4 show a urban street in two different scenarios: with or
without trees. Images 5 and 6 show two different residential
areas. Images 6 and 7 show two different highway scenes.
Image 9 shows a scene where trees are major objects, and
image 10 shows a scene where houses are major objects.
We start with an approximate initial registration that is deter-
mined from the data acquisition platform. The initial camera
pose corrections are set to zero. The optimization will com-
pute the final camera corrections. The experiments were per-
formed on a laptop PC with a dual core 2.60 GHz processor
and 2 GB of RAM. The NVIDIAQuadro NVS 135 M video
card was used. The registration algorithms were imple-
mented in C++, and the implementations of MI and amoeba
optimization were from insight segmentation and registration
toolkit.23 We adjust the tolerances on the optimizer to define
convergence. The tolerance on the six parameters is 0.1 (the

Fig. 5 Test data: (a) test data overview, (b) an illustration of the data.

Fig. 6 Camera configuration.

Fig. 7 Optical image (a) and LIDAR image (b) with 15 manually
selected correspondence points.
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unit for translation parameters is meters and degrees for ori-
entation parameters). We also set the tolerance on the cost
function value to define convergence. The metric returns the
value of MI, for which we set the tolerance to be 0.001 bits.
The initial size of the simplex is set to 1, and the maximum
iteration number is set to 200. In our experiments, almost
all registrations converged in less than 150 iterations.

4.1 Performance Evaluation

To quantitatively measure the registration results, we com-
pare the registration accuracy in terms of pixel offset
between LiDAR and camera images before and after the
registration. We manually selected 15 correspondence
points in each spherical image and LiDAR intensity
image. Figure 7 shows an example of a spherical image
and a LIDAR intensity image marked with 15 correspon-
dence points. Figure 9 shows the computed Euclidean
distance histogram of the correspondence points for
each scene in Fig. 8. In Fig. 9, for instance, Image 1B
shows the histogram of the pixel offsets (we compute the

histograms in terms of the offset errors (pixels) among
these correspondence points) for the scene indicated
by Fig. 8(a) (Image 1) before registration, and Image 1A
shows the corresponding pixel offsets after registration.
The horizontal axis corresponds to the pixel offsets,
and the vertical axis corresponds to the frequency. Image
1B shows that most of the pixel offsets are 2 pixels, and
Image 1A shows that most of the pixel offsets are within
1 pixel after MI registration. A similar interpretation applies
to the rest of the figures. Figure 10 shows the computed
Euclidean distance histograms of the correspondence
points for all the 10 images before and after registration.
Before the MI registration, most correspondence points
have 2 to 3 pixel errors. After the registration, most of
the correspondence points are within 1 pixel. The pixel
offset histograms using other LiDAR representations are
similar.

Table 1 shows the run time for the 10 representative
scenes. Testing on the 4-km drive shows that using the
LiDAR points without intensity normally runs quickly

Fig. 8 Images used for experiments: (a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4; (e) Image 5;
(f) Image 6; (g) Image 7; (h) Image 8; (i) Image 9; (j) Image 10.
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with fewer iterations. Using LiDAR points with intensity
normally performs the most robustly followed by using
LiDAR points without intensity and using the LiDAR
depth maps. We also study the convergence of the optimiza-
tion using three different measures of MI. Without loss of
generality, we choose the data shown in Fig. 4 as an example.
Figure 11 shows the sequence of metric values computed as

the optimizer searched the parameter space using these three
different representations of the LIDAR data. The measure
initially increases overall with the number of iterations.
After about 50 iterations, the metric value reaches a steady
state without further noticeable convergence.

An example of the registration is shown in Fig. 12. After
MI registration, the misalignment is not noticeable.

Fig. 9 Registration error analysis, X -axis stands for pixels, and Y -axis stands for the frequency:
(a) Image 1B; (b) Image 1A; (c) Image 2B; (d) Image 2A; (e) Image 3B; (f) Image 3A; (g) Image 4B;
(h) Image 4A; (i) Image 5B; (j) Image 5A; (k) Image 6B; (l) Image 6A; (m) Image 7B; (n) Image 7A;
(o) Image 8B; (p) Image 8A; (q) Image 9B; (r) Image 9A; (s) Image 10B; (t) Image 10A.
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4.2 Perturbation Analysis

We plot the normalized MI of Fig. 4(a) in Fig. (13) using the
three LiDAR attributes. Figure 13 (red intensity, green point
only, and yellow depth map) demonstrates that each curve
has a single peak over a subset of the displacement param-
eters around the initial registration, which demonstrates
the effectiveness of the maximization of MI for computing
optimal camera corrections.

We also investigated the failure cases. In our experiments,
the algorithm works well in feature-rich environments such
as residential areas, but often fails in scenes with sparse fea-
tures or containing moving objects like cars, particularly
highway scenes. In our case, the highway scenes mostly
fail. The partial overlap between LiDAR point clouds and
camera images is another reason. The LiDAR scanner
only can reach up to 120 m, while the camera can always
have a larger field of view than the LiDAR scanner.
Figures 14(a) and 14(b) show one typical failure case in
a highway scene. The cars in the camera image [Fig. 14(a)]
do not appear in the LiDAR image [Fig. 14(b)]. The LiDAR
image only partially covers the camera image; for instance,
the trees and buildings in the far distance in the camera
image do not appear in the LiDAR image. In Ref. 15,
the authors claim that they only use the image pixels
with corresponding projected LiDAR points for MI calcu-
lation and others are considered background points and
discarded. We tried to discard the background points and
only use overlapping regions for MI computation, but
the results were worse than using entire images. When
using entire images, the background such as sky appears
similar in both LiDAR and camera images, which largely
contributes to the MI score. When using overlapping regions
for MI computation, the LiDAR images contain no sky.
Therefore, the background is not used in the MI computa-
tion, which affects the MI evaluation. Failure cases are
also due to overexposed images [Figs. 14(c) and 14(d)],

Table 1 Registration times in minutes for correctly registered images.

MI measure LiDAR intensity
LiDAR without

intensity
LiDAR depth

map

Image 1 0.86 0.51 0.93

Image 2 0.93 0.50 1.08

Image 3 1.05 0.63 0.97

Image 4 0.87 0.55 0.88

Image 5 0.70 0.4 1.06

Image 6 0.83 0.38 0.85

Image 7 0.85 0.38 0.65

Image 8 0.73 0.38 0.87

Image 9 0.97 0.50 0.71

Image 10 1.03 0.50 0.75

Mean 0.88 0.47 0.87

Fig. 10 Histogram of Euclidean distance of pixel offset for before
registration (a) and after registration (b). The histograms were gener-
ated with samples for all 10 test images.

Fig. 11 Mutual information values produced during the registration
process.
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particularly in the case where the vehicle drives through/out
of a tunnel.

4.3 Camera Pose Corrections

One of our interests is to investigate how camera pose errors
change during the data collection. To do so, we manually
selected 100 successful registrations (using the registrations
from camera views vertical to the vehicle driving direction)
by carefully examining the alignment of major features in
the registered images, and plotting the camera pose correc-
tions as shown in Fig. 15. Figure 15(a) shows the camera
translation corrections, and Fig. 15(b) shows the cameraFig. 12 An example of the registration results.

Fig. 13 Plots of normalized mutual information: (a) X displacements. (b) Y displacements. (c) Z dis-
placements. (d) Roll displacements. (e) Pitch displacements. (f) Yaw displacements.
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orientation corrections. Our observation is that almost all of
the camera translation corrections are within 0.1 m, while the
orientation corrections are within 1 deg.

5 Conclusions and Future Work
In this paper, we have investigated MI registration for
ground-level LiDAR and images. The existing method15

for registering airborne LiDAR with aerial oblique images
does not work on the LiDAR and images collected from
the mobile mapping system, because the assumption used
in Ref. 15 is violated in the case of mobile LiDAR data.
Instead of the minimization of the JE, we use the maximi-
zation of MI for computing optimal camera corrections.
The algorithms work with unstructured LiDAR data and per-
spective rectified panoramic images generated by rendering a
panorama into an image plane using spheric views. We tested
the algorithm on various urban scenes using three different
representations of LiDAR data with camera images for the
MI calculation. Our mutual registration algorithm automati-
cally runs through large-scale mobile LiDAR and panoramic
images collected over a metropolitan scale. It is the first
example we are aware of that tests MI registration in a
large-scale context. With the initiative of urban 3-D model-
ing from location-based service providers such as Nokia and
Google, this work is particularly important for combining
ground-level range and visual data for large-scale photoreal-
istic city modeling.

We generated perspective images from spherical images
using the view either perpendicular or parallel to the vehicle
driving direction. Therefore, we just used one-sixth of the
entire spherical image for the MI registration, which does
not efficiently use all the available information contained
in the 360 deg panoramic images. For future work, one pos-
sible approach would be to project the entire LiDAR points
along with spherical images onto six cube faces using a
quadrilateralized spherical cube mapping24 or other linear
projections. Because the sky and the ground do not provide
much useful information, we actually need just four faces for
the MI registration. To speed up the computation, a multire-
solution approach can be employed by establishing image
pyramids on both images. This coarse-to-fine strategy can

Fig. 14 Failure cases: (a) Ladybug image. (b) LiDAR image. (c) Overexposed Ladybug image I.
(d) Overexposed Ladybug image II.

Fig. 15 Plots of camera pose corrections using 100 successful regis-
trations: (a) camera translation corrections, (b) camera orientation
corrections.
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improve the performance of the registration algorithm and
also increases robustness by eliminating local optima at
coarser levels. One of the limitations of the MI metric is
that the intensity histograms contain no spatial information.
One possible direction is to incorporate spatial context into
the metric to improve the robustness of the similarity
measure.

Beyond these incremental approaches, there are limits to
what can be achieved on a practical basis. However, since the
task is 3-D data acquisition, data may be discarded and reac-
quired as necessary. Thus, future research will also be aimed
at automatic detection of the different failure modes so that
reacquisition can be automatically initiated.
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