Retraction Notice

The Editor-in-Chief and the publisher have retracted this article, which was sub-
mitted as part of a guest-edited special section. An investigation uncovered
evidence of systematic manipulation of the publication process, including com-
promised peer review. The Editor and publisher no longer have confidence in the
results and conclusions of the article.

LL either did not respond directly or could not be reached.



Support vector machine parallelized remote sensing
image classification algorithm based on big data
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Abstract. With the development of big data technology, machine learni
ods have been widely used in the classification and recognition of remot
remote sensing big data, how to quickly and efficiently use machine learnir
rithms to classify remote sensing images is an urgent problem. It is a genera
method, technology, and activities of obtaining valuable informationgbase

remote sensing image classification algorithm based on big data: ¥ allel nesting
of GPU in MPI multiprocesses based on the big data framewo
improve the calculation processing speed and build a
framework based on the big data framework. The op i VM considers
both empirical risk and structural risk minimization and ximum edge distance when
constructing hyperplane decision boundaries, so there i the interval boun-
daries to accommodate the test samples. Based o prove the machine
learning SVM algorithm and realize the high-perf} computing of SVM classi-
fication algorithm on this platform. It is an efficie ode to nest GPU in MPI
multiprocess in parallel. When the number of no the speedup of the SVM

classification algorithm is 1.52, 2.24, and 2.55. © 2 &T [DOI: 10.1117/1.JEL31.6
.062005]
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1 Introduction

In recent years, with the co
sensing, machine learning classi ods have been widely used in remote sensing
image classification and ree
sensing image data 0 S Ily, showing obvious “big data” characteristics.
The number of bands €

their values are joint
bands; none of the rem

he values of corresponding location points in different
s are lossy compressed. In addition, with the continuous
emote sensing observation technology, the spectral
obtained by humans through remote sensing monitoring
ued to increase, and with the increasingly convenient collection of remote
; chnology has entered a new era of remote sensing big data.

oimage classification methods generally assume that the data are
ted obtam distribution parameters from training samples, and then classify
. But for remote sensing data, the assumption of normal distribution is not valid,
e features of the ground are more complicated. The normal distribution is one
probability distributions. The normal curve is bell-shaped, with low ends,
etrical left and right because its curve is bell-shaped, so people often call

especially w
of the most impo'
high middle, and sy
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it a bell curve. Nonparametric classification does not have high requirements on the data and
does not need to assume the assumption of a normal distribution. It builds statistical models
through learning, also known as machine learning methods. With the rapid development of
remote sensing big data, and machine learning classification methods are a solution to find the
optimal solution through continuous iteration, therefore, how to use ma 2 learning algorithms
to quickly and efficiently improve the classification speed of remote sensingimages is an urgent
problem.

Nowadays, the era of big data of remote sensing has arrived. The traditi
methods can no longer meet the needs of large data calculations. Large-sc
computing systems provide the possibility for rapid processing of massi
data. The emergence of clusters has brought new opportunities for the pow
computing. Given that clusters have fast computing and processing
trend, large-scale machine learning has become possible, and
era of machine learning. In today’s intelligent era, science g

computing offers near-infinite scalability, which of c
ment, but in general distributed parallel computing do hlghest level of scalability.
Among these technologies, Spark is a distributed memo method. Compared
erformance advan-
tage and can maintain high reliability and fault Itiple iterative algorithms.
Machine learning is a method that requires conti timization. Therefore, the
parallel processing technology based on the Spark i suitable for application in

multiple computers for overall calculatio
of designing parallel programs, and
tion time.

Meng and his team believe th dopular open source platform for large-
scale data processing and i for iterative machine learning tasks. They introduced
Spark’s open source dist
tures for a variety of learnin some basic statistics, optimization, and linear
algebra primitives. The ML supports multiple languages and provides a
high- level API that 1everages Spark stem to simplify the development of end-to-end
i ced rapid growth due to its vibrant open source

can greatly reduce the complexity
can effectively reduce the calcula-

ly.! Shrivastava et al. found that uncertainty in electricity
participants to make accurate forecasts. Forecast inter-
y the uncertainty associated with forecasts by estimating
redictions are estimates or approximations and contain
errors in the model itself and noise in the input data, and the
s a quantification of prediction uncertainty that provides upper and lower
ation of the outcome variable. The cost of generating PI by

ther growth and get
prices made it difficu

The proposed od uses support vector machines (SVM) to directly generate upper and lower
limits for future ¢ ity prices. By using particle swarm optimization (PSO) technology to
minimize the modified objective function based on PI, the best model parameters can be
obtained.” The PSO algorithm is population-based and moves the individuals in the population
to good areas based on their fitness to the environment. But it treats each individual as a point in
the search space, flying at a certain speed in the search space, which is dynamically adjusted

according to its own flight experience and the flight experience of its companions. Chenghe
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and his team believe that remote sensing image scene classification plays an important role in
a wide range of applications, so it has received great attention. In the past few years, great
efforts have been made to develop various data sets or to propose various methods for scene
classification from remote sensing images. However, a systematic review of the literature on

learning.?

The research contents of this paper include: (1) build a high-performa
platform based on the Big Data framework. Implemented on this platfo
are started through MPI between nodes to achieve parallel computing

image classification method based on SVM and introduce t
and principle of the classification algorithm in detail. Finally,
enable parallel computing for big data processing
remote sensing image as experimental data, analyze
efficiency of high-performance parallel SVM classificati i ent experimen-
tal conditions.

2 Proposed Method

2.1 Classification Algorithm of Remote Se@sing Imag

2.1.1 Remote sensing data

Remote sensing image refers to the imagg S he features in digital form.*® Remote
sensing images are films or photos that i

features, mainly divided into aerial image i tos. There are many types of images,
visually, images are divided into vi ible images. From the lightness and
darkness of the image and the co ity i : dinates, it can be divided into analog

images. The spatial coo ess of the simulated images change continuously.

A/D conversion of analo ed into digital images. A digital image refers
to an image stored, process ter. The spatial coordinates and lightness and
darkness of a digital image are di It is actually a two-dimensional matrix of some

continuous dots, wh
images obtained by mages with pixels as the basic elements. The objects
After processing the digital image, we can obtain the

sion. Figure 1 shows the structure associated with the

the target to “be @etected, improve the ability of remote sensing image interpretation, and
locate the area to 6 died. There are many methods for preprocessing remote sensing image
data, common methods include image enhancement and filtering, and geometric correction,
radiation correction, image registration.”'® Among them, geometric correction and radiation
correction methods are very important, because they will affect the image classification results
in a wide range. The classification method of remote sensing images needs to analyze different
feature areas in remote sensing images of different phases, usually, the “overlap” method is
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Fig. 1 Structure related to preprocessing

used to overlap the same feature areas in remote f different phases, it is nec-
essary to have accurate position reference and standard the multitemporal remote
sensing images to be detected, geometric correcti nd radiation correction can solve such

problems. '

Image classification. Image classificatiQ i of the entire remote sensing
image classification algorithm. It is nece pose an appropriate image classification
method according to the needs of the agtu mote sensing image classification is

to classify each image element in the in {iCategories according to its spectral
brightness, spatial structure characteristic ation in different bands according to
some rules or algorithms. Extract i mote sensing images to be classified,
and output the data in the form of ter analysis as a result, the process can
be divided into three steps.
the ground cover area in age of the remote sensing image to be detected,
and using the gray value o as the feature data. Then, the image feature
analysis is used to compar features to determine the feature information

represented by each area in the re ifig image. Finally, the remote sensing image clas-

different features and
images.'®" Figure 2

Classification rest
find that th

processing correlation.

er obtaining the preliminary classification map, we can
nt areas by comparing the original images, which affect
e remote sensing image classification method needs to

Fig. 2 Image processing related situations.
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2.2 Parallel Computing Technology

2.2.1 Yamn resource management system

bility, low resource
Apache upgraded
abstraction of

In response to various limitations such as poor scalability, poor relia
utilization, and inability to support multiple computing frameworks in
Hadoop from MRvl to RV2. MRv2 proposed a new concept Yarn. Yarn 1
resource management functions in MRvl. Yarn is a lightweight and elastic g
Its birth not only solves the problem of low resource utilization, high oper:
costs, and poor data sharing in the traditional model of “one computing fra
but also enables multiple frameworks, both can be deployed to a co

2.2.2 Spark platform

Spark’s core technology, RDD, is an abbreviation fi
parallel fault-tolerant data set. Spark, including its up
RDD can be understood as a collection of data elemen

operation of RDD as easy as operating on a local d
many data behind the cluster.”>? For the data struc
transformation and action. Since data are implicit
Spark, the operation of RDD is mainly on the op
communication between elements, so communicatio environment is implicitly
implemented. Because Spark is based on Sc programming language.’**
Therefore, transferring functions to RDD ral for data manipulation. In contrast to
MPTI’s model of passing data to processes, ta, in Spark, the running model is to
pass operations on data to data. Therefor n be summarized as “data do not
move code.”

s two major methods:
distributed environment in
, without focusing on the

2.2.3 MPI

MPI uses clusters to im arallel computing, by dividing the task process,
the purpose of parallel dai i ed.”® MPI is a cross-language communication
protocol for writing parall ing peer-to-peer and broadcast, and mainly
specifying how to exploit its featur implementations. MPI is a more traditional par-
allel method used in grid i ly used in cluster parallel computing using MPI
requirements and small amount of communication data.?’-®
allel processing mode that runs on a process. It divides a
s the simultaneous execution of threads to achieve visual
n usually includes three parallel processing modes. Data

Compared with MPI,
process into multiple

subset granularity. MPI provides portability, standardization,
nctionality, including point-to-point messaging and collective operations,
oups of processes. MPI provides a library of entity set writing,
ance distribution. The MPI library is commonly used for

Currently, NVIDIA’s CUDA Tookit is widely used in GPU program development. It includes a
compiler that can extend C++ language to C language for GPU kernels development. The CUDA
programming model fully focuses on data parallelism operations and provides lightweight pro-
gramming abstractions. Allows programmers to express the kernel with a single thread of exe-
cution and can also be extended to a dozen threads, allowing them to cooperate with each other,
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share resources, and further expand to thousands of threads running on GPU devices.****

Because CUDA uses language extensions, the work of packaging and unpacking GPU kernel
parameters and specifying various runtime kernel startup parameters is mostly performed by the
CUDA compiler, which makes CUDA code easier to read.>'**

2.3 Support Vector Machines and Parallelization

2.3.1 Support vector machine

dual programming theory classification, and function estimation methods
principle of VC dimension and structural risk minimization and is main
ples. A limited number of text classification problems. The SVM
as the solution process of the quadratic programming problem d
purpose is to find the global optimal solution. SVM is an ap
method with a solid theoretical foundation. It basica
and the law of large numbers, etc., and also simplifi
regression.

2.3.2 Basic principles of support vector m.
When dealing with two types of problems, the sed method of SVMs is to

establish an optimal classification surface in the s two types of samples can
be effectively separated, and at the same time, ensu i between the two types of
samples is the farthest. For the nonlinear separable pro uses a mapping function to
map the sample space vector into a high-di ng it linearly separable, and
constructs an optimal hyperplane in this hj | space. Let H be the classification line
of the two types of samples, and A and pints with the smallest distance from
the classification line in the two types O lel to the classification line. The

training sample points on the H, a § are SVMs of two types of samples.
The distance between the two strai
The equation for defining a i

where w is the weight coef:
Normalize the discriminant fun
equation is as follows:

i=12,....1. 2

mple. The classification surface with the largest clas-
ses is the optimal classification hyperplane. Therefore,

o _%Zzaiajyiyj(x?xj)- ©)

After solv it twice, the following format is obtained:
1
w= Z a;yiXi, )
1
b :E(WTX(I) + wlx(=1)). 5)
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a; is defined as the support vector, and x (1) and x (1) are the support vector of the first type of
sample and the support vector of the second type of sample, respectively. The final decision
function is

f(x) = sign (Zyiai(xTx,-) + b) : (6)

SvU

Substitute the sample points of the class into the decision function. A
the class, otherwise it does not belong to the class.

2.3.3 Parallel algorithm

A parallel algorithm is a method and procedure for solving a pg
processors. It is executed by first decomposing a given proble
that are as independent as possible from each other and then s

g multiple
subproblems

multiple computers so as to finally find the solution to the origir mon parallel
decomposition algorithms include parallel constraint ibtition, | e distribution,
parallel gradient distribution, and parallel variable trans i ose the original

problem into a series of smaller subproblems and assig multiple processors to solve
independently and in parallel. Each processor can use t ial algorithms with
faster convergence speed. After the independent sol chronization step is
performed to update the current data and assign n processors until the termi-
nation condition is met. This solution process is el in a distributed computing
environment, which can greatly improve the effici m and reduce the storage
load of a single processor.

The cascaded parallel SVM is a parallel 2 h emental algorithms and mul-
ticlass learning. It first divides the learning into multiple subsets and then distributes

their training results are merged and con
entire training set are obtained. In thi , there is very little communication
between different processors, whic ¢ hig lel efficiency. Moreover, this method
is simple in thought and easy t dely used to solve large-scale SVM
problems.

The most representati SVM algorithm is CascadeSVM algorithm. It uses
a binary cascade structure t
and feedback, the algorith ge to the global optimal solution of SVM.
Experiments show that the casca orithm and its deformation method avoid data

ed until all support vectors for the

scale SVM problems. [ has unavoidable defects brought by these SVM theories
such as difficulty in s¢ tions and parameters and lack of ability to integrate with
prior knowledge, it ca cale, ultra-large-scale data sets. The theoretical research

U parallel computing architecture

t iple parallel computing frameworks have been proposed, all of which have
advantages oV her frameworks in some aspects and cannot completely replace each other.
The emergence o esource management system Yarn solves this problem. Therefore, this
paper builds an MPI/GPU parallel computing framework based on Yarn. The framework of
MPI/GPU parallel computing processing mechanism is shown in Fig. 3.

The bottom layer is the resource layer and the data layer. The resource layer is the foundation
of the entire platform. At this layer, the resource management system Yarn is deployed. Yarn,
as the lowest layer of the entire architecture, has an irreplaceable status and directly determines
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Spark computing framework

’ Spark actuator ’ ‘ MPI actuator ‘ ‘ GPU efll(\:tuator ‘
T T

‘ Spark task scheduling ’ ‘ MPI task scheduling ‘ ‘ U scheduler ‘
T T

‘ Spark task queue ‘ ‘ MPI task queue

‘ Application queue

Yarn resource management system

Fig. 3 Framework of MPI/GPU parallel computin

the upper-level data and procedures. It is not only responsib ource management
all applications in
the entire cluster.

The data layer is composed of Hadoop’s dist
HDFS is a distributed file system of Hadoop, whic
agement. It also adopts a master-slave structure, whic
distributed parallel computing systems. It is n
of data, programs, and tasks.

The middle layer is the application sub
uling between applications does not ha ~ ling control but uses the natural
order of task submission and adopt
This article provides a submission bmission at the upper layer of Spark
task submission and implements m for batch applications within the
submission framework. By contr e order in which applications are submitted to Spark,
the implementation of h on Spark task scheduling control.

The top layer is the
multitask scheduling. It pr ifi puting service interface for CPU multicore

ible for data storage man-
stem support functions for

allation path of Spark on the cluster, the job code on the local
ince. Spark deploys all the above information to Spark cluster
le uses SparkContest to obtain an RDD and read the file on HDFS. In the driver,
the data from the main file. The function of the function testfile() is to obtain
the KDD of ain file from HDFS. After that, this article can initialize each row of RDD.
The flow of MPI Jyparallel computing is shown in Fig. 4.

As shown in Fig. &7 the client uploads data and programs to HDFS on the master node, uses
the scheduling algorithm to generate the application pending submission queue, and Spark sub-
mits the Job task to Yam. The submission framework queries the current task execution status on
the Spark cluster. When there are idle resources and there are unsubmitted tasks, the tasks are
submitted sequentially. Spark recognizes task types and further assigns tasks to various nodes.

this article

Journal of Electronic Imaging 062005-8 Nov/Dec 2022 « Vol. 31(6)
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Fig. 4 MPI/GPU parallel co

At the same time call the corresponding MPI program or GP 4Einally, the operation
results are passed back to the master node, and the to HDFS. There are
many schedules in the Spark framework, both bet etween applications. If you
want to improve the overall operating efficiency b heduling mechanism, you
can improve the scheduling mechanism inside the eduling mechanism of the
application “Application.” In this experiment, to re ity of the experiment, this
paper directly designs the greedy algorithm divided by

executes tasks is its submission order, i B, algorithm. According to theoretical
analysis, you can change the order of tas
into the following steps: first, submit
the task description and generate t in the Application queue. Second,

use the scheduling algorithm for t

Application pending queu
resources on the Spark clu

ndsat8 image data, the data range is a certain city, and the
e light and near-infrared, each band has 3910 * 4020 pixels.
lysis, five land cover types were identified: construction land, agricultural
ation, and tidal flat. Here, we do not consider the difference
ction land in the old and new urban areas, agricultural land with or without
o forest land), and clear or turbid water.

First, you need to configure various development environments before conducting experiments.
This includes setting up a Spark21 cluster, configuring MPI and CUDA environments, and
installing a specific development package pycuda for the development of the python language.
Finally, for the reading and writing of remote sensing image data, the GeoPySpark development
package is installed. The configuration of a single-node environment is shown in Table 1.

Journal of Electronic Imaging 062005-9 Nov/Dec 2022 « Vol. 31(6)



Liao: Support vector machine parallelized remote sensing image classification algorithm based on big data

Table 1 Configuration of a single node environment.

CPU Intel Xeon Operating system Hadoop Spark JDK

RAM 12GB CentOS 7 274 Spark-2.1.0-hin-hadoop2.7 1.8.0

Table 2 Environment configuration of cluster nodes.

Node CPU GPU RAM (GB)

Slavet Intel Xeon GeoForce GTX 1080Ti 32 58.198/182.20

Slave2 Intel Xeon GeoForce GTX 1080Ti
Slave3 Intel Xeon GeoForce GTX 1080Ti 58.198.182.22
Slave4 Intel Xeon GeoForce GTX 1080Ti 58.198.182.23

Slave5 Intel Xeon GeoForce GTX 1080 58.198.182.24

Slave6 Intel Xeon GeoForce GTX 1080Ti 58.198.182.25

In the multinode test scenario, the experiment ation of each cluster

node is shown in Table 2.

3.3 Experimental Scheme

This article has designed the following fo

(1) The first experimental scheme i
machine serial environment and

glassification accuracy of a single-
a single-node Spark environment.
(@)

lassification speed and classification
ent with CPU serial, MPI multicore,

(3) The third experi
accuracy of MPI-

environment.
(4) The fourth experimental s is toocompare the classification speed and acceleration
ratio of MPI-GP i s in a multinode environment.

4 Discussion

on Spark, when calculating the confusion matrix, the sample
ded into five categories: construction land (including old urban construction
construction land), agricultural land (including crop agricultural land, cropless
, water bodies (including clear water bodies, turbid water bodies), wetlands,
and tidal flats: lassification confusion matrix and its accuracy are shown in Fig. 5.
for construction land and agricultural land under serial conditions, user
accuracy and producer’accuracy are both higher. The lowest user accuracy is wetland vegetation,
which is 86.37%; the lowest producer accuracy is tidal flats. For land, it is 89.29%. The overall
classification accuracy is 93.76%, and the kappa coefficient is 0.93.

In a Spark-based parallel environment (i.e., MPI-GPU environment), the classification con-
fusion matrix and its accuracy are shown in Fig. 6.
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As shown in Fig. 6, the ificati ccuracy under parallel conditions is 93.71%,
i ser accuracy is for construction land, which is
west for producers is tidal flat, 89.10%, and the
Although the classification accuracy is reduced compared to
i§ not large enough to meet the classification requirements.

97.88%, the lowest is
highest is water body,

PI multicore, CUDA parallel, and MPI-CUDA is compared.
serial environment does not process the training and classification process of
m in parallel, it takes the longest time. The processing efficiency comparison of
ion algorithms is shown in Table 3 and Fig. 7.

§ e 3 and Fig. 7, the multicore environment based on MPI consumes only time
better than CPU se PU-based SVM classification uses the multithreaded characteristics of
the graphics card to achieve parallel training of sample data, which takes only one-fifth of the
time of the traditional CPU serial. Compared with the traditional CPU serial efficiency up to
6.4 times and better than MPI multicore and CUDA parallel classification efficiency. However,
since the MPI multicore and the MPI-GPU framework proposed in this paper are integrated and
optimized local classifiers of each subprocess to obtain the final classification model, the final
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Table 3 Comparative analysis of processing efficiency of SVM classification algorithms.

CPU serial MPI multicore GPU parallel MPI-GPU

Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) ime (s) Accuracy (%)

5752 93.76 1215 92.71 1023 93.76 92.71

6000 T '

4000 -

©
w
"

Time (s)
Accuracy (%)

2000 b <493

0 .
CPU senal MPI multi-core

. 925
GPU panalle MPI- GPU

Vector machine classific

Fig. 7 Comparative analysis of processin lassification algorithms.

sification model. So here in both
reased, from 93.76% to 92.71% but

classification model is not necessarily th
environments, the classification acc
still within an acceptable accuracy

Since MPI-GPU will a 5 f training samples and the training of local clas-
sifiers when different secondary processes are turned on, the experiments were per-
formed in a single-nd enabling different numbers of secondary processes to
SVM classification efficiency and accuracy. Multicore
o>n MPI. Although the accuracy of remote sensing image
crease of secondary processes, its calculation speed has

y-stabilized. The classification accuracy will increase as the
processes increases. The time-consuming situation and classification accu-
under different numbers of secondary processes are shown in
d Fig. 8, it can be seen that as the number of secondary processes increases, the
uracy of SVMs based on MPI-CUDA will decrease, from 94.64% (with 1 sec-
ondary proce bled) to 92.42% (with 10 enabled). When the number of secondary processes
exceeds 8, the cla ion accuracy of SVM tends to be stable. When the number of secondary
processes is 2, its tim€ consumption is reduced by 43.8% than when the number of secondary
processes is 1. When the number of secondary processes exceeds 9, the classification time con-
sumption also tends to be stable. Although the classification accuracy will decrease with the
increase of the number of secondary processes, the classification speed will gradually increase
and eventually stabilize.

Journal of Electronic Imaging 062005-12 Nov/Dec 2022 « Vol. 31(6)



Liao: Support vector machine parallelized remote sensing image classification algorithm based on big data

Table 4 MPI-GPU-based SVM time consumption and classification accuracy under different
number of secondary processes.

Number of processes 1 2 3 4 5 6 7 8 9 10

Time (s) 4503 2526 1758 1244 917 804 72 5 656 643

Accuracy (%) 93.64 93.41 93.17 9294 93.71 9224 92.01 91.14 91.42

5000 T T

4500

4000 —

3500

3000

2500 ¢

2000

1500 -

Time(s) and accuracy (%)

1000

500 -

0- 1 —
1 2 3 4

accuracy under different
number of secondary processes.

4.2.2 Analysis of the time-consu and speedup of SVM
parallelization algorithm : odes

In the Spark framework cluster envil [a than$mission and task execution under multi-
ple nodes can be realized. Theref: yzes the processing efficiency of the SVM
classification algorithm PU parallel framework under different numbers of
nodes. Considering that t ion of different nodes is different, in this experi-

ment, five subprocesses are i each node. The speedup ratio is widely used

cator to explore the effgef of'd S mbers on the classification efficiency of SVMs in
celeration ratio (S,) is defined as follows:

S, =T,T,. ™

1g. 9.
Table 5 and Fig. 9, under different numbers of nodes, the SVM classification
d on the MPI-GPU parallel framework has a faster processing speed as the
number of no@ reases, and the time consumption gradually decreases, but the amplitude
gradually decrease e the number of secondary processes opened by each node number is 5,
when the number of nodes is 2, it means that the classification process is performed by a total of
10 secondary processes at the same time, which takes 572 s, which is better than starting under a
single node time consuming for 10 secondary processes. From the aspect of acceleration ratio,
when the number of nodes is 2, 4, and 6, respectively, the corresponding acceleration ratio is
1.62, 2.34, 2.65.
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Table 5 Time-consuming situation and speedup of SVM parallelization algorithm under different
nodes.

Number of nodes 1 2 3 4
Time (s) 917 565 447 386
Speedup ratio 1 1.52 1.93 2.24

1000 .

Time-consuming situation and speedup

500
0.
Speedup ratio )
Fig. 9 Time-consuming situation a rallelization algorithm under different
nodes.

5 Conclusions

(1) In this paper, a high-per llel computing processing platform based on
big data envirop i and high-performance parallelism of SVM
classification 3 implemented under this platform. Experiments prove that

computing framework for big data proposed in this

Nested GPUs in MPI multiprocesses are an efficient

the classification accuracy of remote sensing images

sm is typically fine-grained. The parallel programming model proposes a hybrid

environment, although the accuracy of remote sensing image classification gradually
decreases with the increase of the number of secondary processes, when the number of
secondary processes exceeds 8, the classification accuracy of SVMs tends to be stable.
With the increase of the number of nodes, the calculation time of the SVM classification
algorithm gradually decreases, and the acceleration ratio gradually increases.
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