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Abstract. In conventional retinal region detection methods for optical coherence tomography (OCT) images,
many parameters need to be set manually, which is often detrimental to their generalizability. We present a
scheme to detect retinal regions based on fully convolutional networks (FCN) for automatic diagnosis of abnor-
mal maculae in OCT images. The FCN model is trained on 900 labeled age-related macular degeneration
(AMD), diabetic macular edema (DME) and normal (NOR) OCT images. Its segmentation accuracy is validated
and its effectiveness in recognizing abnormal maculae in OCT images is tested and compared with traditional
methods, by using the spatial pyramid matching based on sparse coding (ScSPM) classifier and Inception V3
classifier on two datasets: Duke dataset and our clinic dataset. In our clinic dataset, we randomly selected half of
the B-scans of each class (300 AMD, 300 DME, and 300 NOR) for training classifier and the rest (300 AMD, 300
DME, and 300 NOR) for testing with 10 repetitions. Average accuracy, sensitivity, and specificity of 98.69%,
98.03%, and 99.01% are obtained by using ScSPM classifier, and those of 99.69%, 99.53%, and 99.77% are
obtained by using Inception V3 classifier. These two classification algorithms achieve 100% classification accu-
racy when directly applied to Duke dataset, where all the 45 OCT volumes are used as test set. Finally, FCN
model with or without flattening and cropping and its influence on classification performance are discussed. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.5.056003]
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1 Introduction
Over the past two decades, a majority of works related to optical
coherence tomography (OCT)1,2 retinal image analysis have
focused on two fields: segmentation3–21 and classification.22–34

Most of these works adopt a preprocessing process in order to
make images have more attributes, which fit the needs of a fol-
low-up procedure. This process can solve several key issues and
prove to be very effective in practice. The first issue is that OCT
images always include a large number of tissues outside the reti-
nal area, which do not help the analysis of diseases, e.g., tissues
under the retinal pigment epithelium (RPE) layer. Meanwhile,
these irrelevant tissues and some background let the retina
region-of-interest (RoI) area between internal-limiting mem-
brane and RPE layers occupy only a small proportion of the
entire B-scan. Thus, a preprocessing process is needed to wipe
out these irrelevant areas so that follow-up procedures can focus
on the key area. The second issue to be solved is speckle noise,
which is caused by coherent processing of backscattered signals
from multiple distributed targets that widely exist in most OCT
images. Excessive noises are obviously disadvantageous for the
analysis procedure, so we have a great demand to reduce their
negative influences. A third issue of concern is that, due to idi-
osyncratic physiological structures of different patients and the
inconsistency of imaging angles, OCT images of different
instances always have different degrees of curvature and

inclination angles. Characteristics formed by these differences
do not contribute to the judgment of the disease, yet in some
cases, they make it more difficult for the analysis process to
achieve the desired purpose. Therefore, it is beneficial to flatten
the retinal area according to the curvature of a retina and the
angle of inclination, which can ensure that every instance has
a relatively uniform form to avoid their harmful effects. The first
row in Fig. 1 illustrates some OCT B-scans with the three pre-
viously mentioned key issues.

Previous works that have concentrated on OCT image pre-
processing for detecting retinal regions can be divided into two
groups. One group aligns a retinal region by fitting a second-
order polynomial to the RPE layer and then using it to flatten
the retinal region.24,25,28,35 The problem with this type of method
lies in its relying heavily on the segmentation of a clear RPE
layer. When RPE layer has been severely distorted, where the
disease is critical in some cases or some region of a retina is not
imaged correctly, these algorithms will not be efficient since the
right position of the RPE layer cannot be found. Another group
aligns a retinal area by detecting the whole retinal region using
morphological detection (MD) and fitting a second-order poly-
nomial and/or a straight line to it.23,27,30 Using MD method to
find the main part of a retinal region is a more robust work than
segmenting a slender RPE layer, which could wipe out irrelevant
areas that follow-up procedures do not need. However, this
method also has some problems, which are mainly related to
the precise detection of the retinal morphology. When speckle
noise is heavy, or diseases cause some regions to have attributes
that are similar to the background, or a detached tissue exists, it*Address all correspondence to Yankui Sun, E-mail: syk@mail.tsinghua.edu.cn
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would detect a wrong morphology or include a number of unre-
lated parts, thus it could not detect the retinal region or wipe out
demanding areas correctly, as is shown in the second row in
Fig. 1, where the large size of images is displayed since the reti-
nal regions are not detected correctly. The MD method could
improve the detection quality of retinal regions by adjusting
algorithm parameters, such as filter window size or binarization
threshold, but it is still inaccurate and needs a lot of manual
working.

Noise, irrelevant tissues, or diverse structure of retina B-
scans persistently plague OCT image analysis and classification.
It is difficult to handle complex situations with a unified process
or stable parameters. But the advent of segmentation methods
based on neural networks makes it possible to understand and
process pictures at a semantic level. This attractive feature
inspires us to propose a segmentation method for retinal
OCT B-scans. Specifically, we use fully convolutional networks
(FCN),36 a well-functioning deep learning segmentation frame-
work to detect the RoI of an OCT image. FCN are based on
convolutional neural networks (CNN), which have been widely
used in computer vision (especially in image classification and
image segmentation) since the ImageNet competition in 2012.
Recently, several works have been done to simultaneously
segment several retina layers from OCT images37–39 using deep
learning or not, where they are devoted to segmenting different
layers accurately. Here, we focus on segmenting the whole reti-
nal area (i.e., RoI) to deal with the aforementioned preprocess-
ing problems, and we discuss its effectiveness in improving
automatic diagnosis performance of abnormal maculae.

MD method mainly consists of three steps: denoising, such as
median filter and block-matching; 3-D filtering (BM3D);40

binarizing by Otsu’s algorithm;41 and morphological opening-
and-closing operation. In this method, a denoising step is
necessary and a denoising method like BM3D not only has a
high computation complexity but also blurs the RoI to some
extent. By contrast, our proposed method (FCN method) utilizes
a pretrained FCNmodel to segment a retinal region directly, as is
shown in Fig. 2, where the brightness of pixels outside the reti-
nal region is set to be zero. It needs neither adjusting parameters
manually nor denoising preprocessing, and it is robust enough to
adapt to various situations, as is illustrated in the third row in
Fig. 1, where the output images are in small sizes compared
to the second one, implying FCN method could deal with all
the complex images well.

The rest of this paper is organized as follows. Sec. 2
describes our preprocessing method based on FCN in detail.
Segmentation accuracy, performance evaluations in automatic
diagnosis, and discussions are presented in Sec. 3, and Sec. 4
outlines conclusions.

2 Approach

2.1 Datasets

Two datasets are applied in our experiments. One of the datasets
is a publicly available OCT dataset provided by the joint efforts
from Duke University, Harvard University, and University of
Michigan (Duke dataset). The other dataset is obtained from
Beijing Hospital by Tsinghua University (THOCT dataset),
using CIRRUS TM (Heidelberg Engineering Inc., Heidelberg,
Germany) SD-OCT device.

Duke dataset:24 This dataset consists of retinal SD-OCT
(Heidelberg Engineering Inc.) B-scans from 45 subjects [15
age-related macular degeneration (AMD), 15 diabetic macular
edema (DME), and 15 normal (NOR)]. The number of OCT
B-scans in each subject varies from 36 to 97. The image reso-
lutions mainly consist of sizes 512 × 496, 1024 × 496, and
768 × 496.

Fig. 1 Performance of two preprocessing methods on three key issues.

Fig. 2 FCN efficiently made predictions on OCT image segmentation.
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THOCT dataset: This dataset consists of 3000 retinal SD-
OCT B-scans (1000 AMD, 1000 DME, and 1000 NOR), which
is labeled by professional doctors. Each B-scan in this dataset
comes from a single patient. There are no cases where multiple
B-scans belong to the same patient and thus avoid learning the
characteristics of a patient rather than a lesion. The image res-
olutions mainly consist of sizes 471 × 756 and 471 × 500.

2.2 Detection Method of Retinal Region

Our preprocessing method could be divided into two steps.
(1) Segmentation: segment the RoI from an OCT image using
a pretrained FCN model and set the brightness of pixels outside
the RoI to be zero. (2) Flattening and cropping: generate a
straight line or curve that fits the RoI, use it to flatten the image,
and then crop the image to retain only valuable information.
The second step is optional.

2.2.1 Segmentation of retinal region

In 2015, Long et al.36 put forward FCN framework and extended
CNN to semantic segmentation field. CNN puts several fully
connected layer after convolutional layers, which intends to map
the feature into a fixed-length feature vector and gives a possibil-
ity of classification. Unlike CNN, FCN replaces the fully con-
nected layer by convolutional layers and uses deconvolution
layers to upsample the feature map to the same size as the input
image while preserving spatial relationships between pixels.
It gives a prediction of classification for each pixel to achieve
the purpose of segmenting the image. The concise structure of
FCN is shown in Fig. 3.

In Fig. 3, due to max pooling step, the original image size is
reduced to its 1/2 after conv1 and pool1, 1/4 after conv2 and
pool2, and 1/32 after conv5 and pool5. After several times of
convolution and pooling operation, the resolution of the output
image is getting lower and lower. Since image details are
lost gradually in this procedure, this makes the unsampled

high-dimensional feature map obtained by the last convolution
layer still inaccurate for segmentation. To solve this inaccuracy
issue, FCN provides options to provide details with other
convolutional layers before the last convolutional layer. Up-
samplings with factor 32, 16, and 8 unsampled predictions are
demonstrated in Fig. 3.36 For example, 16× unsampled predic-
tion (FCN-16s) is a fusion of prediction from conv4 with 2×
upsampling of prediction from conv7. Since 32× unsampled
prediction model is not accurate enough and 8× unsampled pre-
diction model has incorrect segmentation on some small-scale
areas, we finally use the 16× unsampled prediction model’s seg-
mentation results in our OCT image segmentation application.

In our application, we first label OCT B-scans in training set,
i.e., label the RoI as one category and mark the rest as the other
category, then resize labeled OCT images to 256 × 256 size (the
same input size as that in vgg-net42) and migrate the weights of
the vgg-net model to FCN model. Using transfer learning can
greatly save training time and directly use diverse underlying
features that are difficult to be trained well by a small or speci-
fied dataset. Since OCT images are all grayscale, we reshape all
images to three channels to fit the input of the network. Image
normalization is also required. Finally, we obtain a pretrained
FCN model by using the OCT training images, where the output
images are also of size 256 × 256. By resizing the output images
to the original size of training images, we can directly get the
segmentation result of an input OCT image. For any test OCT
B-scan, we could get its RoI segmental result with this FCN
model and set the brightness of pixels outside the RoI to be zero
so that the background noise is removed. Some examples of the
labeled AMD, DME, and NOR OCT B-scans (blue pixels as
RoI ground truth) and their RoI segmented results by using our
pretrained FCN model are presented in Fig. 4.

2.2.2 Flattening and cropping

After finding the RoI of an OCT B-scan, the next step is to gen-
erate a straight line or quadratic curve that best fits the RoI.

Fig. 3 Concise structure of FCN.
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By aligning the B-scan with the fitting line, the B-scan could be
transformed to get a flattened image. In this stage, how to select
fitted points from RoI and what fitting line should be adopted for
the selected points are two key issues.

There are two ways to choose the points: the midpoints
between the top and bottom edges or the points at the bottom
edge of the RoI. In general, the cross-section of the human eye
is round, so the retina itself has a certain degree of curvature.
In particular, a macular area is always hollower than other parts,
thus, a normal retina appears to be high on both sides in the
OCT image and low in the middle. In this case, an OCT image
can be very well flattened by selecting the midpoints. But a
lesion may change the shape of a retina. In some OCT B-scans
with DME, we have found that edema causes the macular area to
swell instead while the bottom is still flat. If we still use mid-
points for fitting the retina, it may lead to an issue that the retina
in flattened image may be bent upward. Our method, when
choosing the sets of data points (the midpoints versus the bottom
data points), performs a second-order polynomial fitting to the
middle data points for judging: if the fitted parabola opens
upward, then the midpoints are chosen; if the parabola opens
downward, then the bottom data points are chosen. After given

the selected points, we choose linear fitting or second-order pol-
ynomial fitting as done in Ref. 27.

It should be pointed out that since the bottom edge of an RoI
detected by morphological opening-and-closing operation is not
smooth enough usually, selecting the midpoints of the RoI is
prior to selecting its bottom points for judging.27 Since bottom
edge of an RoI detected by our FCN-based method is often
smooth enough, the selecting sequence of the midpoints and the
bottom points of an RoI maybe not be so important.

Another point needing attention is that when using a second-
order polynomial fitting curve to flatten an OCT B-scan, the ver-
tices of the curve may be outside the image. In this case, we just
need to change the vertex to the extreme point on the left or right
side of the retina, and then flatten the image.

In order to keep the retinal region in a flattened OCT
B-scan, we get rid of the background region by a cropping step.
Specifically, we find the highest and the lowest point of the RoI
area, and then cut-off all the areas above the highest point and
below the lowest point of the flattened image to get a cropped
image. Figure 5 illustrates steps of segmenting, flattening, and
cropping an OCT image, where the midpoints of the RoI are
selected and its second-order polynomial fitting curve is used.

Fig. 4 Ground truth (blue pixels) of RoI (first row) and segmented results by using our FCN model
(second row).

Fig. 5 Steps of segmenting, flattening, and cropping: (a) original image, (b) segmented result,
(c) midpoints, (d) polynomial fitting, (e) flattened image, and (f) cropped image.
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3 Experiments and Discussions
RoI segmentation performances and computation efficiency
between our FCN-based model and previous MD method27 are
evaluated and compared in Sec. 3.1. In Sec. 3.2, to show that our
pretreatment method does improve the classification perfor-
mance, the output of the two preprocessing methods (FCN
method and MD method) into spatial pyramid matching based
on sparse coding (ScSPM) OCT classifier27 is done to evaluate
classification performance. The output of the FCN method and
the RPE layer segmentation method (RPE method)28 into
Inception V3 OCT classifier is also tested. Some problems con-
cerned are discussed in Sec. 3.3. In our experiments, we divide
THOCT dataset into two parts, the first part contains 1200
B-scans (400 AMD, 400 DME, and 400 NOR), which are used
to train and test RoI segmentation performance; the second part
contains 1800 B-scans (600 AMD, 600 DME, and 600 NOR),
which are utilized to evaluate classification performance. Source
code and preprocessed THOCT dataset are available at https://
github.com/SJD095/OCT-Segmentation.

3.1 RoI Segmentation Performance

The 1200 OCT B-scans from THOCT dataset used in our
experiments are all labeled with RoI manually; 900 B-scans
(300 AMD, 300 DME, and 300 NOR) are used to train FCN
model using transfer learning, and the other 300 B-scans
(100 AMD, 100 DME, and 100 NOR) are used to test segmen-
tation performance of the FCN model. The two metrics, pixel
accuracy (PA) and mean intersection over union (meanIU),36 are
used to compare the RoI segmentation performance between
FCN method and MD method. PA computes the rate of pixels
correctly classified to all pixels. MeanIU is a common criterion
applied to evaluate the accuracy performance of segmentation
in a specific dataset with ground truth. It calculates the rate of
pixels correctly classified to all pixels in one category and then
calculates mean rate with all categories. The higher the meanIU,
the closer the predicted value to the actual value. Let nij be the
number of pixels of class i predicted belong to class j, and there
are ncl total different classes, then we can calculate PA and
meanIU as below:

EQ-TARGET;temp:intralink-;e001;63;311PA ¼
P

iniiP

i

P

j
nij

; (1)

EQ-TARGET;temp:intralink-;e002;63;257meanIU ¼
P

inii
ncl × ðP

j

nij þ
P

j

nji − niiÞ
: (2)

The calculation method of RoI IU for one OCT image is
illustrated in Fig. 6. In our experiments, there are only

foreground RoI and background for every OCT B-scan, and
so, ncl ¼ 2 and i; j ¼ 1;2.

We compute PA and meanIU for every test image with the
corresponding method, and then calculate their averages for all
300 test images separately. Similarly, we compute average seg-
mentation time of the two preprocessing methods, not including
flattening and cropping time. The experimental platform we use
is a PC with an Ubuntu 18.04 64 bit operating system, an AMD
Ryzen 1900x central processing unit (CPU), a Nvidia GeForce
GTX 1080Ti graphics processing unit (GPU), and 32 GB of
RAM. The FCN source code was downloaded from Ref. 43 and
adopted in our own experiments. Our FCN model is imple-
mented by Caffe framework, the version of Caffe framework
used in the experiment is 1.0.0, and the version of Python is
3.6.5. The experimental results are shown in Table 1.

It can be seen from Table 1 that, compared to traditional
MD method, PA rate and meanIU of our method increase about
11% and 22%, respectively, and variance of our method is
much smaller than those of traditional methods. This shows that
the performance of our FCN method is more stable than that
of MD method. As illustrated in Fig. 1, some complex OCT
B-scans could not be detected correctly by the MD method but
could be detected well by FCN method. In the aspect of com-
putation efficiency, the average segmentation times of FCN
method and MD method are about 0.12 and 6.14 s on each
B-scan separately. MD method costs much mainly because
the BM3D denoising used in it has a high computation com-
plexity. Note: in our experiment, the segmentation of MD
method was implemented only using a single core CPU; its
computational performance may be improved by using multi-
core CPU.

Figure 7 shows four OCT B-scan examples and their RoI
segmentation results, where the first row demonstrates the origi-
nal images and the blue pixels are labeled as retina region
ground truth; the second row depicts the segmentation results
by using MDmethod, marked by red pixels; the third row shows
the segmentation results by using FCN method, labeled by shal-
low green pixels. It can be seen that the FCN method performs
better than the MD method in segmentation accuracy.

Fig. 6 Calculation method of RoI IU.

Table 1 Performance comparisons between FCN method and MD
method.

PA MeanIU Segmentation time

MD method27 86.93� 7.93 71.88� 12.40 6.14� 1.52

FCN method 97.66� 0.79 93.25� 2.26 0.12� 0.01
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3.2 Classification Performance

This section is to validate the effectiveness of the proposed pre-
processing method for OCT image classification applications.
Here, FCN method, MD method, and RPE method are com-
pared on Duke dataset and our clinic dataset by the following
three experiments. Experiments 1 and 2 are designed to compare
FCN method and MD method, where the preprocessed OCT
images are obtained by using these two methods separately and
then classified by ScSPM OCT classifier.27 The experiment 3 is
designed to compare FCNmethod and RPEmethod on the clinic
dataset, where their preprocessed OCT images are classified by
Inception V3 model. The FCNmodel trained on THOCT dataset
in Sec. 3.1 is used to all the experiments on both datasets.

3.2.1 Experiment 1 on Duke dataset with ScSPM
classifier

Duke dataset is an open OCT image dataset; many researchers
adopt it as a baseline to validate their methods. Here, we test our
preprocessing method on this dataset. To compare our method
fairly with those in Refs. 24 and 27, we also use leave-
three-out cross-validation. In each experiment, 42 volumes are
chosen as a training set and the other 3 volumes (one volume
from each class) as a testing set so that each of the 45 SD-OCT
volumes can be classified once. Since a volume contains many
OCT B-scans of a specific subject, the majority voting of all
predicted labels for each subject is treated as a class (AMD,
DME, or NOR). The cross-validation results in Table 2 show

that 100% of 45 OCT volumes are correctly classified with
our proposed preprocessing method, which implies that FCN
method is more precise than MD method in retinal RoI
segmentation.

As pointed in Ref. 27, among the 15 normal OCT volumes,
14 volumes are correctly classified and 1 volume (i.e., normal
volume 6) was misclassified into the DME class. The reason is
that, for each B-scan in the normal volume 6, its large portion of
insignificant area below the RPE layer visually resembling the
pathological structures presented in the DME cases was retained
by using MD method. Since our FCN-based segmentation
method could extract the retina region correctly for all the nor-
mal volumes, the classification correctness rate is better.

3.2.2 Experiment 2 on THOCT dataset with ScSPM
classifier

Each OCT image in THOCT dataset comes from an individual
patient; thus, it includes more specific descriptors of AMD and
DME diseases, and classification experiments on this dataset
could enhance the persuasiveness of our method’s performance.
In this experiment, the 1800 images in THOCT dataset are
utilized.

For each category (AMD, DME, and NOR), we utilize accu-
racy, sensitivity, and specificity as indicators to evaluate the
classification performance.25

To evaluate the classification performance of our pretrained
FCN model used on retinal OCT B-scans, we conduct experi-
ments on the 1800 OCT images in THOCT dataset with differ-
ent proportion. First, we choose one-fourth B-scans of each
class (150 AMD, 150 DME, and 150 NOR) for training and the
rest (450 AMD, 450 DME, and 450 NOR) for testing. Then, we
choose half of the B-scans of each class (300 AMD, 300 DME,
and 300 NOR) for training and the rest (300 AMD, 300 DME
and 300 NOR) for testing. To obtain reliable results, the exper-
imental process repeats 10 times with different randomly
selected OCT images for training and the rest for testing.
Tables 3 and 4 detail the classification results in each category.
From the results, we can see that the proposed OCT image pre-
processing method significantly improves classification perfor-
mance on all three indicators. The main reason is that, for an

Table 2 Fraction of volumes correctly classified with different meth-
ods on Duke dataset.

Srinivasan et al.24 Sun et al.27 Ours

AMD 15∕15 ¼ 100.00% 15∕15 ¼ 100.00% 15∕15 ¼ 100.00%

DME 15∕15 ¼ 100.00% 15∕15 ¼ 100.00% 15∕15 ¼ 100.00%

NOR 13∕15 ¼ 86.67% 14∕15 ¼ 93.33% 15∕15 ¼ 100.00%

Overall 43∕45 ¼ 95.56% 44∕45 ¼ 97.78% 45∕45 ¼ 100.00%

Fig. 7 Comparisons of segmentation accuracy between the two methods.
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amount of OCT images difficult to deal with, FCNmethod could
segment it well but MD method could not.

It can be seen from Tables 3 and 4, by using ScSPM classifier
with sparse coding, the classification results with FCN method
outperform those with MD method distinctly for all AMD,
DME, and NOR categories, which reflects that FCN method is
a better preprocessing method than MD method.

3.2.3 Experiment 3 on THOCT dataset with Inception V3
classifier

To compare with popular RPE method, we further do this test, as
is done in experiment 2, the 1800 images in THOCT dataset are
utilized. These images are preprocessed as did in Ref. 28, where
the RPE is estimated as the same as in Ref. 24, and by our FCN
method separately, then the processed images are resized to
299 × 299 and the pixel value of the images is divided by
255 for normalization. These images are input into Inception
V3 classifier with transfer learning and fine-tuning by using the
Keras implementation. The test method is the same as the above
experiment 2. Table 5 lists the classification results on each cat-
egory, where the test method is the same as that used in Table 4.

From Table 5, we can see that, by using Inception V3 for
classification, FCN method outperforms RPE method for AMD
and DME categories but is inferior to RPE method for NOR
category. This is consistent with our expectation. In fact, by

checking the preprocessed OCT images by RPE method, we
find that about 21 AMD, 8 DME, and 2 normal OCT images
in 1800 trained images are not detected successfully. This is not
surprising because RPE layer detection is more suitable to NOR
OCT images but may be failed for OCT images obtained from
eye patients. By contrast, FCN-based preprocessing method
could adapt to various situations.

Overall, classification results of different methods on clinic
dataset are listed in Table 6.

Table 6 shows that, for the same preprocessed OCT images
with FCN method, Inception V3 outperforms ScSPM
in classification results, and it is more stable; for the same
Inception V3 classifier, our proposed FCN-method is almost the
same as RPE method in average classification performance, yet
it is more stable. Since RPE method needs costly BM3D denois-
ing and many manually selected parameters, whereas FCN
model does not, FCN method is more practical on the whole.

3.3 Discussion

Our FCN preprocessing method consists of segmenting retina
region (RoI), flattening, and cropping steps. It could remove
background by setting all brightness of pixels outside the
RoI to be zero. Therefore, it needs no prior denoising, and
so, many OCT image denoising methods40,44,45 are not needed
in our preprocessing.

For our proposed automatic detection method of the retinal
region, i.e., FCN method, it is just a generalized algorithm that
works with both datasets. In fact, in our paper, the FCN model
to segment retina region is just trained on 900 labeled OCT
B-scans from THOCT dataset, then it is used to preprocess
images from both datasets, i.e., Duke dataset and THOCT data-
set (its second part, different from the training part). However, in
our experiments, for each classifier ScSPM or Inception V3, it
trained on the Duke dataset and the THOCT dataset separately;
is it possible to have a generalized algorithm that works with
both datasets? In this regard, we apply the classifiers FCN
method + ScSPM and FCN method + Inception V3 trained
on THOCT dataset in Table 6 to Duke dataset directly. Forty
five SD-OCT volumes are used as a test set, and the voting
majority is used for each volume. The experiments show that
all 100% of 45 OCT volumes are correctly classified for both
classification algorithms.

Table 3 Classification performance comparisons of Skip classifier
with different preprocessing methods (150 AMD, 150 DME, and
150 NOR images as the training set).

Preprocessing Classes
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

MD method27 AMD 95.22� 0.68 93.73� 1.03 95.96� 1.20

DME 94.06� 0.78 87.85� 2.70 97.22� 0.66

NOR 96.54� 0.48 97.25� 0.90 96.18� 0.67

FCN method AMD 98.46� 0.30 98.23� 0.44 98.58� 0.34

DME 97.66� 0.45 94.62� 1.08 99.18� 0.30

NOR 98.23� 0.30 98.69� 0.39 98.00� 0.36

Table 4 Classification performance comparisons of ScSPM classifier
with different preprocessing methods (300 AMD, 300 DME, and 300
NOR images as the training set).

Preprocessing Classes
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

MD method27 AMD 96.85� 0.42 96.15� 0.92 97.20� 0.75

DME 95.78� 0.47 91.17� 1.66 98.08� 0.64

NOR 97.61� 0.37 98.04� 0.66 97.40� 0.43

FCN method AMD 98.86� 0.16 98.67� 0.64 98.95� 0.31

DME 98.43� 0.26 96.69� 1.15 99.29� 0.27

NOR 98.77� 0.30 98.72� 0.34 98.79� 0.34

Table 5 Classification performance comparisons of Inception V3
classifier with different preprocessing methods (300 AMD, 300 DME,
and 300 NOR images as the training set).

Preprocessing Classes
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

RPE method28 +
Inception V3

AMD 99.59� 0.25 99.57� 0.42 99.60� 0.27

DME 99.62� 0.22 99.13� 0.50 99.87� 0.17

NOR 99.86� 0.14 99.90� 0.16 99.83� 0.16

FCN method +
Inception V3

AMD 99.64� 0.16 99.60� 0.21 99.67� 0.19

DME 99.67� 0.18 99.27� 0.44 99.87� 0.15

NOR 99.75� 0.14 99.73� 0.26 98.77� 0.18
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Another one question concerned is whether, without flatten-
ing and cropping, the proposed method can also achieve good
classification performance. To answer this question, using our
FCN method without flattening and cropping, we obtain the
preprocessed OCT images on THOCT dataset, then the prepro-
cessed OCT images are as the outputs of ScSPM classifier and
Inception v3 classifier separately, where the test method is the
same as that used in Table 4. Experimental results on classifi-
cation performance are shown in Table 7.

Comparison of the same methods in Tables 6 and 7 shows
that, without flattening and cropping, the proposed method also
achieves good classification performance, but the classification
performance of ScSPM classifier is deduced obviously, yet the
classification performance of Inception V3 classifier makes no
difference. So, to achieve the best abnormal retina detection per-
formance, FCN model with flattening and cropping should be
used for ScSPM classifier while FCN model without flattening
and cropping could be utilized for Inception V3 classifier.

4 Conclusions
In this paper, we propose a retinal region detection method
based on FCN and trained an FCN model by using our labeled
OCT images. It has high segmentation accuracy, and its effec-
tiveness in abnormal maculae recognition application is vali-
dated by extensive experiments on two OCT datasets.
Compared with current widely used retina region detection
methods, such as RPE layer segmentation and MD, our pro-
posed FCN method works with no manually selected parame-
ters, no prior denoising, and no layer segmentation. It also
possesses many merits in performance, including high segmen-
tation accuracy and high computational efficiency, and is robust
to noises. These features improve results in the automatic diag-
nosis of abnormal maculae in OCT images.
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