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Abstract. Microaneurysms (MAs) are known to be the early signs of diabetic retinopathy (DR). An automated
MA detection system based on curvelet transform is proposed for color fundus image analysis. Candidates of MA
were extracted in two parallel steps. In step one, blood vessels were removed from preprocessed green band
image and preliminary MA candidates were selected by local thresholding technique. In step two, based on
statistical features, the image background was estimated. The results from the two steps allowed us to identify
preliminary MA candidates which were also present in the image foreground. A collection set of features was fed
to a rule-based classifier to divide the candidates into MAs and non-MAs. The proposed system was tested with
Retinopathy Online Challenge database. The automated system detected 162 MAs out of 336, thus achieved a
sensitivity of 48.21% with 65 false positives per image. Counting MA is a means to measure the progression of
DR. Hence, the proposed system may be deployed to monitor the progression of DR at early stage in population
studies. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in

whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.21.10.101404]
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1 Introduction
A majority of the people suffering from diabetes mellitus will
eventually develop diabetic retinopathy (DR). At the final stage
of DR, sufferers may lose their eyesight. DR is one of the lead-
ing causes of blindness and can be controlled if detected early.
But for population-based assessment, the task of grading each
retinal fundus image is both time consuming and labor intensive.
With the advent of digital fundus photograph technology and the
availability of fast computers, systems are being designed to
detect DR automatically. Microaneurysms (MAs), which are
basically the saccular enlargement of the venous ends of retinal
capillaries, are said to be the first sign of DR. MAs appear and
disappear during the early course of retinopathy.1,2 The MA
count and turnover in digital color fundus images are important
measures of DR progression.3,4 Therefore, accurately detecting
MA is not only important for DR detection, but also it may assist
in monitoring DR progression.

The MAs have diameters between 10 and 100 μm, are round
in shape, and their color is similar to blood vessels (BVs)
(red),5,6 as shown in Fig. 1. Detection of MAs is challenging due
to the variation in MA size, low and varying contrast, uneven
illumination, and variation in fundus image background. MA
detection is not a new topic; many researchers have worked on
it since the early 1980s.7,8 Though the performance of the auto-
matic system in digitized fluorescein angiograms is somewhat
on par with a human grader,9 it is considered to be an invasive
method, as fluorescein sodium dye is injected into the eye. The
associated risk of complication or adverse reaction can include

transient nausea, occasional vomiting, and so on, and in very
rare cases can cause death. Thus most of the current research
is moving toward color fundus photography, which is a noninva-
sive imaging method. In the absence of contrast enhancing agent,
color fundus images inevitably suffer from low contrast. The per-
formance of the fundus image-based system is, as expected, lim-
ited and remains as an open issue in retinal image analysis.

Some of the well-known approaches used in MA detection
include template matching in wavelet domain, scale-adapted
blob analysis with semisupervised learning scheme, ensem-
ble-based system, double-ring filter, local rotating cross-section
profile analysis, multiscale correlation coefficients, and pixel
classification technique.10–16 In this work, we propose to use
curvelet transform (CT) for MA detection as it can detect
curve singularities. Our preliminary work indicated promising
results (Shah et al.17 IOVS 2015;56: ARVO E-Abstract 5266).

2 Materials and Methods

2.1 Data Description

We tested our system using a publicly available Retinopathy
Online Challenge (ROC) dataset.18 The dataset consists of 50
images with ground truth at different resolutions mimicking the
real-world scenario. The MAs were annotated by four eye spe-
cialists at the Department of Ophthalmology, University of
Iowa. The ROC dataset is challenging due to the presence of
noise, compression artifacts, and the general image quality.
These are in common to the image quality found in mass screen-
ing projects. The images were acquired using different types of
camera and at different resolutions, which makes it more diffi-
cult to detect MAs in such images. The fundus cameras used
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were Topcon NW 100, a Topcon NW200, and a Canon CR5-
45NM. Niemeijer selected them from 150,000 photographs col-
lected in a DR screening program to form the ROC dataset.19

Table 1 describes the different image types.18

2.2 Automated Microaneurysm Detection System

Figure 2 depicts the complete procedure of the proposed MA
detection system which consists of the following steps:

1. Candidate selection

a. BV extraction from green band of raw image, pre-
processing of green band, removal of BV from pre-
processed green band, and MA candidate selection
using local thresholding.

b. Background estimation using gray band of raw
image.

c. Removal of candidates from step a that appear in
the background.

2. Candidate features extraction

a. Color-based features.
b. Hessian-based features.
c. Curvelet-based features.

3. Candidate classification

Since the dataset consists of different sizes of images,
the height of all the images was resized to a standard
800-pixel while maintaining their original width/height
ratio. After resizing, each color fundus image was
divided into red band (Gr), green band (Gn), and gray
band (Gy). We preprocessed the Gn by shade correction,
followed by histogram equalization to obtain the prepro-
cessed image denoted by Gnpr. The BVs were extracted
from the Gn, using two-dimensional (2-D) Gabor wave-
let,20 and removed from the Gnpr to obtain BV-removed
image denoted by G−BV. The MA candidates were
obtained in two parallel steps, namely local thresholding
and statistical features-based technique. The MAs have
low intensity in green band. Using local thresholding,21

MA candidate pixels with low intensities could be
selected from G−BV as potential candidates. Also from
the gray band image (Gy), based on pixel contrast and
standard deviation, we could identify MA candidates.
Only those candidates which were found by both of
these methods were retained. In both MA candidate

Fig. 1 Example of MA, where row 1 shows the MA in (a) full-color RGB and (b) a close-up view; row 2 is
(c) in green band and (d) with a close-up view.

Table 1 Types of images used in the proposed approach.

Resolution
(height × width

in pixels)
Coverage of
the retina

Number of
images

Type I 768 × 576 45 deg 22

Type II 1058 × 1061 45 deg 3

Type III 1389 × 1383 45 deg 25
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Fig. 2 Automated MAs detection system flowchart.
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selections, thresholds were kept at low value to maxi-
mize the detection of MAs. Hence, many true MAs
were detected along with hundreds of false positives
(FPs). These FPs were mainly from the traces of the
BVs, the background and bits of larger red lesions.

2.3 Candidate Feature Extraction

In general, MAs are red in color and have round shape. Based on
their morphology and intensity, we used three feature sets to
describe the MAs, namely color-based, Hessian matrix-based,
and curvelet coefficients-based features. The color features
include (a) standard deviation and mean intensity values in red
and green bands, and (b) the histogram of S and V bands in HSV
color space. The BVs and other linear objects can be detected
based on the eigenvalues of Hessian matrix.22 The features we
used based on Hessian matrix are thus the eigenvalues, their
product, and their ratio.

The basic concept of curvelets23 is to represent a curve as a
superposition of multiple functions of various lengths and
widths obeying the scaling lawwidth ≈ length2. CT has a highly
redundant dictionary, which can provide sparse representation
of signals that have edges along regular curve. It is localized
in angular orientation in addition to localization in spatial
and frequency domains—a very important feature missing in the
classic wavelet transform. Initial construction of curvelets has
been redesigned and was reintroduced as fast digital CT.24

Curvelets are used in many medical image analysis applica-
tions like computed tomography,25 breast cancer diagnosis
in digital mammogram,26 ulcer detection,27 retinal image analy-
sis,28 and so on. Most natural images/signals exhibit line-like
edges, i.e., discontinuities across curves (so-called line or curve
singularities). Traditional wavelets perform well only at repre-
senting point singularities, since they ignore the geometric prop-
erties of structures and do not exploit the regularity of edges.29

The solution to this problem and some other limitations of the
wavelet was provided by CT.23 Unlike the isotropic elements of
wavelets, the needle-shaped elements of this transform possess
very high directional sensitivity and anisotropy.29 The algorithm
of CT is shown in Fig. 3. It is based on two windows, namely
scale window V and radial windowW, and consists of four steps:
(a) compute the 2-D Fourier transform of the original image, and
(b) for each scale s and orientation n, estimate frequency win-
dow Us;n as a product of the scale and radial windows, (c) wrap
this product around the origin, and (d) compute a 2-D inverse
fast Fourier transform to derive the curvelet coefficients. More
details can be found in Candes’ paper.24 In digital implementa-
tion of the CT, the two main parameters are

a. number of scales and
b. number of orientations

at the coarsest level. We found in our case that 2 scales and 16
orientations work well. Based on curvelet coefficients, we cal-
culated aspect ratio, circulatory, mean energy, and standard
deviation of energy.

2.4 Candidate Classification

A simple rule-based classifier was designed to classify the can-
didates into MA and non-MA. The classification was done in
three sequential stages. In stage one, using color features we
removed the FPs. In stage two, using Hessian matrix-based

features we removed those candidates that were from traces
of BVs and other elongated objects. While in stage three, we
utilized the curvelet coefficients-based features to remove non-
circular objects.

3 Results and Discussion
Out of the 50 images, only 37 images contain MAs, while the
remaining 13 images do not contain any MA. The total number
of MAs in these 37 images is 336. The results of the proposed
system and those previously reported in literature are shown in
Table 2. Out of the 336 MAs, the proposed approach was able to
detect 162 MAs, achieving a sensitivity of 48.21% with 65 FPs
per image (FPPI). This result is favorably comparable with the

Fig. 3 Steps of CT.28

Table 2 Result comparison of different MA detection methods.

References Methodology Sensitivity (%) FPPI

Spencer et al.30 Top-hat transform 12.00 20.30

Abdelazeem31 Circular Hough transform 28.00 505.85

Walter et al.32 Diameter closing 36.00 154.42

Zhang et al.15 Multiple-Gaussian mask 33.00 328.30

Lazar et al.14,33 Cross-section profile 48.00 73.94

Adal et al.11 Hessian operator 44.64 35.20

Our method CT 48.21 65.00
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state-of-the-arts, although only simple rule-based classifier was
implemented. Unlike the method by Adal et al. that employed
four supervised classifiers and 87 features in total to select an
optimum classifier–feature pairing to remove FPs, the compu-
tation of the proposed system is simpler and faster albeit at the
expense of higher FPPI. In this work, we aimed to achieve high
sensitivity in MA detection, i.e., to detect as many MAs as pos-
sible from fundus images. We used local thresholding technique
in identifying MA candidates and kept the threshold to a low
value as our approach to achieve maximum possible sensitivity,
at the cost of hundreds of FPPI. These FPs at this initial stage
were mainly due to background of the fundus images and BVs.
We used statistical features to estimate the background and
remove those candidates that are from background. In addition,
during the BV extraction stage, we kept the threshold to a low
value so that only true BVs are extracted. This helps us in
detecting MAs near the BV and ultimately improving the sen-
sitivity. However, this resulted in introducing many FPs as there
were many traces of BVs. To eliminate those BVs, we used the
Hessian matrix-based features. Thus, the proposed system can

detect MA near the BVs with reasonably good specificity.
Figure 4 illustrates the examples of MA detected in close vicin-
ity to BVs.

As previously mentioned, our objectives are different, in that
we have targeted for better sensitivity whereas they focused on
specificity. As the “good” MAs (clear circular dark red spots)
form only a fraction of all the MAs in this dataset, this has a
significant impact on how robust one approach can be optimized
in coping with the variance of MA features. Using larger number
of features and more complex classifiers, Adal et al. were suc-
cessful in achieving very good specificity. Increasing its sensi-
tivity (i.e., accepting MAs with larger variance) may however
not be straightforward.

Figure 5 shows the free-response receiver operating charac-
teristic (FROC) curve of the proposed system. Based on local
thresholding alone, the proposed system would have hundreds
of FPPI. More than 42% of those FPs could however be
removed using color features, with only 2.3% of the MAs
being lost. We started with 178 MAs detected out of possible
336 (with 250 FPPI), after local thresholding. The results

Fig. 4 Examples of MA that are very close to the BVs but detected by the proposed system: (a)–(d) full-
color images and (e)–(h) in green band.

Fig. 5 FROC plot of the proposed system.
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were improved to 170 MAs with 144 FPPI, after MA candidate
selection based on color features. However, to achieve very high
specificity (<100 FPPI), additional features are required to dif-
ferentiate the actual MAs and the FPs. In this case, we optimized
the results using Hessian and curvelet features simultaneously.

To our best knowledge, CT is used for the first time in MA
detection. CT is fast and robust at detecting objects with curved
singularities. We used features including shape parameters
based on curvelet coefficients to discriminate between MAs
and non-MAs. The results indicate that curvelets are very effec-
tive at detecting round objects such as MAs. Table 2 further
shows our approach achieves the higher sensitivity than other
reported approaches. Admittedly, the FPPI is higher than

Adal’s but a simpler solution is perhaps better, as the Occam’s
razor principle suggests.

The ROC dataset is a very challenging dataset. It has been
observed that general image quality, noise, and low and varying
contrast make it difficult to detect MAs in this dataset. Figure 6
depicts some of the MA candidates detected by the proposed
system. The FPs are mostly from BVs and hemorrhages (large
red lesions). Some of the images are very dark, hence in those
images the background has also contributed to the FPs. Factors
such as variation in fundus image background, low and varying
contrast, and artifact are found to further limit the MA detection
rate. The cases where the proposed system failed to detect MAs
are shown in Fig. 7 and can be summarized into three categories:

Fig. 6 Objects encircled in black are true positives, encircled in white are false negatives, whereas
objects inside the white squares are FPs: (a) full-color image while (b) in green band.

Fig. 7 Different cases where the proposed system was unable to detect the MAs: (a)–(d) examples of
missed MA because the center pixel does not have the minimum intensity, (e)–(h) examples of missed
MA because their colors are very faint, and (i)–(l) examples of missed MA due to abnormal shape.
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Case I: If the central pixel of the MA is not the darkest point,
then in some cases that MAwill be missed. The hit cri-
teria specified by ROC18 are very strict. We assumed that
the center point of the MA to be the darkest point. But in
some cases, the ground truth does not represent the dark-
est point. In such cases, if the darkest point of the
detected lesion is not within the specified distance
from the ground truth, then it is declared as missed.

Case II: All those MAs which are very faint in color will be
missed, as the candidates are extracted based on the
assumption that MAs have low intensity in green
band, i.e., dark in color as intensity level increases
from dark/black (value ¼ 0) to faint/white (value ¼
255). Thus, those MAs which are faint in color, i.e., hav-
ing very high intensity value in green band, will be
missed. These are the examples of MAs which were
missed in the first stage. Most of the missed MAs belong
to this category.

Case III: Those MAs having abnormal shape will also be
missed, since the proposed algorithm assumes MAs
to be somehow round in shape. So all those MAs
selected at the initial stage will be missed in the final
stage of classification if they have noncircular shape.

One possible approach to improve the sensitivity and speci-
ficity of the proposed MA detection system is the utilization of
multispectral imaging (MSI) approach. Applications of MSI
have shown promising results in different areas of biomedical
image analysis ranging from human forearm imaging to skin
chromophore mapping,34–38 with several applied to retinal
image analysis.39–42 A recent study on retinal vein occlusion
demonstrated that MSI was able to define vascular abnormalities
at a comparable performance as fundus photography, fundus
fluorescein angiography, and optical coherence tomography.43

In MSI, image data are captured at specific nonoverlapping fre-
quency bands. Thus, certain features within the field of view can
be highlighted. If applied in MA detection, we expect better BV
extraction and background separation may be achieved. These
will result in less stringent requirement at the classifier stage,
and hence improvement in sensitivity.

4 Conclusion
We have explored a new technique for MA detection. We
observed that the main sources/contributors of FPs in automated
MA detection such as proposed one are image background and
BVs while hemorrhages are the third category of FPs although
with fewer in numbers. The proposed system has a high sensi-
tivity and is able to detect MAs near the BVs. Our future work
includes investigation of a means to detect hemorrhages and fine
BVs to further improve the specificity of our proposed MA
detection system.

Acknowledgments
The project was supported by National Healthcare Group
Singapore (Grant No. NHG/CSCS/12006). S. A. A. Shah
was a recipient of Universiti Teknologi PETRONAS graduate
assistantship scheme.

References
1. T. Hellstedt and I. Immonen, “Disappearance and formation rates of

microaneurysms in early diabetic retinopathy,” Br. J. Ophthalmol.
80(2), 135–139 (1996).

2. E. Kohner et al., “Microaneurysms in the development of diabetic
retinopathy (UKPDS 42),” Diabetologia 42(9), 1107–1112 (1999).

3. R. Klein et al., “Retinal microaneurysm counts and 10-year progression
of diabetic retinopathy,” Arch. Ophthalmol. 113(11), 1386–1391 (1995).

4. L. Ribeiro, S. Nunes, and J. Cunha-Vaz, “Microaneurysm turnover in the
macula is a biomarker for development of clinically significant macular
edema in type 2 diabetes,” Curr. Biomarker Find. 3, 11–15 (2013).

5. T.Walter and J.-C. Klein, “Automatic detection of microaneurysms in color
fundus images of the human retina by means of the bounding box closing,”
inMedical Data Analysis, A. Colosimo, P. Sirabella, and A. Giuliani, Eds.,
pp. 210–220, Springer, Berlin-Heidelberg, Germany (2002).

6. A. W. Fryczkowski et al., “Scanning electron microscopic study of
microaneurysms in the diabetic retina,” Ann. Ophthalmol. 23(4),
130–136 (1991).

7. B. Lay, C. Baudoin, and J.-C. Klein, “Automatic detection of microa-
neurysms in retinopathy fluoro-angiogram,” in 27th Annual Technical
Symp., pp. 165–173 (1984).

8. C. Baudoin, B. Lay, and J. Klein, “Automatic detection of microaneur-
ysms in diabetic fluorescein angiography,” Rev. Epidemiol. Sante Publique
32(3–4), 254–261 (1984).

9. J. V. Forrester, “A fully automated comparative microaneurysm digital
detection system,” Eye 11, 622–628 (1997).

10. G. Quellec et al., “Optimal wavelet transform for the detection of micro-
aneurysms in retina photographs,” IEEE Trans. Med. Imaging 27(9),
1230–1241 (2008).

11. K. M. Adal et al., “Automated detection of microaneurysms using scale-
adapted blob analysis and semi-supervised learning,” Comput. Methods
Programs Biomed. 114(1), 1–10 (2014).

12. B. Antal and A. Hajdu, “An ensemble-based system for microaneurysm
detection and diabetic retinopathy grading,” IEEE Trans. Biomed. Eng.
59(6), 1720–1726 (2012).

13. A. Mizutani et al., “Automated microaneurysm detection method based
on double ring filter in retinal fundus images,” Proc. SPIE 7260,
72601N (2009).

14. I. Lazar and A. Hajdu, “Retinal microaneurysm detection through local
rotating cross-section profile analysis,” IEEE Trans. Med. Imaging
32(2), 400–407 (2013).

15. B. Zhang et al., “Detection of microaneurysms using multi-scale corre-
lation coefficients,” Pattern Recognit. 43(6), 2237–2248 (2010).

16. M. Niemeijer et al., “Automatic detection of red lesions in digital color
fundus photographs,” IEEE Trans. Med. Imaging 24(5), 584–592 (2005).

17. A. S. Syed et al., “Automated detection of microaneurysms using cur-
velet transform,” Invest. Ophthal. Vis. Sci. 56(7), 5266 (2015).

18. M. Niemeijer et al., “Retinopathy online challenge: automatic detection
of microaneurysms in digital color fundus photographs,” IEEE Trans.
Med. Imaging 29(1), 185–195 (2010).

19. M. D. Abramoff and M. S. Suttorp-Schulten, “Web-based screening for
diabetic retinopathy in a primary care population: the EyeCheck
project,” Telemed. J. E Health 11(6), 668–674 (2005).

20. J. V. Soares et al., “Retinal vessel segmentation using the 2-D Gabor
wavelet and supervised classification,” IEEE Trans. Med. Imaging
25(9), 1214–1222 (2006).

21. S. S. A. Ali et al., “Making every microaneurysm count: a hybrid
approach to monitor progression of diabetic retinopathy,” in 5th Int.
Conf. on Intelligent and Advanced Systems (ICIAS), pp. 1–4 (2014).

22. A. F. Frangi et al., “Multiscale vessel enhancement filtering,” inMedical
Image Computing and Computer-Assisted Interventation—MICCAI’98,
pp. 130–137, Springer (1998).

23. E. J. Candes and D. L. Donoho, “Curvelets: a surprisingly effective
nonadaptive representation for objects with edges,” DTIC Document,
Technical Report ADP 11978 (2000).

24. E. Candes et al., “Fast discrete curvelet transforms,” Multiscale Model.
Simul. 5(3), 861–899 (2006).

25. L. Dettori and L. Semler, “A comparison of wavelet, ridgelet, and cur-
velet-based texture classification algorithms in computed tomography,”
Comput. Biol. Med. 37(4), 486–498 (2007).

26. M. M. Eltoukhy, I. Faye, and B. B. Samir, “Breast cancer diagnosis in
digital mammogram using multiscale curvelet transform,” Comput.
Med. Imaging Graphics 34(4), 269–276 (2010).

27. B. Li and M. Q.-H. Meng, “Texture analysis for ulcer detection in
capsule endoscopy images,” Image Vision Comput. 27(9), 1336–1342
(2009).

Journal of Biomedical Optics 101404-7 October 2016 • Vol. 21(10)

Ali Shah et al.: Automated microaneurysm detection in diabetic retinopathy using curvelet transform

http://dx.doi.org/10.1136/bjo.80.2.135
http://dx.doi.org/10.1007/s001250051278
http://dx.doi.org/10.1001/archopht.1995.01100110046024
http://dx.doi.org/10.2147/CBF.S32587
http://dx.doi.org/10.1038/eye.1997.45
http://dx.doi.org/10.1109/TMI.2008.920619
http://dx.doi.org/10.1016/j.cmpb.2013.12.009
http://dx.doi.org/10.1016/j.cmpb.2013.12.009
http://dx.doi.org/10.1109/TBME.2012.2193126
http://dx.doi.org/10.1117/12.813468
http://dx.doi.org/10.1109/TMI.2012.2228665
http://dx.doi.org/10.1016/j.patcog.2009.12.017
http://dx.doi.org/10.1109/TMI.2005.843738
http://dx.doi.org/10.1109/TMI.2009.2033909
http://dx.doi.org/10.1109/TMI.2009.2033909
http://dx.doi.org/10.1089/tmj.2005.11.668
http://dx.doi.org/10.1109/TMI.2006.879967
http://dx.doi.org/10.1137/05064182X
http://dx.doi.org/10.1137/05064182X
http://dx.doi.org/10.1016/j.compbiomed.2006.08.002
http://dx.doi.org/10.1016/j.compmedimag.2009.11.002
http://dx.doi.org/10.1016/j.compmedimag.2009.11.002
http://dx.doi.org/10.1016/j.imavis.2008.12.003


28. M. S. Miri and A. Mahloojifar, “Retinal image analysis using curvelet
transform and multistructure elements morphology by reconstruction,”
IEEE Trans. Biomed. Eng. 58(5), 1183–1192 (2011).

29. J. Ma and G. Plonka, “The curvelet transform,” IEEE Signal Process.
Mag. 27(2), 118–133 (2010).

30. T. Spencer et al., “Automated detection and quantification of microa-
neurysms in fluorescein angiograms,” Graefe’s Arch. Clin. Exp.
Ophthalmol. 230(1), 36–41 (1992).

31. S. Abdelazeem, “Micro-aneurysm detection using vessels removal and
circular Hough transform,” in Proc. of the Nineteenth National Radio
Science Conf. (NRSC 2002), pp. 421–426 (2002).

32. T. Walter et al., “Automatic detection of microaneurysms in color
fundus images,” Med. Image Anal. 11(6), 555–566 (2007).

33. I. Lazar, A. Hajdu, and R. J. Quareshi, “Retinal microaneurysm detec-
tion based on intensity profile analysis,” in 8th Int. Conf. on Applied
Informatics, pp. 157–165 (2010).

34. M. Ehler, “Modifications of iterative schemes used for curvature correc-
tion in noninvasive biomedical imaging,” J. Biomed. Opt. 18(10),
100503 (2013).

35. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal
microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).

36. C. Yuan et al., “In vivo accuracy of multispectral magnetic resonance
imaging for identifying lipid-rich necrotic cores and intraplaque hem-
orrhage in advanced human carotid plaques,” Circulation 104(17),
2051–2056 (2001).

37. I. Kuzmina et al., “Towards noncontact skin melanoma selection by
multispectral imaging analysis,” J. Biomed. Opt. 16(6), 060502 (2011).

38. J. M. Kainerstorfer et al., “Principal component model of multispectral
data for near real-time skin chromophore mapping,” J. Biomed. Opt.
15(4), 046007 (2010).

39. M. Ehler et al., “Modeling photo-bleaching kinetics to create high res-
olution maps of rod rhodopsin in the human retina,” PLoS One 10(7),
e0131881 (2015).

40. I. Styles et al., “Quantitative analysis of multi-spectral fundus images,”
Med. Image Anal. 10(4), 578–597 (2006).

41. C. Zimmer et al., “Innovation in diagnostic retinal imaging: multispec-
tral imaging,” Retina Today 9(7), 94–99 (2014).

42. W. Czaja and M. Ehler, “Schödinger eigenmaps for the analysis of
bio-medical data,” IEEE Trans. Pattern Anal. Mach. Intell. 35(5),
1274–1280, (2013).

43. Y. Xu et al., “A light-emitting diode (LED)-based multispectral imaging
system in evaluating retinal vein occlusion,” Lasers Surg. Med. 47(7),
549–558 (2015).

Syed Ayaz Ali Shah received his master degree in electrical engi-
neering from NWFP University of Engineering and Technology
Peshawar, Pakistan, in 2007. He is currently working toward the PhD
degree at the Center of Intelligent Signal and Imaging Research
(CISIR), Department of Electrical and Electronic Engineering,
Universiti Teknologi PETRONAS, Malaysia. He is the recipient of
PETRONAS graduate assistantship scheme. His research interest
includes medical image analysis, image processing, pattern recogni-
tion and computer vision.

Augustinus Laude is head, research and a senior consultant of Oph-
thalmology in the National Healthcare Group Eye Institute at Tan Tock
Seng Hospital. He received his MBChB degree from the University of
Edinburgh, and completed his fellowship with the Royal College of
Surgeon in Edinburgh and the Academy of Medicine Singapore.
He is an adjunct assistant professor at Nanyang Technical University
and Adjunct Clinician Scientist at Singapore Eye Research Institute.
His clinical and research interests include cataract surgery, macula
diseases and low vision.

Ibrahima Faye is an associate professor at Universiti Teknologi PET-
RONAS. His BSc, MSc and PhD degrees in mathematics are from
University of Toulouse, France, while his MS degree in engineering
of Medical and Biotechnological data is from Ecole Centrale Paris,
France. His research interests include Engineering Mathematics,
Signal and Image Processing, Pattern Recognition, and Dynamical
Systems.

Tong Boon Tang is an associate professor of electrical & electronic
engineering at the Universiti Teknologi PETRONAS. He received his
PhD and BEng(Hons) degrees both from the University of Edinburgh.
He is a recipient of IET Nanobiotechnology Premium Award and Lab
on Chip Award. His research interests are in biomedical instrumenta-
tion, from device and measurement to data fusion. He is an associate
editor of Journal of Medical Imaging and Health Informatics.

Journal of Biomedical Optics 101404-8 October 2016 • Vol. 21(10)

Ali Shah et al.: Automated microaneurysm detection in diabetic retinopathy using curvelet transform

http://dx.doi.org/10.1109/TBME.2010.2097599
http://dx.doi.org/10.1109/MSP.2009.935453
http://dx.doi.org/10.1109/MSP.2009.935453
http://dx.doi.org/10.1007/BF00166760
http://dx.doi.org/10.1007/BF00166760
http://dx.doi.org/10.1016/j.media.2007.05.001
http://dx.doi.org/10.1117/1.JBO.18.10.100503
http://dx.doi.org/10.1364/OL.25.001708
http://dx.doi.org/10.1161/hc4201.097839
http://dx.doi.org/10.1117/1.3584846
http://dx.doi.org/10.1117/1.3463010
http://dx.doi.org/10.1371/journal.pone.0131881
http://dx.doi.org/10.1016/j.media.2006.05.007
http://dx.doi.org/10.1109/TPAMI.2012.270
http://dx.doi.org/10.1002/lsm.22392

