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Abstract. We validate a simple method for determining the confi-
dence intervals on fitted parameters derived from modeling optical
reflectance spectroscopy measurements using synthetic datasets. The
method estimates the parameter confidence intervals as the square
roots of the diagonal elements of the covariance matrix, obtained by
multiplying the inverse of the second derivative matrix of �2 with
respect to its free parameters by �2 /v, with v the number of degrees of
freedom. We show that this method yields correct confidence inter-
vals as long as the model used to describe the data is correct. Imper-
fections in the fitting model introduces a bias in the fitted parameters
that greatly exceeds the estimated confidence intervals. We investi-
gate the use of various methods to identify and subsequently minimize
the bias in the fitted parameters associated with incorrect modeling. ©
2008 Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2982523�
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Introduction
itting in vivo optical spectroscopic data with mathematical
odels that describe the underlying physical “principles” is

ommon practice in biomedical optics. Examples of such
nalyses include the fitting of multicomponent fluorescence
pectra in tissue �that can include tissue autofluorescence as
ell as exogenous fluorophores�, the fitting of multicompo-
ent Raman spectra to determine the tissue biochemistry, and
he fitting of multicomponent extinction spectra of tissue
hromophores using reflectance spectroscopic measurements.
n vivo fluorescence, Raman, and reflectance spectroscopic
easurements are all affected by the tissue optical properties.
he effect of the optical properties on the measured spectra
ust first be accounted for using physical light-tissue interac-

ion models to obtain the “intrinsic” fluorescence, Raman, and
xtinction spectra. These undistorted spectra can then be ana-
yzed with linear component analysis techniques such as sin-
ular value decomposition or other least squares minimization
echniques. However, if the physical models used in the “pre-
rocessing step” are inaccurate, an error in the fitted compo-
ent values will be introduced. Furthermore, even if the algo-
ithms used to extract the intrinsic optical spectra from the
easured spectra are completely accurate, a lack of knowl-

dge of either the in vivo spectral shape or even the physical
resence of some of the components may introduce another
ource of error in the analysis of in vivo optical spectroscopic
easurements. Finally, even when the intrinsic spectra are

etermined correctly and full knowledge about the presence
nd spectral shapes of all the components is available, another

ddress all correspondence to: Arjen Amelink, Center for Optical Diagnostics
nd Therapy, Department of Radiation Oncology, Erasmus MC, P.O. Box 2040,
000 CA Rotterdam, The Netherlands; Tel: +31 10 4632104; Fax: +31 10
632141; E-mail: a.amelink@erasmusmc.nl.
ournal of Biomedical Optics 054044-
source of error �uncertainty� in the analysis of optical spectro-
scopic measurements is introduced by a limited quality of the
data �signal-to-noise ratio� that can prevent accurate determi-
nation of some or all of the components in the component
analysis. The latter type of error is called a statistical error,
while the first two types of errors are considered as systematic
errors. These errors will introduce an uncertainty in the fitted
parameter values extracted from the component analysis. Cur-
rently, it is not common practice in the field of biomedical
optics to estimate the accuracy of the fitted parameter values
from single spectroscopic measurements. However, we be-
lieve that it is useful to at least determine the statistical error
in each of the fitted parameter values. For example, in the
case of averaging multiple in vivo measurements, calculating
the weighted average of the parameters using the statistical
errors as weight factors would be more appropriate than sim-
ply calculating the unweighted average and ignoring the sta-
tistical uncertainties associated with the quality of the fits of
the different spectra. Moreover, calculating the statistical er-
rors in the fit parameters facilitates objective assessment of
the quality of spectra and fits with the possibility to reject
poor quality spectra or fit values from an in vivo dataset.

In principle, it is possible to calculate the parameter uncer-
tainty by repeating the measurements and analyzing the stan-
dard deviation of parameters extracted from each of these
multiple measurements. However, this is not practical for in
vivo applications such as medical diagnosis, in which typi-
cally only one or a few measurements can be acquired. Sce-
panovic et al.1 recently published an error analysis for single
Raman spectroscopic measurements. They presented an ana-
lytical formula for estimating uncertainty expressed as a func-
tion of measurement noise, signal strength, and spectral over-
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ap. Their analysis characterizes uncertainty for linear fitting
unctions such as Raman and fluorescence spectroscopy, but
as not been tested for nonlinear fitting functions encountered
n reflectance measurements. In this work we validate a gen-
ral method for determining the statistical error or confidence
nterval �CI� on fitted parameters derived from modeling
ingle optical reflectance spectroscopic measurements using
ynthetic datasets. The method estimates the parameter CIs as
he square roots of the diagonal elements of the covariance

atrix, which is obtained by multiplying the inverse of the
econd derivative matrix of �2 with respect to its free param-
ters by �2 /v, with v being the number of degrees of free-
om. While the method is in principle valid for all spectro-
copic techniques �fluorescence, Raman, and reflectance�, we
emonstrate the validity of the approach using reflectance
pectroscopy as an example. Reflectance spectroscopy is sen-
itive to the absorption and scattering properties of tissue. The
bsorption coefficient is proportional to the concentration of
he tissue chromophores, and the scattering coefficient reflects
he size and density of scattering structures in the tissue. Sev-
ral methods have been employed to extract physically rel-
vant information �such as blood volume fraction and blood
aturation� from reflectance spectra, e.g., using an analytical
pproximation of the transport equation such as the diffusion
quation,2–6 Monte-Carlo-based models,7,8 or empirical
ethods.9–11 Irrespective of the approach, a model function
inimization or fitting routine must always be used to find the

ptimal values for the free parameters of the models. In gen-
ral, a least squares ��2� optimization routine is used where
he �weighted� square of the difference between the data
oints and the fitted curve is minimized. Most commercial
oftware packages that employ least squares fitting routines
utomatically generate the covariance �also called variance-
ovariance or error� matrix. In principle, the diagonal ele-
ents of this matrix represent the variances of the parameters

f 1. the fitting function is linear in the parameters and 2. the
easurement uncertainties of the individual data points are

nown exactly. However, neither of these points is fulfilled
or a single reflectance spectroscopy measurement. Neverthe-
ess, we demonstrate that our simple method to estimate the
tatistical error of the fit parameters from single reflectance
pectroscopic measurements yields correct CIs as long as the
odel used to describe the data is correct. Furthermore, we

nalyze the effect of imperfections in the fitting model �sys-
ematic errors� and show that even minor imperfections in the

odel may introduce a bias in the fitted parameters that
reatly exceeds the estimated statistical CIs. Finally, we in-
estigate the use of methods to identify and subsequently
inimize the bias in the fitted parameters associated with in-

orrect modeling.

Theory

n this work we use the empirical model used to analyze a
articular type of reflectance spectroscopy that we have been
nvestigating over the past 5 years, differential path-length
pectroscopy �DPS�,11–14 as an example. The model to which
he differential path-length spectra are fitted can be written as:
ournal of Biomedical Optics 054044-
R��� = �a1� �

�0
�a2

+ a3� �

�0
�−4�exp�− 0.4�a

total���� . �1�

The scattering function �in square brackets� is modeled by a
combination of Mie and Rayleigh scattering, given by power
law functions with amplitudes a1 and a3, and wavelength de-
pendencies �� /�0�a2 and �� /�0�−4, respectively. Here �0 is a
normalization wavelength, which we usually set to 800 nm.
The differential reflectance signal is attenuated due to the
presence of absorbers following Lambert-Beer’s law with a
path length equal to the fiber diameter,15,16 which in this ex-
ercise is assumed to be 0.4 mm. The absorption coefficient
�a

total��� is the sum of the absorption coefficients of the chro-
mophores present in the interrogation volume, which in this
example are assumed to be betacarotene and blood:

�a
total��� = 	a4�a

Bcar���

+ a5�a6�a
HbO2��� + �1 − a6��a

Hb����

��1 − exp
− a7�a6�a
HbO2��� + �1 − a6��a

Hb�����
a7�a6�a

HbO2��� + �1 − a6��a
Hb����

�� .

�2�

Parameter a4 represents the concentration of betacarotene, a5
is the blood volume fraction, a6 is the microvascular blood
oxygenation, and a7 is the average vessel diameter. Input
spectrum �a

Bcar��� is the specific absorption coefficient of
betacarotene,17 �a

HbO2��� is the absorption coefficient of fully
oxygenated whole blood, and �a

Hb��� is the absorption coef-
ficient of fully deoxygenated whole blood.18

With our experimental setup,11–16 the data acquired in each
reflectance spectrum consist of N=2048 pixel values Rdata�j�
corresponding to the differential reflectance at wavelengths
ranging from 350 to 1000 nm. Since the transmission effi-
ciency of the setup is different for different wavelengths, the
signal-to-noise ratio �SNR� is wavelength dependent. Clearly
it is desirable to put less weight on pixels with a low SNR in
the fitting routine. To accomplish this, the spectra are first
smoothed by binning p pixel values and using the N / p=n
average values Rdata�i� and corresponding standard deviations
s�i� in the fitting routine. In our simulations, we have typi-
cally used a bin width of 15 pixels, which corresponds to an
optical resolution of 6 nm, but we have also tested the effect
of smaller and larger bin widths �10 and 30 pixels, respec-
tively�. The data are then fitted to Eq. �1� using a least squares
Levenberg-Marquardt fitting routine using the standard devia-
tions of the binned data points as weight factors. Chi-square
�the quantity that is minimized� is given by

�2 = 

i=1

i=n �Rfit�i� − Rdata�i�
s�i� �2

, �3�

where Rfit�i� are the fitted reflectance values according to Eq.
�1�, Rdata�i� are the corresponding measured bin values, and
s�i� are the standard deviations of the bins. Note that in this
approach, it is critical to bin the input spectra �a

Bcar���,
�a

HbO2���, and �a
Hb��� in exactly the same way as the mea-

surement spectra. Furthermore, it is important to keep the bin
September/October 2008 � Vol. 13�5�2
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idth small enough so that the approximation

Rdata�i� =
1

p

j

j+p

Rdata�j� �
1

p

j

j+p

exp�− 0.4�a
total�j��

� exp�− 0.4
1

p

j

j+p

�a
total�j�� ,

olds. Particularly for wavelength regions where the absorp-
ion coefficient varies rapidly, e.g., around the Soret absorp-
ion band of hemoglobin, this approximation will become in-
alid for large bin widths.

The minimum value of �2 corresponds to values for the
even fit parameters �a1 to a7� that best describe the data. In
rinciple, the CI of each of these parameters is given by the
quare root of the diagonal elements of the covariance matrix.
he covariance matrix is the inverse of the second derivative
atrix of �2 with respect to its free parameters and is exact, if

nd only if; 1. the fitting function is linear in its parameters,
nd 2. the weight factors used in the minimization routine are
xact.19,20 In the case of our nonlinear model Eq. �1� with
stimated weight factors s�i�, we estimate the covariance ma-
rix by multiplying the inverse of the second derivative matrix
f �2 with respect to its free parameters by �2 /v, with v being
he number of degrees of freedom.20 The CI of each of the
arameters is given by the square root of the diagonal ele-
ents of the estimated covariance matrix under the assump-

ion that the model �Eq. �1�� is correct. We validate that the
stimated covariance matrix is reasonably accurate for our
onlinear fitting problem in Eq. �1�.

The calculated CI represents the statistical error only and
oes not fully account for systematic errors due to inaccura-
ies in the physical model used to fit the data. For example, if
n additional absorber was present in the sampling volume
ut not in the model fit function, or if the wavelength depen-
ence of the scattering function is not modeled correctly, the
tted parameters will be biased with respect to their true val-
es. We investigate the magnitude of the bias in the fitted
arameters for the case of 1. a missing absorber in the model
nd 2. an error in the modeled scattering function, and inves-

able 1 Parameter values used for the synthetic datasets.

arameter Parameter description Values

a1 �−� Mie scattering amplitude 1

a2 �−� Mie scattering slope −1

a3 �−� Rayleigh scattering amplitude 0; 0.01; 0.1

a4 ��M� Betacarotene concentration 0; 5; 30

a5 �%� Blood volume fraction 0; 0.2; 1.0; 2.0;
5.0; 10; 20

a6 �%� Blood saturation 0; 25; 50; 75; 100

a7 ��m� Average vessel diameter 10
ournal of Biomedical Optics 054044-
tigate the use of methods to identify and subsequently mini-
mize the bias in the fitted parameters associated with incorrect
modeling.

3 Simulations
We have generated 315 synthetic datasets, each consisting of
2048 pixel reflectance values Rsyn�j� using Eqs. �1� and �2�
with the parameters as described in Table 1.

For each combination of parameter values, 100 different
fits are performed by generating noise on the synthetic spec-
trum. The noise was generated by adding a random number
between −1 and 1, multiplied by a specified noise amplitude
to the pixels: Rdata�j�=Rsyn�j�+noiseamp·random�−1,1�.
Note that the noise generated in this way is independent of
wavelength. Since the data Rsyn�j� are wavelength dependent,
the relative noise amplitude is in fact wavelength dependent,
which is typically the case for optical spectroscopic measure-
ments. For our experimental setup, typical signal-to-noise ra-
tios at �0=800 nm are better than 100, and we have used
noiseamp=0.01 for most of the simulations, but also checked
the validity of our approach for larger noise amplitudes �0.1
and 0.5�. By definition, if the calculated confidence intervals
are correct, the fitted parameter values should be within 2 CIs
in 95 out of the 100 fits.

4 Results
4.1 Fitting with the Correct Model
We first analyze whether the CIs calculated by taking the
square root of the diagonal elements of the estimated covari-
ance matrix are correct, as a function of bin width and noise
amplitude. The fits are performed using the correct model
described in Eqs. �1� and �2� with seven free parameters. Fur-
thermore, we calculate the magnitude of the CIs as a function
of blood volume fraction for this case.

4.1.1 Influence of bin width
Table 2 shows the number of times each of the fitted param-
eter values is within 2 CIs of their true values, out of the 100
fits and averaged for the 315 synthetic datasets �standard de-

Table 2 Average number of times �out of 100� each of the fitted
parameter values is within 2 CIs of their true values when the correct
model is used, for bin widths of 10, 15, and 30 pixels. Standard de-
viations are indicated in parentheses. Noise amplitude=0.01.

10 15 30

a1 94 �4� 96 �4� 96 �7�

a2 91 �4� 94 �4� 94 �5�

a3 96 �3� 97 �4� 95 �8�

a4 94 �3� 95 �5� 84 �25�

a5 94 �3� 95 �3� 95 �7�

a6 94 �3� 95 �5� 85 �22�

a7 93 �4� 95 �3� 94 �9�
September/October 2008 � Vol. 13�5�3
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iations are indicated in parentheses� for different bin widths.
f this number is close to 95, the CI was estimated correctly. If
his number is much smaller, the CI was underestimated. The
oise amplitude was set to 0.01.

Table 2 shows that on average, close to 95% of the fitted
arameter values is within 2 CIs, except for the largest bin
idth for parameters a4 �betacarotene concentration� and a6

blood saturation�. For this large bin width, the optical reso-
ution of the binned data �12 nm� becomes larger than the full

able 3 Average number of times �out of 100� each of the fitted
arameter values is within 2 CIs of their true values when the correct
odel is used, for noise amplitudes of 0.01, 0.1, and 0.5. Bin width
15 pixels.

0.01 0.1 0.5

a1 96 �4� 93 �3� 93 �3�

a2 94 �4� 93 �3� 93 �3�

a3 97 �4� 93 �3� 93 �3�

a4 95 �5� 93 �3� 92 �3�

a5 95 �3� 93 �4� 91 �6�

a6 95 �5� 94 �2� 94 �3�

a7 95 �3� 92 �3� 92 �3�

Table 4 Average CI for each of the parameters
different noise amplitudes.

Noise
amplitudes 0% 0.2%

a1 �−� 0.01
0.10
0.50

0.3
0.5
2.5

0.0003
0.002
2.4

a2 �−� 0.01
0.10
0.50

0.002
0.01
0.07

0.001
0.01
0.07

a3 �−� 0.01
0.10
0.50

0.0005
0.002
0.08

0.0002
0.001
0.02

a4 ��M� 0.01
0.10
0.50

0.15
0.9
4.5

0.1
0.9
4.6

a5 �%� 0.01
0.10
0.50

104

104

105

0.008
0.07
104

a6 �%� 0.01
0.10
0.50

106

108

107

5.0
34
107

a7 ��m� 0.01
0.10
0.50

106

107

107

0.8
6

103
ournal of Biomedical Optics 054044-
width at half maximum �FWHM� of the narrowest betacaro-
tene feature �8 nm�, causing an underestimation in the CI of
the betacarotene concentration a4. Since betacarotene absorbs
in the same wavelength region as oxyhemoglobin and deoxy-
hemoglobin, the accuracy of the blood saturation a6 is af-
fected as well. From Table 2 it is clear that the best results
were obtained for a bin width of 15, which is used in the
remainder of this work.

4.1.2 Influence of noise amplitude
Table 3 shows the number of times each of the fitted param-
eter values is within 2 CIs of their true values, out of the 100
fits and averaged for the 315 synthetic datasets �standard de-
viations are indicated in parentheses� for different noise am-
plitudes and a bin width of 15 pixels. On average, close to
95% of the fitted parameter values is within 2 CIs, even for
very high noise amplitudes. Table 4 shows the average CI for
each of the parameters as a function of blood volume fraction
a5 for the three different noise amplitudes. The CI increases
with increasing noise amplitude, as expected. Thus for large
noise amplitudes �0.1 and 0.5, corresponding to a signal-to-
noise ratio at �=800 nm of 10 and 2, respectively�, the fitted
parameters are also correctly within 2 CIs in not significantly
less than 95% of the simulations, because the CIs are dramati-
cally increased compared to the low noise amplitude �0.01, or
signal to noise of 100�. Note that for the low noise amplitude,
which is typical for our in vivo data,11–14 the CI of the fitted
blood saturation a6 is smaller than 1% for blood volume frac-
tions a5�1%. Even for a blood volume fraction as low as

nction of blood volume fraction a5 for the three

2% 5% 10% 20%

03
2
1

0.0003
0.002
0.01

0.0004
0.002
0.01

0.0006
0.003
0.02

0.001
0.01
0.05

1
1
6

0.001
0.01
0.06

0.002
0.01
0.07

0.002
0.02
0.09

0.004
0.03
0.2

02
1
6

0.0002
0.001
0.006

0.0003
0.002
0.008

0.0005
0.003
0.01

0.001
0.01
0.05

0.2
1.1
5.3

0.3
1.5
7.0

0.4
2.3
11

0.9
6.0
30

9
8

0.01
0.08
0.4

0.01
0.1
0.5

0.02
0.14
0.7

0.04
0.3
1.4

0.6
4
20

0.4
2.4
11

0.4
2.0
10

0.4
2.1
10

0.1
0.7
4

0.05
0.4
2

0.04
0.3
1.7

0.08
0.7
3.4
as a fu

1%

0.00
0.00
0.0

0.00
0.0
0.0

0.00
0.00
0.00

0.1
1.0
4.9

0.00
0.0
0.4

1.0
7
37

0.2
1.3
7
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.2%, the CI of a6 is only 5% when the correct model is used
n the fit. These numbers indicate that our instrument can
xtract the in vivo microvascular saturation with high accu-
acy, under the assumption that the model used to fit the data
s correct.

Figures 1�a� and 1�b� show a typical fit and the residuals
�data-fit�, respectively, for the synthetic spectrum with a3
0.01, a4=5 �M, a5=2%, and a6=75% for a noise ampli-

ude of 0.01 and a bin width of 15. The fitted values for the
arameters and the CIs were a1=1.0003�0.0002, a2=
1.000�0.001, a3=0.0099�0.0002, a4=5.0�0.2 �M, a5
2.00�0.01%, a6=74.9�0.7%, and a7=10.04�0.05 �m.

0
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ig. 2 Normalized absorption coefficients of the four absorbers used
n the simulations.
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ig. 1 �a� Typical fit and �b� the residuals for the synthetic spectrum
ith a3=0.01, a4=5 �M, a5=2%, and a6=75% for a noise amplitude
f 0.01 and a bin width of 15 pixels.
ournal of Biomedical Optics 054044-
All fit values are unbiased and within 2 CIs of the true values.
The residual spectrum shows only noise and is featureless.

In conclusion, when the correct model is used to fit the
data, the fitted parameter values are unbiased, and the CIs are
estimated correctly using the diagonal elements of estimated
covariance matrix obtained by multiplying the inverse of the
second derivative matrix of �2 with respect to its free param-
eters by �2 /v, with v being the number of degrees of free-
dom.

4.2 Fitting with the Wrong Model: Missing Absorber
In this section, we investigate the magnitude of the bias in the
fitted parameters introduced when the fitting model is missing
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Fig. 3 �a� and �c� typical fit and �b� and �d� the residuals for the
synthetic spectrum with a3=0.01, a4=5 and 30, a5=2%, and a6
=75%, fitted without the Gaussian absorber in the fitting model.
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n absorber. Two different situations are investigated: the ab-
orption band of the missing absorber has 1. little or 2. sig-
ificant spectral overlap with the other absorbers in the com-
onent fit. In Sec. 4.2.1 the missing absorber is an artificial
aussian centered at 700 nm with a width of 25 nm. Such an

bsorber has only little overlap with the main absorption
ands of oxyhemoglobin and deoxyhemoglobin. In Sec. 4.2.2
he missing absorber is betacarotene, which does overlap with
he absorption bands of hemoglobin. Figure 2 shows the nor-

alized absorption coefficients of the four absorbers used in
he simulations. The noise amplitude is set to 0.01 and the bin
idth is 15 in this section.

.2.1 Nonoverlapping Absorber: Gaussian
Centered at 700 nm

n additional 210 synthetic datasets were generated using the
aussian absorber instead of betacarotene in Eq. �2�. Fitting
as performed with only six free parameters by excluding

4 ·�a
Bcar��� from Eq. �2�. Figures 3�a� and 3�b� show a typi-

al fit and the residuals, respectively, for the synthetic spec-
rum with a3=0.01, a4=5, a5=2%, and a6=75%. This “con-
entration” �a4=5� of Gaussian absorber results in a hardly
isible maximum signal decrease of 2.5% at �=700 nm. The
tted values for the parameters and the CIs were a1
0.9977�0.0007, a2=−0.992�0.004, a3=0.0098�
.0005, a5=1.88�0.03%, a6=74�2%, and a7=9.6�
.2 �m.

Figures 3�c� and 3�d� show a typical fit and the residuals,
espectively, for the synthetic spectrum with a3=0.01, a4
30, a5=2%, and a6=75%. This “concentration” �a4=30� of
aussian absorber results in a clearly visible maximum signal
ecrease of 14% at �=700 nm. The fitted values for the pa-
ameters and the CIs were a1=0.982�0.004, a2=−0.93

0.02, a3=0.011�0.003, a5=1.3�0.2%, a6=62�11%,
nd a7=7.4�0.8 �m. Even though the statistical CIs of
hese fits are much larger than the statistical CIs of the param-
ters using the correct model �Sec. 4.1.2�, only the Rayleigh
mplitude �a3� and saturation �a6� fit values are within 2 CIs
f the true values. The residual spectra very clearly show the
eatures of hemoglobin absorption as well as the missing
aussian absorber.

able 5 Average number of times �out of 100� each of the fitted
arameter values is within 2 CIs of their true values for different con-
entrations of missing Gaussian absorber.

0 5 30

a1 96 �4� 6 �21� 3 �16�

a2 94 �3� 16 �36� 28 �44�

a3 97 �4� 86 �31� 78 �40�

a4

a5 95 �3� 2 �7� 3 �15�

a6 95 �5� 80 �36� 71 �44�

a7 95 �3� 1 �3� 1 �3�
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Table 5 shows the number of times each of the fitted pa-
rameter values is within 2 CIs of their true values, out of the
100 fits and averaged for the 105 synthetic datasets for differ-
ent concentrations of Gaussian absorber.

Table 6 shows the average bias ��absolute value of abso-
lute difference between true and fitted parameter values� and
CI for each of the parameters for different concentrations of
Gaussian absorber. Blood volume fractions a5�1% were ex-
cluded from the calculation of the averages due to the ex-
tremely large bias and CI of the blood parameters �a5, a6, and
a7� for small blood volume fractions �see for example Table
4�. It is observed that, except for parameters Rayleigh ampli-
tude �a3� and saturation �a6�, the average bias in the param-
eters is much larger than twice the average statistical CI of the
parameters.

4.2.2 Overlapping Absorber: Betacarotene
Similar to Sec. 4.2.1, fitting was performed with only six free
parameters by excluding a4�a

Bcar��� from Eq. �2�. Figures 4�a�
and 4�b� show a typical fit and the residuals, respectively, for
the synthetic spectrum with a3=0.01, a4=5 �M, a5=2%,
and a6=75%. This concentration �a4=5 �M� of betacarotene
results in a hardly visible maximum signal decrease of 2.5%
at �=450 nm. The fitted values for the parameters and the
CIs were a1=0.9987�0.0006, a2=−0.984�0.003, a3
=0.0103�0.0004, a5=2.02�0.03%, a6=91�1%, and a7
=9.9�0.1 �m. Even though the statistical CIs of this fit are
larger than the statistical CIs of the parameters using the cor-
rect model �Sec. 4.1.2�, only half of the fit values �a3, a5, and
a7� are within 2 CIs of the true values. The fitted saturation
�a6� is very biased with respect to the true value �91 versus
75%�, while the CI is increased only marginally compared to
the case where betacarotene was included in the fit. The re-
sidual spectrum clearly shows the features of hemoglobin ab-
sorption as well as betacarotene absorption.

Table 6 Average bias and CI for each of the parameters for different
concentrations of missing Gaussian absorber.

Gauss absorber
concentration Average bias Average CI

a1 �−� 5
30

0.005
0.03

0.002
0.008

a2 �−� 5
30

0.02
0.13

0.007
0.04

a3 �−� 5
30

0.0016
0.009

0.0015
0.007

a4

a5 �%� 5
30

0.2
1.0

0.06
0.3

a6 �%� 5
30

1.3
9

1.5
9

a7 ��m� 5
30

0.9
4.6

0.3
1.5
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Figures 4�c� and 4�d� show a typical fit and the residuals,
espectively, for the synthetic spectrum with a3=0.01, a4
30 �M, a5=2%, and a6=75%. This concentration �a4
30 �M� of betacarotene results in a clearly visible maxi-
um signal decrease of 14% at �=450 nm. The fitted values

or the parameters and the CIs were a1=0.995�0.003, a2=
0.91�0.02, a3=0.012�0.002, a5=2.4�0.1%, a6=155
7%, and a7=10.7�0.6 �m. Even though the statistical

Is of this fit are much larger than the statistical CIs of the
arameters using the correct model �Sec. 4.1.2�, only half of
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ig. 4 �a� and �c� typical fit and �b� and �d� the residuals for the
ynthetic spectrum with a3=0.01, a4=5 and 30 �M, a5=2%, and a6
75%, fitted without betacarotene in the fitting model.
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the fit values �a1, a3, and a7� are within 2 CIs of the true
values. The fitted saturation �a6� is very biased with respect to
the true value �155 versus 75%�, while the CI is increased
only marginally compared to the case where betacarotene was
included in the fit. Note that the fitted blood volume fraction
a5 has a smaller bias than expected from the figure; this is due
to the fitted negative amount of deoxyhemoglobin �which also
resulted in the physically impossible 155% saturation�. The
residual spectrum very clearly shows the features of hemoglo-
bin absorption as well as betacarotene absorption.

Table 7 shows the number of times each of the fitted pa-
rameter values is within 2 CIs of their true values, out of the
100 fits and averaged for the 105 synthetic datasets for differ-
ent concentrations of betacarotene.

Table 8 shows the average bias and CI for each of the
parameters for different concentrations of betacarotene, for
blood volume fractions a5�1%.

It is observed that the average bias in the parameters is
larger than twice the average statistical CI of the parameters,
especially for the saturation a6.

4.3 Fitting with the Wrong Model: Incorrect
Scattering Model

In this section, we investigate the magnitude of the bias in the
fitted parameters that is introduced when a wrong scattering
function is used in the fitting routine. This is established by
fitting with only six free parameters by excluding the Ray-
leigh scattering term a3�� /�0�−4 in Eq. �1� from the fit func-
tion. Figures 5�a� and 5�b� show a typical fit and the residuals,
respectively, for the synthetic spectrum with a3=0.01, a4
=5 �M, a5=2%, and a6=75%. The fitted values for the pa-
rameters and the CIs were a1=1.0092�0.0009, a2=−1.052
�0.006, a4=6.0�0.9 �M, a5=1.75�0.05%, a6=73�4%,
and a7=9.6�0.3 �m.

Figures 5�c� and 5�d� show a typical fit and the residuals,
respectively, for the synthetic spectrum with a3=0.1, a4
=5 �M, a5=2%, and a6=75%. The fitted values for the pa-
rameters and the CIs were a1=1.105�0.003, a2=−1.35
�0.02, a4=−10�3 �M, a5=1.2�0.2%, a6=65�21%,
and a7=10�2 �m. Even though the statistical CIs of these
fits are much larger than the statistical CIs of the parameters

Table 7 Average number of times �out of 100� each of the fitted
parameter values is within 2 CIs of their true values for different con-
centrations of missing betacarotene.

0 5 30

a1 96 �4� 24 �37� 23 �40�

a2 94 �3� 48 �44� 42 �44�

a3 97 �4� 43 �42� 38 �44�

a4

a5 95 �3� 58 �39� 46 �42�

a6 95 �5� 10 �29� 22 �40�

a7 95 �3� 45 �42� 39 �41�
September/October 2008 � Vol. 13�5�7
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sing the correct model �Sec. 4.1.2�, only half the fit values
re within 2 CIs of the true values. The blood volume fraction
s particularly underestimated with respect to the true value.
he residual spectrum very clearly shows the features of he-
oglobin absorption as well as a strong peak at the start of the

pectrum associated with an incorrect scattering function.
Table 9 shows the number of times each of the fitted pa-

ameter values is within 2 CIs of their true values, out of the
00 fits and averaged for 70 synthetic datasets �only the ex-
reme betacarotene concentrations 0 and 30 �M were consid-
red� for different Rayleigh amplitudes.

Table 10 shows the average bias and CI for each of the
arameters for different Rayleigh amplitudes. Again, blood
olume fractions a5�1% were excluded from the calculation
f the averages due to the extremely large bias and CI of the
lood parameters �a5, a6, and a7� for small blood volume
ractions. For the largest Rayleigh amplitude, blood volume
ractions a5�2% were excluded from the calculation of the
verages due to the large bias and CI of the blood parameters
a5 a6, and a7� for these blood volume fractions as well.

It is observed that the scattering parameters �a1 and a2� as
ell as the absorber concentrations �a4 and a5� are very bi-

sed compared to the calculated statistical CIs, whereas the
lood saturation and vessel diameter �a6 and a7, respectively�
re not affected as much by imperfections in the scattering
unction.

.4 Identification and Minimization of Bias
n the previous sections we have shown that when the fitting
odel is correct, the fitted parameter values are unbiased and

he CIs can be estimated correctly using the reduced chi-
quare normalized covariance matrix. When the fitting model
s incorrect, however, the fitted parameters are biased and the
alculated statistical CIs cannot correctly account for this
ias. This is expected, since the systematic errors associated
ith using the wrong model are not fully accounted for by our

able 8 Average bias and CI for each of the parameters for different
oncentrations of missing betacarotene.

Betacarotene
concentration Average bias Average CI

a1 �−� 5
30

0.003
0.02

0.001
0.004

a2 �−� 5
30

0.012
0.07

0.004
0.02

a3 �−� 5
30

0.003
0.02

0.0007
0.003

a4

a5 �%� 5
30

0.06
0.38

0.03
0.14

a6 �%� 5
30

8
44

1
6

a7 ��m� 5
30

0.5
2.1

0.2
1.2
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purely statistical analysis. It is practically impossible to ac-
count for systematic errors using statistical methods only, and
hence it should be realized that the calculated CIs represent
the lower limits of the true CIs of the parameters. In this
section we present a method to identify and minimize system-
atic errors in the fitting routine.

Identification of systematic errors is easily performed
based on the shape of the residual spectrum. When the fitting
model is correct, the residual spectrum is featureless and
shows random noise only �Fig. 1�b��. When the fitting model
is incorrect, the residual spectrum will always show features
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Fig. 5 �a� and �c� typical fit and �b� and �d� the residuals for the
synthetic spectrum with a3=0.01 and 0.1, a4=5 �M, a5=2%, and
a6=75%, fitted without Rayleigh scattering in the fitting model.
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f the chromophore absorption coefficients, and in case the
rong scattering function is used, an additional �slow� back-
round variation over the whole wavelength range can be ob-
erved �Figs. 3�b�, 3�d�, 5�b�, and 5�d��. The major difference
n the residual spectra of fits with missing absorbers �Figs.
�b�, 3�d�, 4�b�, and 4�d�� and fits with an incorrect scattering
unction �Figs. 5�b� and 5�d�� is that in the first case, the
esiduals have a �strong� negative peak near the location of
he absorption maximum of the missing absorber, while in the
econd case all peaks in the residuals are near the absorption
axima of the chromophores used in the fit. In Sec. 4.4.1, we

iscuss an approach to minimize the systematic errors associ-
ted with missing absorbers, and in Sec. 4.4.2, we discuss a
ethod to minimize the systematic errors associated with an

ncorrect scattering function.

.4.1 Minimization of Bias: Missing Absorber
missing absorber in the model can be identified by a strong

egative peak in the residuals �if defined as data minus fit� at
location away from absorption maxima of the chromophores
sed in the fit. After identification of a missing absorber, one
an reduce the systematic error by refitting the spectrum, but
ow including an additional absorber that peaks near the
avelength of the negative peak in the residuals. Since a
aussian function is a good first approximation for the shape
f an absorption band, we propose to use a Gaussian function
or this unidentified absorber, following Eq. �4�:

�a
unknown��� = a8exp�− 0.5�� − �peak − a9

a10
�2� . �4�

ere �peak is the location of the negative peak in the residual
pectrum and a8, a9, and a10 are additional free parameters
epresenting the “concentration,” the peak shift, and the width
f the unknown absorber, respectively. The peak shift param-
ter a9 accounts for the fact that the location of the negative
eak in the residual spectrum is not necessarily the exact lo-
ation of the absorption maximum of the absorber, but will be
lose to it. Therefore, this parameter should be constrained to
mall values to force the location of the absorption maximum
f the Gaussian to be near the location of the negative peak in

able 9 Average number of times �out of 100� each of the fitted
arameter values is within 2 CIs of their true values for different Ray-

eigh amplitudes with the Rayleigh term omitted from the fit function.

0 0.01 0.1

a1 91 �3� 0 �0� 0 �0�

a2 91 �3� 0 �0� 0 �0�

a3

a4 94 �3� 62 �43� 9 �27�

a5 94 �3� 11 �25� 1 �4�

a6 95 �3� 86 �25� 80 �34�

a7 94 �3� 62 �42� 69 �43�
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the residual spectrum. We have used a9�10 nm in our analy-
sis, but did not investigate in detail how the results depend on
this constraint.

When this strategy is employed for the case of the missing
absorbers in the fitting routine �Sec. 4.2�, dramatic improve-
ment in the fit quality is achieved. Table 11 shows the number
of times each of the fitted parameter values is within 2 CIs of
their true values, out of the 100 fits and averaged for the 105
synthetic datasets for different concentrations of Gaussian ab-
sorber. It is observed that on average, nearly 95% of the fitted
parameter values is within 2 CIs of their true values, which
indicates that the parameters and their CIs are estimated cor-
rectly.

The location of the peak �peak was determined by the
mimimum of the residual spectra, and the absorption maxi-
mum of the unknown absorber is �peak−a9. For the small
Gaussian absorber concentration a4=5, the average fitted val-
ues of the missing absorber were �peak−a9=701 nm and
width a10=24 nm. For the larger Gaussian absorber concen-
tration a4=30, the average fitted values of the missing ab-
sorber were �peak−a9=699 nm and width a10=27 nm. Thus
in both cases the absorption maxima and widths of the un-
known absorber reproduce the true absorption spectrum very
accurately.

Table 12 shows the number of times each of the fitted
parameter values is within 2 CIs of their true values, out of
the 100 fits and averaged for the 105 synthetic datasets for
different concentrations of betacarotene.

The location of the peak �peak was determined by the
mimimum of the residual spectra, and the absorption maxi-
mum of the unknown absorber is �peak−a9. For the small
betacarotene concentration a4=5 �M, the average fitted val-
ues of the missing absorber were �peak−a9=453 nm and
width a10=40 nm. For the larger betacarotene concentration
a4=30 �M, the average fitted values of the missing absorber
were � −a =455 nm and width a =37 nm. These values

Table 10 Average bias and CI for each of the parameters for different
Rayleigh amplitudes.

Rayleigh
amplitude Average bias Average CI

a1 �−� 0.01
0.1

0.0098
0.103

0.0006
0.002

a2 �−� 0.01
0.1

0.042
0.30

0.004
0.02

a3 �−�

a4 ��M� 0.01
0.1

2
19

1
4

a5 �%� 0.01
0.1

0.23
1.4

0.05
0.2

a6 �%� 0.01
0.1

3
10

3
9

a7 ��m� 0.01
0.1

0.7
1.8

0.4
1.3
peak 9 10
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ere determined from the fits with blood volume fractions

5�10% only; for larger blood volume fractions, the mini-
um of the residual spectra was colocated with the blood

bsorption peaks. As a result, no missing absorber could be
dentified for blood volume fractions a5	10%. Figure 6
hows the normalized betacarotene absorption spectrum and
he average extracted absorption spectra of the unknown
aussian absorber determined from the fits. Good agreement

n both the peak position and the width is found between the
rue betacarotene absorption coefficient and the absorption co-
fficients of the unknown Gaussians determined from the fits.
espite these promising results, Table 12 shows that on aver-

ge, much less than 95% of the fitted parameter values is
ithin 2 CIs of their true values. This indicates that there are

till systematic errors and that the resulting fit values are bi-
sed. The disappointing results are also due to the fact that the
ethod fails to identify a missing absorber for large blood

olume fractions. Table 13 shows the average bias
�absolute value of the absolute difference between true and

able 11 Average number of times �out of 100� each of the fitted
arameter values is within 2 CIs of their true values for different con-
entrations of Gaussian absorber with an additional absorber in the fit
unction.

0 5 30

a1 96 �4� 93 �4� 92 �6�

a2 94 �3� 94 �6� 94 �7�

a3 97 �4� 95 �8� 94 �10�

a4

a5 95 �3� 91 �8� 89 �12�

a6 95 �5� 91 �10� 89 �11�

a7 95 �3� 93 �5� 93 �6�
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ig. 6 Normalized betacarotene absorption spectrum and the average
xtracted absorption spectra of the unknown Gaussian absorber de-
ermined from the fits. Solid line: true betacarotene spectrum. Dotted
ine: Gaussian approximation from fits with large betacarotene con-
entration. Dashed line: Gaussian approximation from fits with small
etacarotene concentration.
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fitted parameter values� and CI for each of the parameters for
different concentrations of betacarotene, with an unknown
Gaussian absorber in the fit that has a maximum absorption at
a wavelength no more than 10 nm away from the minimum of
the residuals, as explained before. Blood volume fractions
a5�1% were excluded from the calculation of the averages,
as discussed previously. It is observed that the average bias in
the parameters is mostly larger than twice the average statis-
tical CI of the parameters, but much smaller than before
�Table 8� when no additional Gaussian absorber was included
in the fit. In particular, the bias on the saturation is decreased
by a large amount.

4.4.2 Minimization of Bias: Wrong Scattering Model
When a wrong scattering model is used, the residuals show
features of the chromophore absorption coefficients on top of
an additional background variation over the whole wave-
length range. After identification of a wrong scattering model,
one can reduce the systematic error by refitting the spectrum,
but now including an additional scattering term. We propose
to use a second-order polynomial function as an additional
scattering term, since it provides a good first-order approxi-
mation to any nonperiodic continuous function, such as usu-
ally encountered in tissue scattering:

R��� = �a1� �

�0
�a2

+ a3� �

�0
�2

+ a8� �

�0
� + a9�

�exp�− 0.4�a
total���� . �5�

Thus the scattering function is now modeled by Mie scatter-
ing plus a second-order polynomial. Whereas the Mie scatter-
ing model was based on physical principles where the param-
eters a1 and a2 are associated with the density and size
distribution of scatterers,21 respectively, the new scattering
model is primarily designed to describe the scattering function
mathematically without associating physical meaning to the
parameters. In other words, the scattering function is modified
with the aim to reduce the bias in the concentration estimates
of the chromophores, at the cost of modeling with a physi-
cally uninterpretable scattering function. Table 14 shows the

Table 12 Average number of times �out of 100� each of the fitted
parameter values is within 2 CIs of their true values for different con-
centrations of betacarotene with an additional absorber in the fit func-
tion.

0 5 30

a1 96 �4� 72 �16� 39 �35�

a2 94 �3� 53 �22� 11 �20�

a3 97 �4� 38 �24� 9 �19�

a4

a5 95 �3� 42 �21� 17 �23�

a6 95 �5� 60 �33� 55 �33�

a7 95 �3� 44 �26� 25 �32�
September/October 2008 � Vol. 13�5�0



n
w
a
t
p
s
v
t
l
c
t
t
e
e
f
F

a
�
f
S

5
W
fi
o
t
d
t
i
i

T
c
i
t

Amelink, Robinson, and Sterenborg: Confidence intervals on fit parameters…

J

umber of times the fitted microvascular parameter values are
ithin 2 CIs of their true values, out of the 100 fits and aver-

ged for 35 synthetic datasets �betacarotene was exluded in
his subanalysis for convenience� for different Rayleigh am-
litudes. It is observed that on average, the in the case of a
mall Rayleigh component, nearly 95% of the fitted parameter
alues is within 2 CIs of their true values, which indicates that
he parameters and their CIs are estimated correctly. For the
arger Rayleigh amplitude, the accuracy of the results de-
reases but is still much better than before �Table 9� without
he additional second-order polynomial scattering term. As for
he Mie and Rayleigh scattering parameters, it should not be
xpected that they are accurately reproduced, since the math-
matical scattering function used in the fit is very different
rom the scattering function of the synthetic datasets. Finally,
ig. 7�a� shows the synthetic scattering function

Ssyn��� = 1� �

�0
�−1

+ 0.1� �

�0
�−4

,

nd a fit of this function using the scattering function of Eq.
5�. Figure 7�b� shows the residuals. Clearly the scattering
unction of Eq. �5� is a good but not perfect approximation for

syn���, leading to the results of Table 14.

Discussion and Conclusion
e have validated a simple method for determining the con-

dence intervals on fitted parameters derived from modeling
ptical reflectance spectroscopic measurements using syn-
hetic datasets. The method estimates the parameter confi-
ence intervals as the square roots of the diagonal elements of
he covariance matrix, which is obtained by multiplying the
nverse of the second derivative matrix of �2 with respect to
ts free parameters by �2 /v, with v being the degrees of free-

able 13 Average bias and CI for each of the parameters for different
oncentrations of betacarotene, with an unknown Gaussian absorber
n the fit, which has a maximum absorption at a wavelength no more
han 10 nm away from the minimum of the residuals.

Betacarotene
concentration Average bias Average CI

a1 �−� 5
30

0.002
0.005

0.008
0.001

a2 �−� 5
30

0.004
0.011

0.004
0.005

a3 �−� 5
30

0.001
0.006

0.001
0.001

a4

a5 �%� 5
30

0.04
0.24

0.02
0.05

a6 �%� 5
30

1.5
3.5

0.6
1.5

a7 ��m� 5
30

0.3
1.6

0.1
0.3
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dom. Most commercial fitting software packages, employing
least squares analysis, automatically generate the covariance
matrix. CIs are easily extracted after multiplication of the di-
agonal elements with �2 /v to account for the uncertainty in
the estimation of the statistical fluctuations and corresponding
standard deviations s�i� of the data points. We have shown in
Sec. 4.1 that this method yields correct CIs for our nonlinear
fitting function, as long as the model used to describe the data
is correct. The statistical CIs do not depend on the number of
pixels used to bin the data, as long as the optical resolution
associated with this number does not exceed the optical reso-
lution of the biological features. Furthermore, the CI of the
fitted parameters correctly increases with decreasing signal-
to-noise ratio, while in all cases the fitted parameter values are
unbiased with respect to their true values. The CI calculated in
this way represents the statistical error on the fit parameters
and is a lower boundary of the true fit parameter uncertainty.
We have also investigated the sensitivity of our parameters to
systematic errors associated with incorrect models in results

Table 14 Average number of times �out of 100� the fitted microvas-
cular parameter values are within 2 CIs of their true values for differ-
ent Rayleigh amplitudes fitted with an additional second order poly-
nomial scattering function.

0 0.01 0.1

a5 96 �3� 92 �5� 81 �20�

a6 95 �3� 92 �3� 80 �10�

a7 95 �3� 89 �6� 75 �24�
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Fig. 7 �a� The synthetic scattering function Ssyn��� and a fit of this
function using the scattering function of Eq. �5�, and �b� the residuals.
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ecs. 4.2 and 4.3. Even when there are only small amounts of
issing absorber �Sec. 4.2�, such that the fit does not deviate

rom the data by more than 2 to 3% over the entire wave-
ength range �Figs. 3�a�, 3�b�, 4�a�, and 4�b��, the fitted pa-
ameters may be biased by large amounts compared to the
alculated statistical CIs. Figures 4�a� and 4�b� are particu-
arly instructive: the quality of the fit looks excellent, the re-
iduals are smaller than 2.5% over the entire wavelength
ange, and yet the bias in the saturation is more than 15%.
hus imperfections in the fitting model introduce a bias in the
tted parameters that greatly exceeds the estimated statistical
Is. Since multicomponent spectral fitting of in vivo optical

pectroscopic data is particularly sensitive to these problems,
e have also introduced methods to identify and subsequently
inimize the bias in the fitted parameters associated with in-

orrect modeling �Sec. 4.4�. Identification of systematic errors
s based on the shape of the residual spectrum. When the
tting model is correct, the residual spectrum is featureless
nd shows random noise only �Fig. 1�b��. When the fitting
odel is incorrect, the residual spectrum always shows fea-

ures of the included chromophore absorption coefficients,
nd in case the wrong scattering function is used, an addi-
ional background variation over the whole wavelength range
an be observed �Figs. 3�b�, 3�d�, 5�b�, and 5�d��. In the case
f a missing absorber, a strong negative peak in the residuals
t a location away from absorption maxima of the chro-
ophores used in the fit is observed. The systematic error

ssociated with a missing absorber was reduced by refitting
he spectrum, but now including an additional absorber that
eaks near the wavelength of the minimum �maximum nega-
ive� in the residuals. Dramatic improvement in the fit quality
as achieved when using a Gaussian absorber with three free
arameters: amplitude, peak shift with respect to minimum of
esiduals, and peak width. In the case where the missing ab-
orber truly was a Gaussian, the fits were perfect, and nearly
5% of the fitted parameter values was within 2 CIs of their
rue values, which indicates that the fitted parameters and
heir CIs were estimated correctly. Furthermore, the absorp-
ion maxima and widths of the unknown Gaussian absorber
eproduced the true Gaussian absorption spectrum very accu-
ately. In the case where the missing absorber was betacaro-
ene, which has a non-Gaussian absorption spectrum overlap-
ing the absorption spectra of oxy- and deoxyhemoglobin, the
esults were not as good. For large blood volume fractions,
he minimum of the residual spectra was colocated with the
lood absorption peaks, and no missing absorber could be
dentified for large �a5	10% � blood volume fractions. For
maller blood volume fractions, the extracted absorption spec-
ra of the unknown Gaussian absorber determined from the
ts showed good agreement in both the peak position and the
idth with the true betacarotene absorption coefficient. De-

pite this good agreement, much less than 95% of the fitted
arameter values was within 2 CIs of their true values for
oth high and low betacarotene concentrations. This indicates
hat there are still systematic errors and that the resulting fit
alues are biased. However, the bias in the parameters was
hown to be much smaller than without an additional Gauss-
an absorber included in the fit; the bias on the saturation was
ecreased by a large amount �from 8 to 1.5% for small betac-
rotene concentration, and from 44 to 3.5% for large betac-
rotene concentration�.
ournal of Biomedical Optics 054044-1
Palmer et al.22 have previously used a similar approach in
a clinical dataset of malignant and nonmalignant breast tissue.
They included a Gaussian absorber with fixed width and peak
position in their fits based on the shape of their previously
obtained residuals in a large clinical dataset, under the as-
sumption that the spectral shape of the missing absorber is the
same across the whole set of tissue samples measured. Inter-
estingly, they found that although the quality of the fits was
improved with the addition of the Gaussian absorber, the con-
clusions regarding the extracted absorber and scattering pa-
rameters from the fits were not significantly affected by its
addition, and so all subsequent analysis was carried out with-
out the inclusion of this Gaussian absorber. Based on our
present research, this result is surprising. Possibly this state-
ment was made with respect to the average of the fitted pa-
rameters over the entire dataset. In that case, the biases in the
fitted parameters for the individual spectra may be canceled
on averaging. Furthermore, the biological variation in the pa-
rameters for multiple samples is probably larger than the bias
associated with the systematic error introduced by the incom-
plete fitting model, as we describe next.

The systematic error associated with a wrong scattering
model was reduced by refitting the spectrum, but now includ-
ing a second-order polynomial as an additional scattering
term. The new scattering model is primarily designed to de-
scribe the scattering function mathematically without associ-
ating physical meaning to the scattering parameters, with the
aim to reduce the bias in the concentration estimates of the
chromophores. The implementation of this polynomial scat-
tering function greatly reduced the bias in the microvascular
parameters, although the approach has its limits for large de-
viations in the model scattering function from the true scat-
tering function. The mathematical description of the “true”
scattering function in case of biological �in vivo� tissue actu-
ally depends on the measurement geometry and on the tissue
itself. In the case of diffuse measurements, the power law
behavior of scattering seems to be an adequate description of
the scattering function. In the case of nondiffuse measure-
ments, more complicated functions �including periodic
elements23–25� may be necessary to fully describe the scatter-
ing function.

Other potential sources of systematic error that are not
investigated in detail in this work are: 1. incorrect wavelength
calibration of the spectrometer, and 2 incorrect or unknown
specific absorption coefficients of the chromophores. Regard-
ing the first point, we observed that a 1-nm offset in the
spectrometer calibration typically resulted in a 3% bias in the
fitted saturation a6 �data not shown�. Since it should always
be possible to calibrate the wavelength axis of a spectrometer
to within 1 nm, we consider this source of error to be minor.
Regarding the second point, the specific absorption coeffi-
cients of chromophores are usually measured when dissolved
in water, ethanol, hexane, or chloroform. Apart from water,
these environments are dramatically different from the in vivo
environment, and it is not easy to predict how the environ-
ment changes the specific absorption coefficient of the chro-
mophore. Spectral shifting as well as spectral broadening may
occur, which would also result in biased fit parameters, the
amount of bias depending on the amounts of shifting and
broadening. Therefore, it is imperitive to use specific chro-
mophore absorption coefficients in the fitting routine that
September/October 2008 � Vol. 13�5�2
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ere measured in an evironment that comes as close to the in
ivo environment as possible. This is particularly important
or component fits of in vivo fluorescence and Raman spectra,
hose shapes can be altered even more dramatically than ex-

inction spectra due changes in the microenvironment. Alter-
atively, any features in the residual spectra obtained from
tting in vivo spectra using ex vivo component spectra could
e used to modify these component spectra and determine the
rue in vivo fluorescence, Raman, or extinction spectra. More-
ver, environmental changes �such as pH variations� that are
eflected in altered spectral shapes of the components will
ead to features in the residual spectra. This provides an op-
ortunity to characterize and monitor the microenvironment
y analyzing the shape of the residual spectra.

As can be seen in Table 4, for a noise amplitude typical for
ur in vivo data, the CI of the fitted parameters is quite small
e.g., the CI for blood saturation a6 is smaller than 1% for
lood volume fractions a5�1%�. This CI represents the sta-
istical error associated with an individual spectrum. It is criti-
al that this is interpreted differently from a standard devia-
ion calculated from averaging multiple measurements. The
atter standard deviation represents the biological variation in
he parameters, which for most applications will be larger
han the statistical uncertainty in the parameters related to the
uality of the data. In fact, in our experience the biological
ariation in the parameters for multiple measurements is even
arger than the bias associated with the systematic errors dis-
ussed in results Secs. 4.2 and 4.3, and for most applications
t will be sufficient to specify these biological standard devia-
ions only. However, completely disregarding the statistical
Is can also cause problems. For example, if the blood vol-
me fraction is very low, the statistical uncertainty of the
lood related fit values becomes very large �Table 4�. There-
ore, in the case of averaging multiple measurements, we feel
hat calculating the weighted average of the parameters, with
he statistical CIs as weight factors, is more appropriate than
alculating the unweighted average and ignoring the statistical
Is. Furthermore, calculating the statistical errors in the fit
arameters facilitates objective assessment of the quality of
pectra, and fits with the possibility to reject poor quality
pectra or fit values from an in vivo dataset, thereby avoiding
nnecessary pollution of the dataset by poor quality spectra.

Table 8 shows that a missing absorber that overlaps with
he spectra of oxy- and deoxyhemoglobin can cause a large
ias in the extracted saturation. This is particularly true for
mall concentrations of blood, where the calculated statistical
ncertainty of the saturation is much smaller than the bias in
he saturation introduced by a missing spectrally overlapping
bsorber �data not shown�. Therefore, to be safe, we have in
revious publications restricted the calculations of average
lood saturation to spectra with blood volume fractions larger
han 1%.11–14 It is important to note that the saturation CI was
alculated for our specific DPS measurement geometry with
00-�m fibers, featuring a path length of 0.4 mm. Since the
aturation CI will depend on signal attenuation rather than on
lood volume fraction, the saturation CI �and potential bias�
ill be smaller for similar blood volume fractions in the case
f DPS with larger fiber diameters, or any other measurement
eometry with a longer path length.

In this work, the parameters were not constrained, i.e., all
ree parameters were allowed to range from minus infinity to
ournal of Biomedical Optics 054044-1
plus infinity. However, in reality the parameters are physically
constrained to a1	0, 0
a2
−4, a3	0, a4	0 �M, a5
	0%, 0% 
a6
100%, and a7	5 �m �the diameter of a
red blood cell�. We did not implement these boundary condi-
tions here to fully explore the sources and magnitudes of the
statistical and systematic errors. When fitting an in vivo spec-
trum, however, it would be appropriate to constrain the pa-
rameters by implementing these physical boundary conditions
to exclude nonphysical parameter values. However, in that
case, care should be taken that the final value of any param-
eter is not at one of these artificially imposed limits. Boundary
conditions on the individual parameters may also be artifi-
cially imposed by transformations of the variables. For ex-
ample, by making the transformation a6�→1 /2
+ �arctan�a6�� /�, the transformed parameter a6� is restricted to
0�a6��1 for −��a6��. In this way the fit is performed
without boundary conditions on the fit parameters while still
imposing physical boundary conditions on the transformed
parameters. If the transformation of any fit parameter a is
given by a�→ f�a�, the statistical error of the transformed
parameter is given by 
�=
�df�a� /da�.20 For our example,
a6�→1 /2+ �arctan�a6�� /� we find 
a6� =
a6 /��1+a6

2�, where

a6 is the square root of the sixth diagonal element of the
reduced chi-square normalized covariance matrix obtained
from the fit.

In conclusion, we show that we can correctly estimate the
statistical error on parameters extracted from fits to reflec-
tance spectroscopic data. We demonstrate the use of various
methods to identify and subsequently minimize the bias in the
fitted parameters associated with systematic errors. Detailed
analysis of the residual spectrum is potentially useful not only
for minimization of bias, but also for monitoring changes in
the in vivo microenvironment.
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