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Lithium niobate1,2 is a ferroelectric crystal that features superior electro-
optical, nonlinear optical, and acoustic optical performance, and it is
thus prominent in various optoelectronic applications. Recent break-
throughs in the fabrication of thin film lithium niobate (TFLN) combine
the unique features of the bulk crystal onto an integrated platform with
submicron light confinement, driving new records in reducing the
energy consumption for high-speed electro-optical modulation,3–5 the
footprint for acoustic wave filtering,6 and the power requirement for
efficient optical frequency conversion.7–9 TFLN is mainly fabricated
using the smart cut technique,10,11 which was developed for silicon-on-
insulator materials12 and is known for its capability for manufacturing
high-quality, large-sized crystalline wafer. Revolutionary performances
are expected by moving from bulk to TFLN, e.g., in the form of lith-
ium-niobate-on-insulator (LNOI) optical communication and wireless
communication devices, and this trend may also lead to fundamental
breakthroughs in optical computation, microwave photonics, and quan-
tum optics, as discussed below.

Lithium-niobate-based electro-optical modulators (EOMs) have
been the choice of long-distance optical communication for decades.
However, their relatively large size and high cost make them only appli-
cable for the backbone connections. LNOI EOM, however, is capable
of the same high modulation speed and CMOS-compatible low drive
voltage in a much smaller package. Power consumption as low as
0.37 fj/bit has been demonstrated.3 These performances make the
LNOI EOM not only a direct alternate to the bulk lithium niobate
EOM, but also a promising candidate for optical links in/between data
centers and local area networks at the data rates of 200-800 Gbps and
above, therefore driving the next generation optical communication
technology. It is worth noting that laser sources and amplifiers
have been demonstrated using rare-earth-ion-doped LNOI chips,13

which may enable a fully integrated optical communication module.
Hybridization with laser-active materials or silicon is another attractive
approach towards full integration that adds a light source or driving
electronics capabilities.14 Such hybrid integration can also enable si-
multaneous signal processing and memory operations, leading toward
artificial intelligence applications.15

Optical computation may change the power-hungry nature of
modern electronic computation technology, in both classical16 and
quantum approaches,17 by demonstration of computation speed accel-
eration and quantum supremacy. In either approach, larger scale pho-
tonic circuitry is required, with phase sensitive optical paths as the
interaction mechanism. The low loss nature of lithium niobate qualifies
LNOI for such large-scale photonic integration, achieving a level of
2.7 dB per meter in different demonstrations.18,19 A further crucial
challenge for optical computation is circuit reconfigurability, and
LNOI is the only mature material to combine fast and accurate phase

control using electro-optical modulation, acoustic-optical modulation,
or thermal-optical modulation.

Microwave photonics has been a long-chased dream to bring
optical accuracy and bandwidth into microwave technology. Photonic
integration is key to push complex microwave photonics systems,
including high-bandwidth electro-optic modulators, low-noise fre-
quency synthesizers, and chip signal processors, into practice.20 The
LNOI platform contains the most powerful toolbox, including the
EOM and dispersive Kerr soliton (DKS) frequency combs.21 Self-
referencing is necessary to further stabilize DKS comb. With high
nonlinear coefficients in both χð2Þ and χð3Þ, octave-spanning super-
continuum generation22 and efficient frequency doubling9 have been
reported separately using LNOI, and self-referencing can be expected
combining these processes on the same chip. The only missing parts
are the photodetector and control electronics in the on-chip signal
processing, and their integration relies on the hybrid integration
technology.

Domain engineered bulk lithium niobate crystal, also known as
optical superlattice,23 has been a great success for nonclassical light
generation and photon state manipulation, for quantum optics re-
search. However, photonic integration is the key to the practical
application of quantum information technology. Compared to other
photonics integration platforms, LNOI features high nonlinearity in
χð2Þ and fast EOM for photon state modulation. Ultrabright photon
pair generation has been reported in both straight waveguide and
micro-resonator using LNOI to achieve revolutionary photon genera-
tion rates of 2.79 × 1011 Hz∕mW24 and 2.7 MHz∕μW,25 respectively.
Together with the low-loss waveguide and other passive devices, larger
scale on-chip photon state manipulation can be expected.

On one hand, the above important advances may be seen as
incremental steps toward practical application of quantum informa-
tion technology that are expected directly from the high nonlinearity
of LNOI. On the other hand, the practical application of quantum
information relies on sources of the deterministic multiqubit state,
which is the multiphoton state in photonics quantum systems. While
such a problem is yet to be resolved, a theoretical study shows that
LNOI may be the only candidate for such deterministic multiphoton
state generation considering the material limitations.26 Deterministic
nonlinear interaction is possible at single photon level, and the re-
quired quality factor is on the order of 107 to 108 for domain engi-
neered micro-ring resonators, within the reach of existing fabrication
limits.26

In summary, from bulk devices to chips, LNOI technology has
shown its capability to push the performance of optoelectronic devices
to new heights, for electro-optical modulation and acoustic wave filter-
ing functions in next-generation optical and wireless communications.
In conjunction with hybrid integration, LNOI can also be an enabling
technology for optical computation, microwave photonics, and quan-
tum information, with large-scale photonic integration, high optical
reconfigurability, and strong nonlinear interaction at the single photon
level. To make these happen, large-size low-defect TFLN wafer and
high-performance device fabrication techniques are key areas of future
research.
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