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Optical coherence tomography–enabled
classification of the human venoatrial junction
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ABSTRACT. Significance: Radiofrequency ablation to treat atrial fibrillation (AF) involves
isolating the pulmonary vein from the left atria to prevent AF from occurring.
However, creating ablation lesions within the pulmonary veins can cause adverse
complications.

Aim: We propose automated classification algorithms to classify optical coherence
tomography (OCT) volumes of human venoatrial junctions.

Approach: A dataset of comprehensive OCT volumes of 26 venoatrial junctions
was used for this study. Texture, statistical, and optical features were extracted
from OCT patches. Patches were classified as a left atrium or pulmonary vein using
random forest (RF), logistic regression (LR), and convolutional neural networks
(CNNs). The features were inputs into the RF and LR classifiers. The inputs to the
CNNs included: (1) patches and (2) an ensemble of patches and patch-derived
features.

Results: Utilizing a sevenfold cross-validation, the patch-only CNN balances sen-
sitivity and specificity best, with an area under the receiver operating characteristic
(AUROC) curve of 0.84� 0.109 across the test sets. RF is more sensitive than LR,
with an AUROC curve of 0.78� 0.102.

Conclusions: Cardiac tissues can be identified in benchtop OCT images by auto-
mated analysis. Extending this analysis to data obtained in vivo is required to tune
automated analysis further. Performing this classification in vivo could aid doctors in
identifying substrates of interest and treating AF.
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1 Introduction
Atrial fibrillation (AF) is the most common arrhythmia, affecting at least 2.3 million people in the
United States. If left untreated, serious health complications can occur, including cardiac arrest
and stroke.1–3 Doctors may prescribe pharmaceutical interventions to return the heart to sinus
rhythm, but the patient may require catheter radiofrequency ablation (RFA) if medications do not
alleviate symptoms. Since the discovery that the ectopic heartbeats that cause AF originate from
the pulmonary veins (PVs),4 pulmonary vein isolation (PVI) has become the most common
approach to treating paroxysmal AF with RFA.5 This procedure aims to place circumferential
lesions outside the PVostia to prevent impulses from reaching the left atrium and initiating AF.
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This procedure is not always successful the first time as AF may reoccur due to non-transmural
lesions, gaps between the lesions, and electrical reconnection.6 PV stenosis is one of the risks
associated with RFA. With the improvement of techniques, the number of patients experiencing
PV stenosis post-RFA is ∼3%.7 This condition can be deadly if left untreated but is challenging
to detect due to non-specific symptoms that may not present until weeks or months after
the procedure.7,8 Other injuries sustained from RFA include perforation, dissection, and PV
thrombosis.8

Doctors perform RFAwith real-time guidance from the catheter (tissue impedance, temper-
ature, contact force, etc.) and via fluoroscopy. Indirect feedback from the catheter can provide
information that is helpful for guiding ablation. Although these techniques can visualize the
region of interest, fluoroscopy requires ionizing radiation,9,10 and all of these techniques have
low resolution. Direct visualization of tissue during PVI procedures would enhance the doctors’
ability to deliver effective ablation without injuring the patient.

Optical coherence tomography (OCT) is a volumetric, non-invasive, optical imaging modal-
ity with micron resolution, capable of imaging tissue 1- to 2-mm deep. With these features, OCT
has been demonstrated to provide structural information on the endocardium, myocardium, and
epicardium, including myofiber orientation.11–16 Deep learning analysis of OCT images has been
shown to have utility in analyzing various human tissues, including the retina,17,18 cornea,19

brain,20 bone,21 vasculature,22 and heart.23,24 The addition of polarization contrast has been
demonstrated to enable the characterization of myocardial fiber architecture within small
animal models25–29 and the assessment of fibrosis.30 Real-time in vivo and in vitro monitoring
of RFA has been performed on evaluating lesion formation, substrate detection, and catheter
contact,23–25,31–35 in large animals and humans. Other modalities, such as near-infrared spectros-
copy and multi-spectral endoscopy,36–39 have been evaluated to monitor RFA lesion formation
and lesion transmurality.

Imaging the PV and LA junction, or venoatrial junction, with OCT intraoperatively would
ensure that the PV is appropriately isolated. In this work, we aim to identify OCT features to
distinguish the left atrium and pulmonary vein, and we propose machine and deep learning algo-
rithms to evaluate the potential of algorithmic guidance in real time. Distinguishing the LA from
the PV is imperative to ensure that PVI is performed correctly to prevent pulmonary vein stenosis
and to guide ablation energy delivery.

2 Methods

2.1 Experimental Samples
The OCT dataset used throughout this work consists of comprehensive imaging of 26 venoatrial
junctions from 10 diseased, post-mortem hearts from a previous study.40 The demographics and
clinical history of the donors are described in Table 1. All samples were de-identified, received
from the National Disease Research Interchange (NDRI), and considered non-human subject
research by the Columbia University Institutional Review Board (IRB). The venoatrial junctions
were recovered within 24 h after death and imaged while submerged in phosphate-buffered saline
using the TELESTO I (Thorlabs GmbH, Dachau, Germany) spectral-domain (SD) OCT system.
The samples were imaged and flattened using a Thorlabs OCT IMM-3 immersion style sample
z-Spacer while in phosphate-buffered saline. The system had a lateral resolution of 15 μm, an
axial resolution of 6.5 μm, and an imaging depth of 2.51 mm in air. It had a center wavelength of
1325 nm with a bandwidth of 150 nm. Stitching overlapping individual volumes allowed for
comprehensive imaging of the venoatrial junctions.40,41 The stitched OCT volumes were labeled
by a laboratory member who was not involved in algorithm development with the guidance of
Masson Trichrome histopathology as the gold standard. The classes in this dataset are LA,
transition tissue (a combination of LA and PV), and PV. The transition region begins at the first
appearance of venous features within the left atrial myocardium and ends where only adventitia
and venous media of the pulmonary vein are found. Sample B-scans and corresponding
Masson’s trichrome images are shown in Fig. 1.

Patches extracted from the stitched B-scans of the volumes were used for analysis. Before
extraction, the tissue was digitally flattened. Various sizes of OCT image patches were extracted
to examine the effect of patch size on classification. Non-overlapping candidate patch
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dimensions were 118 μm (depth) × 224 μm (width), 118 μm (depth) × 800 μm (width),
235 μm (depth) × 224 μm (width), and 235 μm (depth) × 800 μm (width). Analysis presented
in this work was ultimately conducted on non-overlapping patches with a dimension of
235 μm × 800 μm, (64 pixels × 128 pixels). For analysis, only PV and LA patches were used
for model development and testing as the transition region contained characteristics of both

Fig. 1 Examples of B-scans, corresponding histology, and figures showcasing the intensity as a
function of depth from the volumes in the dataset are shown. The dashed, pink boxes in the
B-scans are 367 μm × 800 μm. (a) This B-scan and corresponding Masson’s trichrome image are
from donor 4. The venous tissue of the PV allows for deeper penetration of light. The endocardium
is more scattering. (b) This figure showcases how the intensity of light decays with depth. The
patches used in this analysis had the dimension of the dashed, pink boxes in the B-scans
(∼15.3 mm × 3.3 mm). The A-lines in these patches were averaged. No patches with multiple
labels were used. In this volume, the light intensity decays more slowly in the pulmonary vein than
in the left atrium. (c) This Masson’s trichrome image and B-scan are from donor 10. (d) In this
sample, the light intensity in the pulmonary vein decays faster than that of the left atrium. All scale
bars represent 1 mm.

Table 1 Cardiovascular disease history of human donors and the number of venoatrial junctions
extracted per donor heart. AF, atrial fibrillation; CAD, coronary artery disease; CHF, congestive
heart failure; HLD, hyperlipidemia; HTN, hypertension; MI, myocardial infarction; PVD, peripheral
vascular disease; VHD, valvular heart disease.

Heart ID Age Sex Cardiovascular disease history Number of venoatrial junctions

1 77 F CAD, HTN, CHF, AF, PVD 4

2 70 F CHF, HTN 4

3 46 F HTN, CAD, MI 1

4 67 M MI, HTN, HLD 3

5 59 F HTN 3

6 67 M CHF, VHD, HLD 3

7 58 M CAD, CHF, HTN, HLD 4

8 68 M HTN, CAD, HLD 2

9 62 F HLD, CAD 1

10 58 F VHD 1
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tissue types. OCT image patches must also have the following characteristics: (1) 90% of image
pixels must have an intensity greater than zero, (2) all A-lines within the patch have the same
label (i.e., only LA or PV), and (3) there are no 0 intensity A-lines in the patch. Due to the
intensity signal fall-off in OCT images, only the top 235 μm (64 pixels) of the B-scans were
considered for analysis. Although the patient population (10) and the sample size (26) are
limited, the venoatrial junctions were comprehensively acquired, allowing for the extraction
of many OCT patches. The stitched volumes within our dataset had average dimensions of
16.7 mm ðxÞ × 8.7 mm ðyÞ, with standard deviations of 7.1 mm ðxÞ × 3.3 mm ðyÞ. A total of
38,784 patches were extracted; 78% of the patches were LA, and 22% were PV. Stratification
by venoatrial junction led to a variation of total patches and distribution of each class within the
train, validation, and test sets across folds. Patches from each junction were kept exclusively in
the test, train, or validation set.

2.2 Feature Engineering
We performed statistical analysis to determine the discriminatory power of each patch-derived
feature. Unpaired t-tests using Welch’s correction were performed on the average feature values
across the 26 samples and 10 donors using GraphPad Prism 10.2.3 (Dotmatics, Boston,
Massachusetts, United States). P-values less than 0.05 were considered statistically significant.
We performed random forest (RF) classification across a sevenfold cross-validation (CV) scheme
to determine what features best distinguished PV and LA patches. Receiver operating character-
istic (ROC) curve analysis was performed on statistically derived patch features to determine
further how well individual features discriminate between LA and PV. R (version 4.3.1) was
used to find the Pearson correlation coefficients among all variables. The texture, statistical, and
optical features extracted from these patches are presented in Table 2. Entropy, kurtosis, and
mean were not considered during the feature engineering task due to the area under the
ROC curve (AUROC) of <0.6. The attenuation coefficient was calculated using the method
described in Ref. 42. The combination of Pearson’s correlation coefficient, random forest feature
importance, area under the ROC curve, and results from t-tests with Welch’s correction informed
the selected features. Features with ρ < −0.7 or ρ > 0.7 were less suited for the classifica-
tion task.

2.3 Automated Classification Approaches
Engineered features and OCT image patches were used as input to different classification
algorithms to evaluate performance. The algorithmic pipeline is shown in Fig. 2. All venoatrial
junctions were evaluated as part of the test set in a sevenfold CV scheme to ensure that each

Table 2 Features extracted from the patches in order of decreasing area under the ROC curve.

Feature Description

Correlation (texture) Gray level co-occurrence matrix (GLCM) correlation

Attenuation coefficient standard deviation (optical) Standard deviation of the attenuation coefficient map

Variance (statistical) Variance of the pixels

Energy (texture) GLCM energy

Skewness (statistical) Skewness of the pixels

Contrast (texture) GLCM contrast

Homogeneity (texture) GLCM homogeneity

Attenuation coefficient (optical) Attenuation coefficient

Entropy (statistical) Entropy of the pixels

Kurtosis (statistical) Kurtosis of the pixels

Mean (statistical) Mean of the pixels
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junction appeared in the test set only once. For the first sixfolds, the training, validation, and
testing split had 18, 4, and 4 junctions, respectively. To avoid repetition of any samples in the
test set, the last fold featured a training, validation, and testing split of 20, 4, and 2 junctions,
respectively.

2.3.1 Machine learning approach

We implemented logistic regression (LR) and random forest (RF) as the machine learning algo-
rithms. The classifiers were deployed using scikit-learn (version 1.2.0) using Python 3.9.7.
For both algorithms, the training and validation features were combined to create a 20-sample
(splits 1 to 6) or 22-sample (split 7) training sets. LR was implemented with l2 regularization
with a penalty coefficient of 1.0 to prevent overfitting. Before performing classification with LR,
features were standardized by rescaling to zero mean and unit variance. The mean and standard
deviation of the training features were used to transform the test set. The RF implementation used
100 trees and the Gini criterion. The selected features were not scaled before classification.

2.3.2 CNN ensemble approach

CNN architectures were also developed to perform the OCT patch classification. The networks
took images and engineered features as inputs by concatenating features before the final dense
activation. The feature data provided to the network were rescaled to have zero mean and unit
variance in the same way as the machine learning approach. Input image intensity values were
mapped from unsigned 8-bit integers to floating point numbers in the interval [0, 1]. Dataset
augmentation was also performed by adding a 50% chance of flipping the image across the
vertical axis. The network performance was optimized by adjusting network architecture and
size, hyperparameter tuning (learning rate = 0.0001, dropout probability = 0.15, batch size =
256), experimenting with the optimizer (Adam, SGD, SGD with momentum, AdaGrad), and
class balancing adjustments to the loss function (cross entropy and class weighting). The overall
plain CNN architecture consisted of four convolutional layers, some containing dropout, fol-
lowed by a fully connected network from an 8192 convolutional parameter embedding down
to the predicted class probability. Two variations of the plain CNN, version 1 (V1) and version
2 (V2), were also tested. The V1 and V2 networks were devised to examine the effect of
introducing the engineered features at different network layers, resulting in variable emphasis
on the engineered features. Effectively, the V1 architecture had a greater parameter count and

Fig. 2 Algorithm flowchart for both the machine learning and deep learning approaches. Features
selected based on feature engineering techniques were input into the machine learning algorithms.
Depending on the implementation, deep learning approaches took only the patches or a combi-
nation of patches and selected features as input.
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emphasized the engineered features more than V2. The V2 architecture concatenated in the top 4
features before the dense layer, increasing the parameter count in the final dense layer to 8196.
The V1 architecture had an additional dense layer resulting in 12 parameters, the four top-
engineered features were then concatenated, and the last dense activation took the 16 parameters
as input and yielded the class probability. The deep learning algorithms were implemented in
PyTorch (version 2.1.2). Gradient class activation mapping (GradCAM)43 was used to assess
which image regions contributed most to classification.

2.4 Evaluation Metrics
Accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and the area under the
receiver operating characteristic curve (AUROC) were measured for each test split. The MCC44

ranges between −1 and 1, but the metric was normalized between 0 and 1 in this study for com-
parison with the other metrics. The MCC is defined in Eq. (1),

EQ-TARGET;temp:intralink-;e001;114;580MCC ¼ TP · TN − FP · FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ · ðTPþ FNÞ · ðTNþ FPÞ · ðTNþ FNÞp . (1)

The normalized MCC is calculated as normMCC ¼ MCCþ 1
2

.

3 Results and Discussion

3.1 Feature Selection and Patch Size
Within the LA, the endocardium appears as a highly scattering layer, which is followed by the
less intense myocardium. The endocardial thickness was observed to vary spatially within the left
atrium and among donors. The PV has different appearances in OCT images. Within the PV, the
light penetrates deeper, does not contain the highly scattering endocardial layer, and has lower
attenuation. This trend is highlighted in Fig. 1.

Based on feature engineering, we determined the top features to be correlation, attenuation
coefficient SD, energy, and skewness. The mean values are shown in Fig. 3(b). As variance and
attenuation coefficient SD were highly correlated with ρ ≥ 0.7, we did not use variance in the
final algorithm. ROC analysis and RF importance align as these features have the highest
AUROC, as seen in Figs. 3(c) and 3(d). We investigated the impact of the attenuation coefficient
as it is closely related to the attenuation coefficient SD.

The distributions of the features highlighted in Fig. 3(d) are shown in Fig. 4. The means of
the averaged features across the venoatrial junctions are significantly different. Among the junc-
tions, we find that the LA has a higher attenuation coefficient than the PV, with sample average
attenuation coefficients of 0.6042 and 0.5227 mm−1, respectively, as seen in Fig. 4. The attenu-
ation coefficient and the attenuation coefficient SD distinguish the LA and PVas the LA is more
scattering and layered than the PV, which is reflected in the distributions of both features in
Fig. 4. On average, both features are higher within the LA than the PV.

We found that non-overlapping patches of size 235 μm × 800 μm yielded the best results
based on metrics presented in Table 3. Of these sizes, the depth of 235 μm showcased the
difference in signal intensity roll-off between the PV and LA the best, as seen in Fig. 1.
Patches containing a lot of background disrupted the feature extraction. Classifying the smaller
235 μm × 224 μm patches with RF and LR required all of the features in Table 2 to obtain results
similar to those reported for the larger patches in Table 3.

3.2 Classification Performance
Figure 5 and Table 3 showcase the classification performance of the classification models. The
DL patches only, V1 architecture, and V2 architecture perform very similarly; it is difficult to
identify a clear winner from the summary statistics. Of the ML algorithms, RF was more sensitive
than LR at the expense of specificity. RF is more flexible as it is non-parametric and does not
make assumptions about the distributions of the data in contrast to LR. The ensemble DLV1 and
V2 CNN methods used the top-engineered features and features extracted by the CNN to aid in
its classification. Despite the added information and associated increased network parameter
count, it is unclear whether the ensemble classification networks perform better than the more
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simple patch-based network. In this context, we believe that the patch-based CNN is the best-
performing network as it has almost indistinguishable results from the DLV1 and V2 networks
with fewer parameters. CNNs have dramatically increased parameter count and computational
complexity to LR and RF and may be capable of extracting greater statistical contrast than the
engineered features. Figures 6 and 7 show probability maps of PV classification of venoatrial
junctions from split 2 and split 6, respectively. PV was classified exceptionally in Fig. 6, whereas
Fig. 7 features a venoatrial junction that is classified as expected.

Fig. 3 Feature engineering strategy to select the features for input into classification algorithms.
(a) Ten features were extracted, and the correlation matrix of the features is shown. Locations with
“x” are indicative of a statistically insignificant correlation (P > 0.05). The size and hue of the circles
describe the magnitude of the correlation. (b) The feature importance of RF as a function of the
mean decrease in impurity averaged across seven folds. The attenuation coefficient SD is the most
important, whereas homogeneity is the least important feature. (c), (d) The ROC curves and the
area under the ROC curves of the top features and the attenuation coefficient. All of these features
have an area under the ROC curve over 0.6, indicating discriminating power. The final selected
features were correlation, skewness, attenuation coefficient SD, and energy.

Fig. 4 Distribution of average feature values across venoatrial junctions, N ¼ 26, for the 235 μm ×
800 μm patches. The line represents the mean ± standard deviation. T -testing indicates that the
means are significantly different. * indicates P ≤ 0.05, ** represents P ≤ 0.01, and *** represents
P ≤ 0.001.
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CNN performance was further examined by GradCAM (Fig. 8) to understand which regions
of OCT image patches impacted the network’s decision-making the most. The LA to PV tran-
sition is characterized by a transition from endocardium and myocardium to venous media and
adventitia, which have significant collagen content. This change is often accompanied by an
increase in penetration depth in OCT images. For the endocardium to myocardium transition,
a sharp intensity falloff is observed. Another trend is that a more heterogeneous image texture
was typically seen in the pulmonary vein compared with the left atrium. In GradCAM analysis,
the gradient for the PV label is most concerned with the top three of the images. For the LA label,
the GradCAM shows significant attention to the middle third, particularly for correct classifi-
cations of the LA containing the high contrast transition from endocardium to myocardium. The
network appears to identify the abrupt falloff in image intensity occurring at the transition from
endocardium to myocardium.

Table 3 Mean ± standard deviation of the metrics calculated across the seven folds for all
methods of the top features extracted from the 235 μm × 800 μm patches at a PV classification
threshold of 0.5.

Machine learning:
logistic regression

Machine learning:
random forest

Deep learning:
patches only

Deep learning:
patches +

features version 1

Deep learning:
patches +

features version 2

Accuracy 0.78 ± 0.071 0.79 ± 0.072 0.740 ± 0.116 0.710 ± 0.116 0.730 ± 0.119

Sensitivity 0.29 ± 0.215 0.460 ± 0.206 0.79 ± 0.170 0.76 ± 0.178 0.75 ± 0.190

Specificity 0.93 ± 0.059 0.88 ± 0.091 0.71 ± 0.165 0.680 ± 0.198 0.710 ± 0.177

MCC 0.64 ± 0.110 0.69 ± 0.089 0.73 ± 0.083 0.70 ± 0.079 0.714 ± 0.082

AUROC 0.80 ± 0.106 0.78 ± 0.102 0.840 ± 0.109 0.82 ± 0.136 0.82 ± 0.118

Fig. 5 ROC curves across the sevenfold test set for all methods: (a) logistic regression (machine
learning), (b) random forest (machine learning), (c) patch-only CNN (deep learning), (d) ensemble
CNN V1 (deep learning), and (e) ensemble CNN V2. Splits 1 to 6 had 4 PV-LA junctions in the test
set, whereas split 7 had only two samples of PV-LA junctions in the test set to avoid the repetition of
samples. Classification performance varied depending on the implementation; however, all algo-
rithms performed best on splits 2 and 7 and had the worst performance on split 5. AUROC, area
under the receiver operating characteristic curve.
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3.3 Limitations and Future Work
This dataset within this study was imbalanced with the high-interest class, PV, being ∼22% of the
patches. The primary reason for this is due to the variability of the dissections during the heart
procurement process, and the amount of PV retained during the dissection process. In addition,
the donors’ pathologies and medical history varied and impacted the amount of tissue remodeling
present. This dataset contains OCT volumes of post-mortem human hearts from donors with
varying disease histories (Table 1). Many of these diseases remodel the heart, causing the appear-
ance of the PVs and LAs to vary across OCT volumes. Significant differences in classification
performance across the seven cross-validation splits are likely due to this heterogeneity.
Increasing the size of the dataset of this study will be key to further studies.

Ultimately, this work serves to advance substrate classification techniques for pulmonary
vein isolation and ablation guidance that could be adapted for in vivo measurements. Performing
this classification on OCT catheter data is required to evaluate the potential for clinical translation
further. In this work, all analysis was performed on benchtop-imaged B-scans. Future work will
include adapting the model to catheter based on in vivo OCT datasets. The collection of OCT
image patches during ablation procedures does not incur significant imaging and computational
overhead;29–32 this creates the potential for real-time substrate identification during ablation.
By providing real-time structural information about the venoatrial junction, there is potential to
improve the probability of a successful procedure and reduce complication rates of cardiac
ablation.

Fig. 6 En face image (a) and probability maps for the methods: (b) RF (machine learning),
(c) patch-only CNN (deep learning), and (d) ensemble CNN V1 (deep learning) of a sample from
donor 4 (split 2). The ensemble CNN deep learning version 1 (d) classified the PVmost confidently
of all the algorithms. The CNN architecture that took patches as input also performed well, but the
class probabilities across the volume were not as high. Samples with prediction probabilities of 0.5
and higher are classified as PV. The color bar is the probability of PV classification. The AUROC
curve for CNN ensemble version 1 for this volume is 97.5%. The scale bars are 1 mm.

Fig. 7 En face image (a) and probability maps for the methods: (b) RF (machine learning),
(c) patch-only CNN (deep learning), and (d) ensemble CNN V1 (deep learning) from donor 4 (split
6). The CNN with patches only (c) and the ensemble CNN (d) classified the PV most confidently.
The patches provide the CNNs additional contrast that random forest does not have, leading to
fewer positive predictions. In these maps, the patch CNN (c) classifies fewer LA patches as PV
than the ensemble CNN that takes patches as input (d). The color bar is the probability of PV
classification. Samples with prediction probabilities of 0.5 and higher are classified as PV. The
AUROC curve for CNN ensemble version 1 for this volume is 74.8%. The scale bars are 1 mm.
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4 Conclusion
To the authors’ knowledge, this is the first investigation showing automated classification of the
LA and PV with OCT images of human venoatrial junctions. We have demonstrated classification
using ML and DL techniques, namely, logistic regression and random forest, and three different
CNN architectures. The DL approaches included a patch-based CNN, and two ensemble variations
of the patch-based CNN in which the top statistically derived features were concatenated before
the last dense activation. The ensemble deep learning methods performed the best.
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Fig. 8 Sample correct classifications of OCT image patches from a region within the PV [(a), (d)]
and a region within the LA [(g), (k)], and corresponding CNN GradCAM visualizations for the LA
[(b), (e), (g), (k)] and PV [(c), (f), (i), (l)] gradients. The importance of pixels in the patch for class
prediction is highlighted within these GradCAM maps. Higher-intensity pixels indicate regions with
higher gradients, which are more impactful to classification than lower-intensity regions. For clas-
sifying the PV samples [(a), (d)], GradCAM shows that the PV gradient [(c), (e)] is sensitive to the
top of the patch and notices the gradual intensity falloff. For classifying LA [(g), (j)], GradCAM
shows that the LA gradient [(h), (k)] identifies the abrupt falloff of intensity at the endocardium-
myocardium transition.
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