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ABSTRACT. Significance: Maximal safe resection of brain tumors can be performed by neuro-
surgeons through the use of accurate and practical guidance tools that provide
real-time information during surgery. Current established adjuvant intraoperative
technologies include neuronavigation guidance, intraoperative imaging (MRI and
ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time deci-
sion support system for neurosurgical guidance in brain tumors. Using a machine
learning model, trained on data from a multicenter clinical study involving 67 pa-
tients, the device achieved diagnostic accuracies of 91% for glioblastoma, 97% for
brain metastases, and 96% for meningiomas. Here, the aim is to assess the general-
izability of a predictive model trained with data from this study to other types of brain
tumors.

Approach: A method was developed to assess the generalizability of the model,
quantifying performance for tumors including astrocytoma, oligodendroglioma and
ependymoma, pediatric glioblastoma, and classification of glioblastoma data
acquired in the presence of 5-ALA induced fluorescence. Statistical analyses were
conducted to assess the impact of vibrational bands beyond contributors identified in
our previous research.

Results: A machine learning brain tumor detection model showed a positive pre-
dictive value (PPV) of 70% for astrocytoma, 74% for oligodendroglioma, and 100%
for ependymoma. Furthermore, the PPV was 100% in classifying spectra from a
pediatric glioblastoma and 90% for detecting adult glioblastoma labeled with 5-ALA-
induced fluorescence. Univariate statistical analyses applied to individual vibrational
bands demonstrated that the inclusion of Raman biomarkers unexploited to date had
the potential to improve detectability, setting the stage for future advances.

Conclusions: Developing predictive models relying on the inelastic scattering con-
trast from a wider pool of Raman bands may improve detection accuracy for
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astrocytoma and oligodendroglioma. To do so, larger tumor datasets and a higher
Raman photon signal-to-noise ratio may be required.
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Completeness of resection is a critical factor in glioma patients’ outcomes as more extensive
removal of tumor tissue is associated with improved survival, decreased risk of recurrence, and
improved treatment response."> The most aggressive brain tumor is glioblastoma, representing
50% of all gliomas, whereas oligodendroglioma and astrocytoma account for 30%.> Surgical
success in glioma surgery depends on the ability to maximize the volume of cancer tissue
removed while minimizing damage to perilesional normal tissue. Several technologies are used
during glioma surgery, including neuronavigational systems providing 3D imaging-based guid-
ance to help surgeons navigate through the brain. 5-ALA fluorescence-guided surgery (FGS) is
also used as an aid in tumor visualization for glioblastomas. However, its utility for World Health
Organization (WHO)-grade II astrocytoma and oligodendroglioma, i.e., low-grade gliomas, is
limited.*

We developed a technique using Raman spectroscopy that allows live tissue characterization
in real time during neurosurgery.>® The system was initially developed as a laboratory instrument
but underwent several evolutionary steps over a decade, culminating with the Sentry system
manufactured by Reveal Surgical [Fig. 1(a)]. The system is composed of a light illumination
system and a spectroscopic sensing unit [Fig. 1(b)] connected to a sterilizable hand-held probe
[Fig. 1(c)]. It was developed to acquire the spectroscopic tissue signature of a single point cover-
ing a circular surface area with a diameter of 500 pym. The signal is acquired within 5 s following
excitation using a near-infrared 785-nm laser. Spectroscopic detection of reemitted light is
achieved in the range 800 to 950 nm with a spectral resolution of ~0.5 nm. The cumulative
light dose used per measurement is less than the maximum permissible exposure for skin as
set by laser safety guidelines from the American National Standards Institute.’

The detected signal is composed of a large amplitude background overlayed with lower
intensity contributions from inelastically scattered diffused Raman photons.® The overall mag-
nitude of the detected Raman signal is impacted by several factors. These include intrinsic tissue
optical properties associated with absorption from endogenous brain chromophores (e.g., hemo-
globin) and elastic scattering from microscopic tissue structures such as cell membrane and
organelle lipid bilayers.” The signal-to-noise ratio (SNR) associated with Raman photons is also
impacted by background photonic counts from endogenous tissue fluorescence, which can be
orders of magnitude larger when compared with the Raman signal.'® As optical properties of
tissue vary between tissue types, different Raman spectroscopy applications will lead to different

Fig. 1 (a) Intraoperative Raman spectroscopy system used in the scope of the study that was
designed for in situ tissue sensing using a hand-held fiber-optics probe, (b) illumination and detec-
tion sub-system, (c) fiber-optics probe.

Journal of Biomedical Optics 010501-2 January 2025 e Vol. 30(1)


https://doi.org/10.1117/1.JBO.30.1.010501
https://doi.org/10.1117/1.JBO.30.1.010501
https://doi.org/10.1117/1.JBO.30.1.010501
https://doi.org/10.1117/1.JBO.30.1.010501
https://doi.org/10.1117/1.JBO.30.1.010501
https://doi.org/10.1117/1.JBO.30.1.010501

Leblond et al.: Quantitative assessment of the generalizability of a brain tumor.. .

light detection challenges. As such, optimized imaging parameters for light exposure, integration
time, and number of repeat measurements will be required to acquire sufficient Raman SNR
levels for a given detection task. For example, an application requiring discrimination between
fatty tissue and protein-rich structures may only require the detection of the high-intensity pro-
tein/lipid band at a wavenumber shift of 1441 cm™' without the need to optimize Raman SNR in
other bands that have intrinsically lower levels of inelastic scattering.!! However, the detection of
more subtle disease signatures may require sensing of lower amplitude bands, thus providing
more detailed information. More subtle signatures could include those associated with nucleic
acids (DNA and RNA) or motifs associated with the secondary structure of proteins.'?

In Raman spectroscopy, the signal of interest is isolated from a largely featureless back-
ground using curve-fitting algorithms, exploiting the fact that inelastic scattering is associated
with sharp peaks sourced by specific molecular vibrational bonds.'*!'* Following standard cal-
ibration and normalization procedures, the result is a spectrum providing the relative intensity of
all inelastic scattering bands (visualized as peak height on the y-axis) and peak position along an
x-axis associated with wavenumber shifts from 785 nm, historically reported in units of inverse
centimeters (cm™!). The spectra can then be normalized, a common approach being standard
normal variate normalization. The resulting signal then provides a vibrational spectroscopic
fingerprint of the tissue in which the height of each peak, rather than being an absolute measure
of the molecular bonds, represents the relative concentration of biomolecules compared with the
overall Raman-predicted molecular content of the tissue.'

The Sentry system was used to conduct a multicenter study involving 67 adult brain tumor
patients with glioblastoma, meningioma, or brain metastases. A total of 1329 spectra were
acquired with tissue samples for each.'® Machine learning models were developed to detect bulk
tumors that were either glioblastoma, meningioma, or metastatic disease. These models were
trained on a data subset consisting of 80% of the whole dataset and were tested on an independent
holdout set consisting of the remaining ensemble of data. The sensitivity/specificity of detection
of these models, based on predictions from the holdout data subsets, was 91%/91% for glioblas-
toma, 97%/98% for meningioma, and 96%/95% for metastases. These results generated from a
commercial system were consistent with previous studies using a laboratory system.'”

A key finding from the multicenter study performed with Sentry was that the brain tumor
detection machine learning models exploited only a subset of all available information in the
spectra. Only four spectral features were required to generate a clear tissue-discriminatory bio-
molecular signature. The biomarkers and associated spectral features were protein (phenylala-
nine) at 1004 cm™!, protein (tryptophan) at 1340 cm™!, lipids at 1299 cm™', and the lipid and
protein peak at 1441 cm~"."> In the multicenter study, the bulk tumor was associated with an
increase in the height of peaks associated with protein and a reduction in peaks associated with
lipids. This is consistent with the biochemistry of tumors, in which healthy lipid-rich brain tissues
give way to fibrotic protein-rich tumor tissue.

The bio-informational content from brain-derived Raman spectra is rich. It includes more
than 40 peaks associated with vibrational bonds that can be used as surrogates for the presence of
different families of biomolecules.'® For example, a subset of peaks can be used to identify pro-
tein or lipid molecular bonds independent of the specific type of protein or lipid. Other peaks can
provide more specific information about amino acids either in their free form or within proteins,
e.g., the aromatic amino acids phenylalanine, tryptophan, and tyrosine. The idea that this wide
variety of biomolecular information could be reliably accessed live during surgery is enticing.
It could open the door not only to the identification of gross features associated with bulk tumors
but could also be exploited to inform on subtle phenomena allowing tumor stratification in terms
of their primary origin and grade.

Here, we present results supporting the fact that the biomolecular signature captured in our
previous work can be used to detect multiple types of brain tumors. Raman spectroscopy data
were acquired during surgery for adults with astrocytoma, oligodendroglioma and ependymoma,
a pediatric glioblastoma, and adult patients undergoing 5-ALA fluorescence-guided glioblas-
toma surgery (Table S1 in the Supplementary Material). The latter is particularly important if
intraoperative Raman spectroscopy is to become a new standard-of-care during glioblastoma
surgery, either as a stand-alone detection system or with 5-ALA fluorescence-guided surgery.'>
Thirty-one spectra were acquired from three patients with astrocytoma (WHO grade III), 30
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spectra from three patients with oligodendroglioma (two patients WHO Grade II, one patient
WHO Grade III), and six spectra from one patient with ependymoma (WHO Grade II).
Furthermore, 33 spectra were acquired from nine glioblastoma patients undergoing 5-ALA
FGS. Thirteen spectra were also acquired from two pediatric patients: four tumor spectra with
glioblastoma and nine spectra from a focal cortical dysplasia (FCD) patient. The nine spectra
from the FCD patient were acquired in areas of the non-tumoral brain. Pediatric measurements
were made at the McGill University Health Center Children’s Hospital. The spectra from oli-
godendroglioma, astrocytoma, and ependymoma were acquired at the Montreal Neurological
Institute-Hospital, and the adult glioblastoma measurements with 5-ALA were completed at the
Mount Sinai Hospital in New York City.

A brain tumor detection machine learning model was developed using data acquired from
our previous multicenter study that relied on spectral features extracted from the bands with
center wavenumber values at 1004, 1299, 1340, and 1441 cm™!.'6 Specifically, the training set
consisted of 101 tumor spectra and 148 non-tumoral brain spectra from 13 metastases patients,
and 366 tumor spectra and 185 non-tumoral brain spectra were acquired from 26 patients with
glioblastoma (Table S2 in the Supplementary Material: first and second lines for glioblastoma).
Unbalanced classes in each model are accounted for with a class weight parameter adjusted to
reflect the ratio between non-tumoral and tumoral brain samples.'® Prior to model training, all
spectra were checked for quality. Low Raman SNR spectra (spectra dominated by stochastic
noise) and spectra plagued with spectral artifacts unrelated to the tissue signature, such as ambi-
ent light artifacts, were removed from the dataset.'” This led to a training set composed of 370
tumor measurements and 232 non-tumoral brain measurements [Fig. 2(a)]. The quantitative
differences between non-tumoral brain and tumor spectra were pronounced and unambiguous
for the Raman intensity bands exploited by machine learning. When taken by themselves as
individual biomarkers, the intensity of each of the bands at 1004, 1299, 1340, and 1441 cm™!
led, without machine learning, to accuracy/sensitivity of 80%/80%, 81%/80%, 80%/79%, and
87%/86%, respectively (Table S2 in the Supplementary Material).

Machine learning was required to automatize the simultaneous use of multiple features
to exploit their synergistic value. The training and validation methods have been described
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Fig. 2 (a) Raman spectra used to train and validate a tumor detection machine learning model
discriminating between non-tumoral brain and tumor tissue. Spectra used to evaluate the general-
izability of the model: (b) glioblastoma measurements made during FGS, (c) glioblastoma mea-
surements in a pediatric patient, (d) adult astrocytoma, oligodendroglioma, and ependymoma. The
third row (e) shows the spectra associated with meningioma measurements and (f) the non-
tumoral brain measurements acquired in an epilepsy patient. The spectrum associated with the
average of all non-tumoral brain measurements used to train the model is shown as magenta
dotted lines. All spectral features used in the scope of the cancer detection model are identified
with vertical dotted lines. Plain vertical lines highlight bands for which univariate statistical analyses
were performed to compare tumor measurements with non-tumoral brain (Fig. 3). Shaded areas
represent the variance computed for each Raman intensity across all measurements.
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elsewhere.'® Briefly, they consist of dimensionally reducing the dataset based on an L1-normali-
zation approach relying on support vector machines (SVMs). The resulting features, associated
with the intensity from specific vibrational bonds, were then used to train SVM tumor detection
models using five-fold cross-validation based on a leave-one-patient-out approach. Receiver
operating characteristic (ROC) analyses were performed leading to the selection of one model
that optimized sensitivity and specificity. The results for the training phase led to a ROC curve
area under the curve of 0.96 with different values of sensitivity and specificity obtained by vary-
ing the curve parameter A. The threshold value for 1 was selected as corresponding to the point
closest to the upper left corner of the ROC curve (y-axis: sensitivity, x-axis: 1—specificity). This
led to a training sensitivity of 90% and a specificity of 91%.

In a previous work, four tumor models were developed: glioblastoma, metastases, menin-
gioma, and one including all three tumor types. Here, we present a model based on combined
data from glioblastoma and metastases. The meningioma dataset was voluntarily kept aside
for model testing to quantitatively assess the generalizability of new data (Table S1 in the
Supplementary Material: last line). To further assess its generalizability, the brain tumor model
was directly applied to all spectra from astrocytoma, oligodendroglioma, ependymoma, pediatric
glioblastoma, 5-ALA labeled adults, and non-tumoral brain measurements from the FCD patient
(Fig. 2). For each spectrum, this resulted in a prediction of tumor or non-tumor.

Prior to applying the tumor model on the independent dataset, all spectra were checked for
quality to ensure that no low Raman SNR spectra were kept, resulting in 85% of spectra being
retained (numbers in parentheses in Table S1 in the Supplementary Material)."” All 166 men-
ingioma spectra were classified as tumors, resulting in a positive predictive value (PPV) of 100%.
The PPV for astrocytoma, oligodendroglioma, and ependymoma was 70%, 74%, and 100%,
respectively. All four tumor spectra acquired from the pediatric glioblastoma patient were pre-
dicted to be cancer (PPV = 100%), and of the 30 spectra from the 5-ALA labeled glioblastomas,
27 were predicted as tumor (PPV = 90%). Finally, all spectra from the FCD patient were pre-
dicted as non-tumoral brain, resulting in a negative predictive value of 100%. These results show
that the model generalized well to most adult brain tumor types, in 5-ALA fluorescence-guided
surgery and conventional surgery. The PPV of the model for astrocytoma and oligodendroglioma
is <75%. The underperformance of the model can likely be traced back to the need for the inclu-
sion of more biomolecular features during the model training phase to fully capture the key
spectral differences between these tumors and the non-tumoral brain. No measurements from
these types were used to train the cancer detection model.

To preliminarily assess whether Raman peaks beyond the four used to develop the tumor
detection model could improve the detection of astrocytoma and oligodendroglioma from the
non-tumoral brain, univariate analyses (Kruskal-Wallis test) were performed on a larger pool
of spectral features. These analyses allowed pairwise comparisons quantifying statistical signifi-
cance using 11 Raman bands for which a clear biochemical interpretation could be provided
(Fig. 3).'° The spectral bands considered were at wavenumber shifts 833, 856, 1129, 1159,
1175, 1212, and 1227 cm™'. Analyses were also performed for the four bands associated with
the tumor model, i.e., at 1004, 1299, 1340, and 1441 cm™!.

The statistical analyses revealed that there are statistically significant differences for all con-
sidered bands between the non-tumoral brain and astrocytoma, oligodendroglioma, and epen-
dymoma pooled together. Up- or down-regulation of the 833/856 cm~! bands was associated
with the amino acid tyrosine, whereas the bands in the 1129 to 1175 cm™! range were associated
with the C-C bonds of lipids. The band at 1129 ¢cm~! has been related to nucleic acid phosphates.
The 1212/1227 cm™! bands have been linked with the amide content of proteins, as well as
unsaturated lipids.'® In several instances, the boxes in the whisker plots were clearly separated,
with limited overlap between the interquartile range associated with the non-tumoral brain when
compared with tumor tissue.

A trait that is common across all newly considered bands is that they are associated with
intrinsically lower inelastic scattering signals when compared with bands used by the tumor
detection model. Those lower signal bands were associated with lower photon counts and gen-
erally also with a lower ratio of Raman scattering to the overall fluorescence background. Thus,
they typically had a higher level of stochastic noise, i.e., a reduced Raman SNR. This points to an
intrinsic limitation of the spectroscopic dataset as it relates to the detected levels of Raman
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Fig. 3 Box and whisker plots associated with a subset of all Raman bands that were identified on
brain spectra and for which a biomolecular interpretation was provided. The bands that were
retained by the machine learning brain tumor detection model are represented by shadowed areas:
1004, 1299, 1340, and 1441 cm~'. The dotted red lines are the threshold values used to compute
the accuracy, sensitivity, and specificity of tumor detection for individual bands (Table S1 in the
Supplementary Material). The other bands are associated with Raman shifts at 833, 856, 1129,
1159, 1175, 1212, and 1227 cm~'. Univariate statistical analyses were performed allowing pair-
wise comparisons between spectra data acquired in non-tumoral brain and data acquired in tumor
tissue: xp < 0.05, xx p < 0.01, and * x xp < 0.001.

photon SNR within the seven bands for which there were statistically significant differences
between astrocytoma—oligodendroglioma and ependymoma—and non-tumoral brain. In fact,
the level of inter-measurement variance associated with those bands, when compared with the
SNR associated with the four bands considered part of the brain tumor model, is overall more
pronounced. We hypothesize that minimizing the stochastic noise within detected spectra may
allow the development of more accurate predictive models.

Our work shows the broad generalizability of the Sentry system and machine learning mod-
els to multiple types of brain cancers, including meningioma, oligodendroglioma, ependymoma,
astrocytoma, and pediatric glioblastoma. It is also agnostic to the presence of 5-ALA-induced
fluorescence. Increasing Raman SNR in future work is a realistic endeavor, which may greatly
increase the available informational content when developing predictive models. A limitation of
the current dataset was that all spectra were acquired with a fixed laser power, a fixed integration
time, and a fixed number of repeat measurements per point. This led to a large variability in
absolute detected photonic counts per measurement, leading to an unequal distribution of sto-
chastic noise levels across the dataset, especially for those intrinsically lower intensity bands.
However, the more recent version of the Raman system integrates automated integration time
adjustments, ensuring consistency of overall photonic counts detected per measurement by maxi-
mizing usage of charged-coupled device sensor dynamical range.'”
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