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Abstract. A fingerprint identification system is an application of pattern recognition and image
processing. The performance of a fingerprint-based biometric system relies on pre-processing
techniques employed on fingerprint images. Especially, thresholding and thinning methods are
used to detect minutiae points representing local features and are often utilized to identify a
person uniquely. However, studies on partial fingerprints exposed the MasterPrint vulnerability
for partial fingerprint identification systems wherein the system performs non-unique user iden-
tification. The thresholding and thinning techniques may lead to spurious minutiae generation
and stimulate huge MasterPrints. Here, we investigate the impact of thresholding and thinning
methods on identification accuracy and the percentage of MasterPrint generated using a partial
fingerprint identification method. The experiments comprise four thresholding methods, namely,
iterative optimal thresholding, Otsu’s global image thresholding, Niblack local thresholding,
and Bernsen’s local image thresholding. Furthermore, it employs four thinning methods,
namely, Khalid, Mariusz, Marek thinning algorithm, Khalid, Marek, Mariusz, Marcin thinning
algorithm, Hilditch thinning algorithm, and Stentiford thinning algorithm. The results demon-
strate that the identification accuracy and percentage of MasterPrint generated varies signifi-
cantly by replacing the underlying pre-processing methods. Consequently, each combination
of thresholding and thinning methods might not be suitable for user identification in high-
security applications using a partial fingerprint identification method. The investigation
outcomes provide the guidelines to demonstrate the robustness of a partial fingerprint iden-
tification method.© 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
.JEI.32.1.010901]
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1 Introduction

Fingerprint biometric systems (FBSs) require minimal involvement from an individual to capture
the sensed finger impression. Also, these systems have high accuracy and are affordable in
implementation. Hence, FBSs are widely used as commercial applications for access control
and user identification. An FBS is employed for user authentication and identification applica-
tions. During the enrollment process, the system administrator enrols a legitimate person by
storing multiple samples of their finger into the database as encrypted templates. In the authen-
tication scenario, the system verifies the user’s claim by comparing the recently acquired finger-
print template with only those stored templates, which possess the claimed identity. The claim
may get accepted or rejected based on the similarity score between the templates. However,
an identification system fetches all the stored templates to compare with the recently created
template. The identity of the stored template generating the highest similarity score becomes
the unknown user’s identity.

In general, FBSs perform ridge pattern recognition utilizing the features extracted from the
fingerprint image for access control, security applications, user authentication, and identification.
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Fingerprint of a user captured by the sensors at different occasions usually differs due to various
physiological factors of an individual and environmental conditions. Hence, these images are
pre-processed for better recognition accuracy. Thresholding and thinning are among the pre-
dominantly employed pre-processing methods in fingerprint recognition. Usually, fingerprint
images are enhanced using the thresholding technique to ensure that samples of the same finger
captured at multiple instances appear similar. Thresholding enhances the dark region from the
fingerprint termed as ridges and reduces the intensity of the remaining portion called valleys.
Minutiae are the local fingerprint features formed at the point where three ridges emerge, or
a single ridge ends.1 However, as minutia represents a single pixel within a ridge, a binarized
fingerprint image obtained by thresholding may not facilitate accurate minutiae detection in multi-
ple samples of the same fingerprint.2 Therefore, a single-pixel version of fingerprint ridges is
obtained using the thinning of the binarized image. Consequently, a combination of thresholding
and thinning methods for minutiae-based feature extraction improves person recognition accuracy
of an FBS. Ratha et al.3 employed projection-based thresholding approach3 and Human
Information Processing Laboratory’s Image processing System library4 for thinning purpose.
Feng5 performed thinning of fingerprints using local threshold-based thresholding method and
Guo and Hall method6 was used for thinning the binarized fingerprints. Joshi et al.7 used adaptive
thresholding approach8 and Zhang–Suen thinning algorithm9 for thresholding and thinning of
partial fingerprints in their experimentation.

FBS are among the most reliable means of individual authentication, authorization, and
identification due to low-cost devices, user convenience, low response time, and high accuracy.
However, Roy et al.10 investigated the partial fingerprint identification systems and observed that
partial fingerprints might not be unique to every individual. The authors termed MasterPrint
to those partial fingerprints identifying at least 4% distinct subjects from the enrolled database.
The authors experimented on partial fingerprints cropped from FVC 2002 full fingerprint dataset
using commercial VeriFinger software development kit. The results of their investigation con-
cluded that a dictionary of the top five MasterPrints could disclose the identity of more than 60%
unique subjects. Bontrager et al.11 investigated the feasibility of using latent variable evolution
to generate complete image-level synthetic MasterPrints, termed as DeepMasterPrints. The prob-
ability of a successful attack using a dictionary of DeepMasterPrints was demonstrated to be
significantly high on NIST Special Database 9 fingerprint dataset12 and FingerPass DB7 data-
set.13 These statistics proved the severity of the MasterPrint vulnerability.

Pre-processing fingerprint grayscale images is a crucial step in fingerprint recognition. Due
to environmental and physiological conditions, the fingerprint images of the same finger cap-
tured at different instances are not similar. Hence, pre-processing in fingerprint recognition was
less explored as it was a common practice in the literature to allow tolerance during the feature
matching step. The investigation by Roy et al.10 on partial fingerprint identification disclosed the
MasterPrint vulnerability. The investigators reported accepting approximately similar features
as one of the reasons for generating MasterPrint.10 The first method to address the MasterPrint
vulnerability by opting for strict feature matching was presented by Joshi et al.7 The method
performed feature extraction based on geometric constructs formed using adjacent minutiae.
Hence, the method was expected to produce marginally varying identification rate and percent-
age of MasterPrint generated if the underlying pre-processing approaches were replaced with
other thresholding and thinning algorithms in the literature. The work in this paper was carried
out to investigate how far the identification accuracy and percentage of MasterPrint generated
varies by replacing the pre-processing steps with other thresholding and thinning methods in
the literature.

Joshi et al.7 proposed a minutiae geometry-based MasterPrint mitigation method, and
employed adaptive thresholding approach8 for thresholding of the partial fingerprints and
Zhang–Suen algorithm9 to obtain thinned fingerprints. The approach achieved up to 97% accu-
racy and generated 0.1% MasterPrints. However, as the image processing literature contains
numerous techniques for thresholding and thinning, it is imperative to investigate the robustness
of these methods in terms of identification accuracy and addressing the MasterPrint vulnerability
for a partial fingerprint identification system. In this regard, the paper provides an exhaustive
experimentation comprising four thresholding and four thinning methods to study their impact
on the partial fingerprint identification system performance.
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The highlight of the investigations from the paper is to answer the following questions,

1. Given a rotation invariant, robust, minutiae-based local feature extraction method, how far
do the results vary if the fingerprint pre-processing is carried out using diverse threshold-
ing and thinning methods?

2. What is the more acceptable measure for a fingerprint recognition method to signify
appropriate pre-processing, the average count of minutiae in the fingerprint or average
minutiae density?

3. Do false minutiae detection and removal methods help improve the fingerprint identifi-
cation system performance if the underlying pre-processing does not yield the thinned
fingerprint image that preserves ridge connectivity and ridge pattern?

4. Are the existing image pre-processing methods beneficial for fingerprint images, or is
there a requirement for a rigorously tested fingerprint pre-processing method?

The organization of the rest of the paper is as follows. Section 2 describes an introduction of
various components involved in FBS. Section 3 introduces various thresholding approaches
employed in the experimentation. Section 4 provides a brief introduction to the thinning
approaches that follow the thresholding process in the investigation. The experimental setup
to investigate the impact of various pre-processing methods on the performance of a partial
fingerprint identification and MasterPrint mitigation scheme is presented under Sec. 5. The result
analysis and performance evaluation of the possible combinations of thresholding and thinning
approaches is given in Sec. 6. The discussion on the results follows in Sec. 7. Finally, Sec. 8
concludes the paper.

2 Fingerprint Biometric System: An Overview

An FBS comprises several components performing a dedicated function in fingerprint recog-
nition. The steps involved in minutiae-based FBS are shown in Fig. 1. A sensor on an input
device captures the fingerprint for the portion of a finger that touches the sensor. The area
of a finger that touches the sensing device forms a dark region termed as ridges. However, the
remaining portion of the finger results in valleys. Thus, fingerprint acquisition involves creating
a ridge-valley pattern for an input finger. However, distortions due to varying pressure exerted,
environmental factors, sweat, or dry fingers are certain when mapping a three-dimensional
fingertip onto a two-dimensional plane.14 Hence, fingerprint pre-processing is carried out to
facilitate feature extraction. Fingerprint pre-processing usually involves enhancing the quality
of the fingerprint image, i.e., producing high contrast between ridges and valleys, to facilitate
minutiae-based local feature extraction.15

Fig. 1 Various components involved in minutiae feature-based FBS.

Joshi, Mazumdar, and Dey: Investigating the impact of thresholding and thinning methods. . .

Journal of Electronic Imaging 010901-3 Jan∕Feb 2023 • Vol. 32(1)



Image enhancement techniques modify the intensities of pixels in an image so that it can be
more suitable for a specific application. An enhancement method appropriate for one application
may not deliver the expected outcome for another. Fingerprint image enhancement approaches
can be categorized as histogram-based, filtering-based, or transformation-based. Histogram
specification is an image processing approach that utilizes image histograms to adjust contrast.16

The histogram depicts the brightness distribution and is primarily used to enhance the local
contrast without affecting the overall contrast. Image enhancement using histogram equalization
(HE) represents the statistical relationship between each gray level in the image and the number
of pixels that appear in the gray level. HE reflects the frequency of each gray level in the image.
However, it is often necessary to consider combining a variety of simple and effective algorithms
or fusing other enhancement techniques to achieve the final enhancement effect.17 Furthermore,
HE techniques add noise to the output image and increase background contrast.18,19

Usually, filter-based methods generate image frequency spectrum data. Filters are utilized in
pre-processing to solve two objectives. First, to fill the small gaps, i.e., low-pass effect, in the
ridge direction. Next, increase the band-pass effect, i.e., discrimination between ridges and val-
leys in the direction orthogonal to the ridges.20 Gabor filters act as band-pass filters to remove the
noise and preserve the true ridge-valley pattern. The convolution nature of the Gabor filter con-
tributes to high computational complexity, leading to an overall increase in the running time of
the user verification and identification process.14 Furthermore, applying Gabor filters requires
feeding reliable estimation inputs of the local context, i.e., the local orientation and ridge fre-
quency to Gabor filters. Moreover, failing to estimate the local context correctly may lead to the
creation of artefacts in the output image, consequently increasing the number of errors in user
identification or verification.14 The major drawbacks of Gabor filters include their limited, i.e.,
approximately one octave, maximum bandwidth, and when seeking broad spectral information
with maximal spatial localization, they are not optimal.14 Frequency domain techniques are com-
putationally less efficient and require more processing resources to implement.14 Thresholding is
a type of transformation-based image enhancement method. Thresholding generally involves
two steps, i.e., determining a gray threshold according to some objective criteria and assigning
each pixel to one class of background or foreground. The objective criteria may consider neigh-
boring pixel intensities or the intensities from the entire image. Consequently, a thresholding
method can be a local or global thresholding approach. The thresholding of a digital image
is beneficial for segmenting a region of interest from the background. When applied to finger-
print images, thresholding solves two purposes. It isolates a fingerprint from the rest of the
untouched area of the sensing device and highlights ridge patterns. Usually, thresholding
requires fewer computations and, therefore, is relatively easy to implement compared to other
techniques.21

The fingerprint recognition involving minutiae-based features employs direct grayscale,
binarized, and thinned images.22 Since minutiae are single-pixel locations in the fingerprint
image, a thinned fingerprint image facilitates minutiae detection. Hence, the fingerprint image
after thresholding is often thinned before minutiae detection. The crossing number (CN) is the
most widely used and accepted measure for minutiae detection.23 The fingerprint template of a
user comprises encrypted minutiae-based features. The templates for each user are stored in the
template database during the enrollment phase. During the verification and identification of a user,
the stored templates are retrieved and compared against the recently created fingerprint template.
The templates corresponding to the identity claimed by a user are fetched from the database
during the verification process. However, the newly acquired fingerprint template is compared
with each stored template in the identification process. The system generates a similarity score,
a numeric value, as the measure showing the chances that the templates under comparison
belong to the same user. Thus, a high score corresponds to a higher probability that the templates
are generated from the same finger. The user’s claim is verified during verification as accepted or
rejected. However, an unknown user’s identity is declared in the identification scenario.

3 Thresholding Methods

Image pre-processing techniques improve the quality of an image while preserving its original
contents.24 However, it is not always useful to enhance an image as, more often, crucial
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information may get lost due to such techniques. There is an infinitesimally small probability of
acquiring exactly the same fingerprints by the biometric system each time a user touches
the biometric sensor. The weather conditions such as, moisture or heat, sweating around the
fingertip, the orientation of the finger, and pressure exerted on the sensor surface are some of
the reasons leading to dissimilar fingerprint samples of the same finger acquired at different
instances. Therefore, thresholding approaches are generally employed to produce approximately
similar ridge patterns from several samples of the same finger. These techniques are broadly
categorized as global, local, and hybrid methods.25 Figure 2 shows a grayscale image and the
transformed images after applying threshold segmentation, low threshold, and high threshold.
The figure shows that the threshold segmented version is the most appropriate for object rec-
ognition as it has retained the shapes and allowed negligible noise during the transformation. The
fingerprint biometric researchers and vendors use image enhancement techniques for research
activities and consumer products. However, every method may not be beneficial for a biometric
application and may adversely affect the system accuracy by removing true minutiae or inserting
false minutiae. Consequently, such practices leads to an incorrect and low identification rates
and high MasterPrint generation. Therefore, it is imperative to investigate the impact of various
combinations of pre-processing techniques and examine the system performance.

Shaikh et al.26 evaluated six thresholding methods for performance bench-marking of various
global and local thresholding methods toward fingerprint-based biometric recognition system.
Their work forms the basis for selecting the thresholding approaches employed in our experi-
ments. The thresholding algorithms used during the experiments include iterative optimal thresh-
olding,24 Otsu’s global image thresholding,27 Niblack local thresholding,28 and Bernsen local
image thresholding.29 The following subsection briefly discusses these methods.

3.1 Iterative Optimal Thresholding

The iterative optimal thresholding approach models the image pixels as a histogram generating
normal distributions for the area of interest, i.e., the ridge portion and the background region,
also known as the valley portion.30 The approach considers the minimum probability lying
between the two distributions’ maxima as the initial threshold, Ti. Furthermore, the method
iteratively updates Ti to minimize the segmentation error.24 The algorithm considers the value
of Ti for which the segmentation error cannot be further minimized as the optimal threshold, To.

Fig. 2 Image thresholding (a) original image; (b) threshold segmentation; (c) low threshold;
and (d) high threshold.24

Joshi, Mazumdar, and Dey: Investigating the impact of thresholding and thinning methods. . .

Journal of Electronic Imaging 010901-5 Jan∕Feb 2023 • Vol. 32(1)



Figure 3 shows the global level histograms to decide the initial optimal threshold. The figure
depicts gray-level histograms approximated by two normal distributions—probability distribu-
tions of background and object of interest. The final optimal threshold is set to give minimum
probability of segmentation error.24

3.2 Otsu’s Global Image Thresholding

The approach returns an intensity as a threshold to divide the image pixels as background and
foreground. The algorithm iteratively tries to maximize the inter-class intensity variance or
minimise the intra-class intensity variance.27 It computes histogram,HðiÞ, with L bins and prob-
ability, pðiÞ, for each intensity, i, within the image. Let t be the threshold under consideration.
The probability of a pixel to be a background, Wb, and foreground, Wf, is computed as below,

EQ-TARGET;temp:intralink-;e001;116;366WbðtÞ ¼
Xt−1

i¼0

pðiÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;304WfðtÞ ¼
XL−1

i¼t

pðiÞ: (2)

The approach then calculates within-class variance σw as

EQ-TARGET;temp:intralink-;e003;116;263σ2wðtÞ ¼ WbðtÞ × σbðtÞ þWfðtÞ × σfðtÞ; (3)

where σbðtÞ and σfðtÞ are the background and foreground gray level variances, respectively.
It returns the threshold corresponding to minðσ2wðtÞÞ as the desired threshold. Figure 4 shows a
grayscale character A and its transformed version after applying Otsu’s global image thresholding
method. The difference in the foreground and background in noticeable after thresholding.

3.3 Niblack Local Thresholding

Niblack algorithm is a local thresholding approach.28 It uses a fixed-sized rectangular window,
w, surrounding a reference pixel, p, and slides the window over the entire image, I. The window
size is application dependent and default value is 15. The approach computes the local mean, μw,
and standard deviation, σw, for the window region.31 The following equation decides the local
threshold, Tw, for the given window, w

EQ-TARGET;temp:intralink-;e004;116;84Tw ¼ μw þ ð−0.2Þ × σw: (4)

Fig. 3 Gray-level histograms approximated by two normal distributions—probability distributions
of background and object of interest. The threshold is set to give minimum probability of segmen-
tation error.24
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The experimental results show that the approach generates thresholding noise in the non-
desired gray region.32 Figure 5 shows a test image, the ground truth, i.e., the reference image
from the HDIBCO 2016 dataset, and the image after applying Niblack’s thresholding. The
resulted image after thresholding shows heavy background noise in the non-text, i.e., shadow,
region.

3.4 Bernsen’s Local Image Thresholding

Bernsen’s approach is another local thresholding method.29 For a given image, I, the approach
initializes local contrast, l, and neighborhood window size, w, e.g., l ¼ 15 and w ¼ 3. The algo-
rithm then assigns the lowest and highest gray levels within the window size w × w as Imin and
Imax, respectively. The local threshold, Thl, and the contrast measure, Cm, are computed using
the following equations 29

EQ-TARGET;temp:intralink-;e005;116;211Thl ¼
Imax þ Imin

2
; (5)

EQ-TARGET;temp:intralink-;e006;116;157Cm ¼ Imax − Imin: (6)

If Cm > l, i.e., a non-uniform grayscale image, then the neighborhood belongs to the same
class (background or foreground). Otherwise, a global thresholding approach decides the local
threshold.34 Figure 6 shows a sample text image before and after applying Bernsen’s threshold-
ing method. The difference between the background and the foreground is evident after
thresholding. A sample grayscale fingerprint image and its various versions after applying the
thresholding methods employed in the investigations are shown in Fig. 7. The figures show that
different thresholds were applied by each method on the original image. Furthermore, the ridge

Fig. 5 Image thresholding using Niblack’s local thresholding method: (a) test image; (b) ground
truth; and (c) after applying Niblack thresholding method.33

Fig. 4 Image thresholding using Otsu’s global image thresholding method.27
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patterns in the image generated by Bernsen’s method are clearly distinguishable compared to
other methods.

4 Thinning Approaches

A thinning algorithm produces a single-pixel skeletal structure that highlights prominent features
from the original image. In general, a binarized image is employed for the thinning process to
ensure connectivity among various regions within the image. It helps in determining the topo-
logical and metric-based properties to count, measure, and classify relevant features. However,
local noises in the image easily affect the resultant skeleton.36 Thinning algorithms are mainly
utilized for object representation, detection, manipulation, comparison, tracking, recognition,
and compression.

Minutiae are the most widely exercised and accepted features utilized in FBSs.11 In general,
minutiae points are stored as their ðx; yÞ coordinates, orientation angle, and type, i.e., ridge or
bifurcation. Minutiae-based FBSs employ minutiae correlations within an image during their
comparison. Therefore, locating minutiae most accurately within two samples of the same finger
is highly desirable. A robust thinning approach accepting a correctly binarized fingerprint image
can improve system performance in such circumstances. However, a given thinning approach

Fig. 6 Image thresholding using Bernsen’s local thresholding method: (a) original image and
(b) image after thresholding with l ¼ 15 and w ¼ 3.35

Fig. 7 A grayscale fingerprint image and its various versions after applying thresholding
approaches employed in the investigation.
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may also adversely reduce the recognition accuracy if it produces substantial false minutiae due
to several breaks in the ridge patterns.

Nazarkevych et al.37 evaluated the effectiveness of image thinning methods in biometric
security systems. The authors analyzed Zhang and Suen9 and Hilditch thinning algorithm,38

among others. Saha et al.39 presented a comprehensive review of existing thinning methods and
their applications. The authors discussed thinning approaches applicable to fingerprint analysis.
The work by Nazarkevych et al.37 and Saha et al.39 encouraged us to experiment with Hilditch
thinning algorithm38 and Stentiford thinning method.40 The designers of Saeed et al.41 algorithm
and its modified version by Tabedzki et al.42 have claimed these approaches as a universal
algorithm for image thinning. Hence, these two methods were utilized to verify the claim for
their robustness in partial fingerprint identification. The following subsections briefly explain
the thinning methods used in the investigation.

4.1 KMM Thinning Algorithm

The Khalid, Mariusz, Marek (KMM) approach accepts a binarized image wherein binary 1 rep-
resents the dark region to be thinned. Next, it converts the 1’s adjacent to the boundary 0’s and in
the open elbow bends into 2 and 3, respectively.43 The method considers non-zero positions in
the image and figures out the locations, x, having 2, 3, or 4 sticking neighbors. It changes all such
x to 4. A predefined table, Deletion Array, provides the sum for x that is the probable target for
removal. It iteratively eliminates such x, assuring that the connectivity is intact. Finally, the
approach excludes unnecessary 2’s and 3’s until it produces a single-pixel width thinned image.44

Figure 8 shows various steps involved in thinning a binarized image using KMM thinning
algorithm. The resultant thinned image preserves the pixel connectivity from the input image.

4.2 K3M Thinning Algorithm

The Khalid, Marek, Mariusz, Marcin (K3M) algorithm is a modified version of KMM.41 The
algorithm iterates over seven phases until it generates a thinned image. These phases can be
summarised as below,

1. Mark boundry pixels, b
2. Remove b’s with 3 adjacent neighbors
3. Remove b’s having 3 or 4 adjacent neighbors
4. Remove b’s with 3, 4, or 5 adjacent neighbors
5. Remove b’s with 3, 4, 5, or 6 adjacent neighbors
6. Remove b’s with 3, 4, 5, 6, or 7 adjacent neighbors
7. Unmark remaining boundary pixels

If the current iteration of these seven phases modifies the image, the image undergoes
another iteration. Otherwise, the algorithm stops resulting in a thinned image.42 Figure 9 shows
several graphical symbols and their resultant thinned version after applying K3M thinning
algorithm. The algorithm does not produce properly thinned images for small and almost thinned
images.

Fig. 8 Step involved in KMM thinning algorithm.43
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4.3 Hilditch Thinning Algorithm

The Hilditch thinning algorithm has two variants; one uses a 3 × 3 window while the other uses
4 × 4 window.38 The experiments in this paper employed 3 × 3 window. The neighborhood pixel
nomenclature is as shown in Fig. 10. The algorithm iteratively decides if the reference pixel P1

should be removed based on the following five conditions,45

1. Eliminate P1, if it is a part of the skeleton.
2. Preserve P1, if it lies on the border of a skeleton.
3. Preserve P1, if it is an isolated pixel.
4. If P1 is a connecting pixel, preserve it.
5. Remove P1, if it has at least one neighbor.

The algorithm considers all the above conditions to decide if P1 should be preserved or
eliminated. It finally stops when the recent iteration encounters no pixels for removal. Figure 11
depicts a sample fingerprint image and its thinned version. The top right corner portion of the
thinned image shows an improper thinning operation as a single ridge is split into several tiny ridges.

4.4 Stentiford Thinning Algorithm

The templates used in the Stentiford algorithm to decide if a pixel should be removed are shown
in Fig. 12. It considers only three locations, marked with the circle, in the neighborhood of
a pixel. The algorithm steps are as below,40

1. Traverse the image left-to-right downwards to locate pixels having T1 pattern,
2. If the central pixel at such place is not an end point, i.e., the last pixel, and have con-

nectivity value47 as 1, mark it for removal,
3. Repeat step 1 and 2 for each pixel over the image,
4. Repeat steps 1, 2 and 3 for T2 traversing upwards left-to-right, for T3 traversing right-to-

left upwards, and for T4 traversing downwards right-to-left.
5. Remove all marked pixels.
6. If there was any deletion in step 5 of current iteration, repeat steps 1 to 5 else stop.

Fig. 9 Thinning graphical symbols with K3M: (a) original shapes and (b) corresponding thinned
shapes.41

Fig. 10 Neighborhood pixel nomenclature in Hilditch approach.
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Figure 13 shows a grayscale MRI image and corresponding thinned image obtained using
Stentiford thinning algorithm. The thinned image accurately reflects the features from original
image.48

5 Experimental Setup

Recently, Joshi et al.7 proposed a minutiae geometry-based partial fingerprint identification
approach targeted toward MasterPrint mitigation. The method experimented on partial finger-
print datasets cropped from five benchmark full fingerprint datasets delivered up to 97%

Fig. 12 The templates for deciding pixels for removal in Stentiford thinning algorithm. It considers
only three locations, marked with circle, for the conclusion.

Fig. 13 Thinning of MRI image using Stentiford thinning algorithm: (a) original MRI image and
(b) corresponding thinned image.48

Fig. 11 Fingerprint thinning : (a) original image and (b) corresponding thinned image.46
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accuracy and generated 0.1% MasterPrints. The details of various datasets employed during the
investigations are shown in Table 1. The authors employed adaptive thresholding approach8 for
thresholding and Zhang–Suen thinning algorithm9 for thinning the binarized partial fingerprints.
Minutiae detection was carried out by employing the metric, CN.49 However, inappropriately
binarized or thinned fingerprint may generate false minutiae affecting the system performance.
Hence, Kim et al.50 algorithm was employed to detect and remove false minutiae. The algorithm
performs post-processing on the detected minutiae using various parameters, such as ridge flow,
ridge orientation, connectivity, and distance between minutiae. It detects and eliminates five
different types of false minutiae, namely broken ridge, bridge, short ridge, hole, and triangle.50

The investigation in this paper aims to study the impact of various combinations of
thresholding and thinning methods in Joshi et al.7 method toward identification accuracy and
percentage of MasterPrint generated. The original papers that introduced the four thresholding
and thinning methods employed during the investigation have shown satisfactory results.
However, the impact of their cross combinations has not yet been reported. This work does not
attempt to comment on a particular method or ascertain that a specific pair is preferable. Instead,
this work evaluates the robustness of the Joshi et al.7 method under diverse pre-processing con-
ditions. The experiments were carried out using Joshi et al.7 method on the partial datasets used
in their paper. However, instead of adaptive thresholding approach8 for thresholding and Zhang–
Suen thinning algorithm9 for thinning, 16 combinations of the selected thresholding and thinning
methods were applied. So, there are 80 individual experiments as a part of the investigation.

The experiments were conducted on a desktop system with 64-bit Ubuntu 20.04.2 LTS
(Focal Fossa) operating system having 64 GB internal memory (RAM) and Intel® Xeon(R)
CPU E5-1620 v3 @ 3.50 GHz ×8 processor. The terminology used for various combinations
of thresholding and thinning approaches on different datasets is given in Table 2. We followed
D_B_T format for each combination, where D refers to the dataset, B specifies a thresholding
approach, and T denotes the thinning approach. For example, entry 1_1_1 refers to the combi-
nation of iterative optimal thresholding and KMM thinning algorithm experimented on
CrossMatch Sample DB dataset. Figure 14 shows a sample image from CrossMatch Sample
DB dataset and its thinned version from each combination of thresholding and thinning approach
as mentioned in Table 2. The thinned image for the same fingerprint generated from different
combinations appears significantly diverse. This variation is expected to generate considerable
differences in the identification performance of Joshi et al.7 method.

6 Evaluation Metrics and Result Analysis

The MasterPrint vulnerability is a threat to an identification system. Hence, the investigation in
this paper followed both closed-set and open-set identification set-up. The investigation involved
two tests: an identification test51 and a zero MasterPrint detection test. During the identification
test, each template was compared with every other template from the dataset, and the similarity
score for each comparison was computed. If the highest score corresponds to the actual subject
sample, it was quoted as a correct detect and identify (CDI). In a false alarm (FA) scenario,

Table 1 Summary of the cropped partial datasets (150 × 150 px) used in the experiments.

Dataset FVC2002 DB1_A FVC2002 DB2_A CrossMatch sd302b sd302d

Sensor technology Optical sensor Optical sensor Optical sensor Touch-free Touch-free

Full fingerprints 800 800 408 920 1600

Total subjects 100 100 51 92 200

Samples per subjects 8 8 8 10 8

Image resolution 500 dpi 569 dpi 500 ppi 1000 ppi 500 ppi

Partial dataset size 3549 2767 2134 2098 2960
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the highest score belongs to some other subjects’ templates. The system may reject a partial
fingerprint due to no similarity with any stored templates. Suppose the system is enrolled with
P partial fingerprints, and C, F , andR denotes the count of CDI, FA, and rejected partial finger-
prints, respectively. Detect and identification rate (DIR), δ, FA rate (FAR), Ϝ, and rejection rate
(RR), ϒ, are computed as: δ ¼ C

P × 100, Ϝ ¼ F
P × 100, and ϒ ¼ R

P × 100.
An identification system producing lowest MasterPrints at higher DIR and lower FAR would

become ideal for practical use in the FBS. The identification test results on each dataset involve
computing the DIR, FAR, RR, and the percentage of MasterPrints generated without setting
a predefined threshold. A cumulative matching characteristic (CMC) curve shows the rank-k
performance of an identification system, depicting the identification of the correct subject at
different ranks.52 The results from the identification test make up the data for the CMC curve.
Suppose we have k subjects enrolled with a system. Ideally, the rank-k identification rate should
be 100%. The best approach is expected to reach 100% performance at the earliest. Hence, the
CMC plots presented here show the DIR performance till rank-10.

For each combination that produced MasterPrints in the identification test, a zero MasterPrint
detection test was conducted. In this test, the system threshold was raised gradually until no
MasterPrints are observed. Suppose, τ is the threshold at which no MasterPrints were observed.
The DIR, δ0, at τ is calculated using the formula for δ. A good approach should show marginal
variation between δ and δ0. Subsequently, δ0 is divided into three intermediate thresholds to
compute DIR and FAR at each of these thresholds. The DIR and FAR at δ, δ0, and the three
intermediate thresholds provides the data to plot the watchlist receiver operating characteristic
(ROC) curve for each dataset. The curve occupying top-left region in the watchlist ROC plot is
considered robust as it shows slight variation in DIR and significant reduction in FAR as the
system threshold is increased to accept highly similar partial fingerprints.

Table 2 Nomenclature for various combinations of thresholding and thinning approaches on
different datasets. (TN1 – KMM thinning algorithm, TN2 – K3M thinning approach, TN3 – Hilditch
thinning algorithm, TN4 – Stentiford thinning algorithm).

Thresholding approach
Thinning
approach

CrossMatch
Sample DB

FVC2002
DB1_A

FVC2002
DB2_A

NIST
sd302b

NIST
sd302d

Iterative optimal thresholding TN1 1_1_1 2_1_1 3_1_1 4_1_1 5_1_1

TN2 1_1_2 2_1_2 3_1_2 4_1_2 5_1_2

TN3 1_1_3 2_1_3 3_1_3 4_1_3 5_1_3

TN4 1_1_4 2_1_4 3_1_4 4_1_4 5_1_4

Otsu’s method TN1 1_2_1 2_2_1 3_2_1 4_2_1 5_2_1

TN2 1_2_2 2_2_2 3_2_2 4_2_2 5_2_2

TN3 1_2_3 2_2_3 3_2_3 4_2_3 5_2_3

TN4 1_2_4 2_2_4 3_2_4 4_2_4 5_2_4

Niblack local thresholding TN1 1_3_1 2_3_1 3_3_1 4_3_1 5_3_1

TN2 1_3_2 2_3_2 3_3_2 4_3_2 5_3_2

TN3 1_3_3 2_3_3 3_3_3 4_3_3 5_3_3

TN4 1_3_4 2_3_4 3_3_4 4_3_4 5_3_4

Bernsen’s local image
thresholding

TN1 1_4_1 2_4_1 3_4_1 4_4_1 5_4_1

TN2 1_4_2 2_4_2 3_4_2 4_4_2 5_4_2

TN3 1_4_3 2_4_3 3_4_3 4_4_3 5_4_3

TN4 1_4_4 2_4_4 3_4_4 4_4_4 5_4_4
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6.1 Identification and Zero MasterPrint Detection Test Results

The partial fingerprint identification method with different combinations during the pre-process-
ing stage was evaluated for σ, Ϝ, σ0, ϒ, and the percentage of MasterPrints generated. The results
of each combination of thresholding and thinning approach for the identification and zero
MasterPrint detection test on CrossMatch Sample DB dataset is presented in Table 3. The highest
DIR observed here was 92.65% by 1_1_3 while producing nearly 10% MasterPrints. The com-
bination 1_2_3 generated more than 21% MasterPrints. The results of each combination of
thresholding and thinning approach for the identification and zero MasterPrint detection test
on FVC2002 DB1_A dataset is given in Table 4. Only two combinations, namely, 2_4_2 and
2_4_3 could achieve more than 90% DIR. However, 2_4_2 generated the maximum percentage
of MasterPrints during the experimentation. The results of each combination of thresholding and
thinning approach for the identification and zero MasterPrint detection test on FVC2002 DB2_A
dataset is given in Table 5. The combination 3_4_1 delivered more than 93% DIR but produced
above 16% MasterPrints. The lowest percentage of MasterPrints during the experiments was

Fig. 14 A sample fingerprint image (a) from the CrossMatch Sample DB dataset and correspond-
ing thinned images, (a1–a16), generated from various combinations of thresholding and thinning
approaches.
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Table 3 Results on CrossMatch Sample DB dataset. σ0 denotes DIR in zero MasterPrint gen-
eration test and MP represents the percentage of MasterPrints generated in identification test.

Binding approach σ (%) Ϝ (%) σ0 (%) MP (%) ϒ (%)

1_1_1 84.8 6.6 62.21 4.8 8.6

1_1_2 77.9 7.7 61.8 7.94 14.4

1_1_3 92.65 3.8 75.65 9.65 3.55

1_1_4 90.12 3.86 78.4 9.12 6.02

1_2_1 80.39 8.26 62.32 8.39 11.35

1_2_2 81.15 5.34 60.84 15.15 13.51

1_2_3 91.52 5.7 73.29 21.12 2.78

1_2_4 91.89 2.45 75.62 12.89 5.66

1_3_1 79.95 7.95 60.4 9.95 12.1

1_3_2 70.29 9.41 55.21 6.29 20.3

1_3_3 84.31 6.34 62.87 8.31 9.35

1_3_4 80.88 4.46 65.48 8.89 14.66

1_4_1 87.25 4.55 60.98 17.25 8.2

1_4_2 68.8 7.12 55.43 18.87 24.08

1_4_3 89.69 2.61 72.64 9.69 7.7

1_4_4 92.16 3.06 74.7 9.16 4.78

Table 4 Results on FVC2002 DB1_A dataset. σ0 denotes DIR in zero MasterPrint generation test
and MP represents the percentage of MasterPrints generated in identification test.

Binding approach σ (%) Ϝ (%) σ0 (%) MP (%) ϒ (%)

2_1_1 85.2 4.18 68.7 8.2 10.62

2_1_2 82.06 6.84 69.57 12.06 11.1

2_1_3 79.35 2.99 60.58 7.35 17.66

2_1_4 85.88 5.48 62.74 15.88 8.64

2_2_1 69.61 2.29 55.49 17.61 28.1

2_2_2 79.85 5.27 62.74 19.85 14.88

2_2_3 75.88 3.48 60.8 15.88 20.64

2_2_4 77.11 8.87 65.71 17.11 14.02

2_3_1 68.05 3.27 55.96 6.05 28.68

2_3_2 89.71 4.54 75.21 9.71 5.75

2_3_3 78.69 8.93 65.84 5.69 12.38

2_3_4 89.12 7.13 62.09 17.12 3.75

2_4_1 82.75 6.85 70.75 12.75 10.4

2_4_2 91.13 6.14 73.25 21.13 2.73

2_4_3 90.31 4.54 78.09 12.37 5.15

2_4_4 79.84 4.16 64.86 7.84 16
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around 8% by the combination 3_1_4. The results of each combination of thresholding and
thinning approach for the identification and zero MasterPrint detection test on NIST sd302b
dataset is given in Table 6. Here, three combinations, namely, 4_1_1, 4_2_1, and 4_4_2 achieved
above 90% DIR. However, 4_4_2 generated above 18% MasterPrints and so was ineffective
toward mitigating the MasterPrint vulnerability. The results of each combination of thresholding
and thinning approach for the identification and zero MasterPrint detection test on NIST sd302d
dataset is given in Table 7. The highest DIR observed here was 92.38% by 5_1_2 while pro-
ducing 16.81% MasterPrints. The combination 5_4_4 generated more than 23% MasterPrints.

The entries from Tables 3–7 demonstrated that the DIR ranges between 62%–93%. But the
average DIR in the Joshi et al.7 approach was 93.8%. Thus, the DIR performance of the Joshi
et al.7 method has been reduced by more than 11% on average due to varying combinations of
thresholding and thinning methods. Moreover, the DIR in the zero MasterPrint detection test was
also lowered by nearly 10% during the investigation. However, the average FAR has decreased
by only 0.6% compared with Joshi et al.7 work. The average RR also reduced by 7.16%. The
percentage of MasterPrint generated during the investigation ranges between 3.82%–23.45%,
whereas for the Joshi et al.7 method, the range lies within 0.1%–2.03%. The analysis on the
percentage of MasterPrints generated showed that the investigation witnessed a 14 times increase
in the MasterPrints, whereas the average percentage of MasterPrints generated for the experi-
ments was more than 11% compared to the original paper. These statistics thus demonstrated that
the accuracy and MasterPrint mitigation performance of the Joshi et al.7 method had notably
reduced when utilizing different pre-processing schemes. The entries for σ, ϝ, σ0, ϒ, and the
percentage of MasterPrints generated during the investigations ranges between 62.01% and
93.32%, 1.83% and 9.41%, 50.2% and 80.9%, 1.43% and 36.16%, and 3.82% and 23.45%,
respectively. Thus, the results from Tables 3–7 for identification and zero MasterPrint detection
test appear diversely distributed for each of the five parameters under consideration. Therefore,
no binding approach have shown remarkable variations invariably on several datasets. Hence,
these performance measures do not form a concrete base to attribute any pair, specific thresh-
olding or thinning method as preferable over others for fingerprint recognition.

Table 5 Results on FVC2002 DB2_A dataset. σ0 denotes DIR in zero MasterPrint generation test
and MP represents the percentage of MasterPrints generated in identification test.

Binding approach σ (%) ϝ (%) σ0 (%) MP (%) ϒ (%)

3_1_1 81.26 4.06 75.21 9.26 14.68

3_1_2 81.8 7.41 78.95 10.31 10.79

3_1_3 85.29 7.21 74 8.29 7.5

3_1_4 85.05 7.28 62.54 8.05 7.67

3_2_1 88.53 2.73 60.27 11.53 8.74

3_2_2 67.33 5.22 51.06 12.5 27.45

3_2_3 85.05 7.29 71.98 15.05 7.66

3_2_4 84.31 6.53 62.7 14.31 9.16

3_3_1 92.16 3.2 80.29 12.16 4.64

3_3_2 91.79 5.54 76.32 17.79 2.67

3_3_3 70.51 7.18 62.98 19.51 22.31

3_3_4 79.26 8.95 59.21 9.26 11.79

3_4_1 93.32 3.94 80.9 16.32 2.75

3_4_2 79.51 7.19 60.77 19.51 13.3

3_4_3 91.67 4.81 74 11.67 3.52

3_4_4 89.3 6.03 65.74 9.3 4.67
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Table 6 Results on NIST SD sd302b dataset. σ0 denotes DIR in zero MasterPrint generation
test and MP represents the percentage of MasterPrints generated in identification test.

Binding approach σ (%) ϝ (%) σ0 (%) MP (%) ϒ (%)

4_1_1 92.85 3.37 74.65 4.85 3.78

4_1_2 85.75 3.65 60.9 9.75 10.6

4_1_3 65.2 4.07 52.49 15.2 30.73

4_1_4 62.01 2.94 49.65 6.01 35.05

4_2_1 91.1 5.11 79.58 9.1 3.79

4_2_2 81.75 6.61 67.25 13.75 11.64

4_2_3 62.01 1.83 50.2 12.01 36.16

4_2_4 62.25 3.08 52.36 12.25 34.67

4_3_1 74.57 7.41 56.8 11.57 18.02

4_3_2 74.02 8.53 65.21 22.02 17.45

4_3_3 84.8 6.88 72.95 8.8 8.32

4_3_4 88.97 6.33 76.32 18.97 4.7

4_4_1 81.52 8.97 74.68 15.53 9.51

4_4_2 90.28 6.29 78.98 18.28 3.43

4_4_3 78.19 6.83 62.4 17.19 14.98

4_4_4 83.33 6.26 60.35 13.39 10.41

Table 7 Results on NIST SD302d dataset. σ0 denotes DIR in zero MasterPrint generation
test and MP represents the percentage of MasterPrints generated in identification test.

Binding approach σ (%) ϝ (%) σ0 (%) MP (%) ϒ (%)

5_1_1 82.17 6.07 70.25 12.11 11.76

5_1_2 92.38 6.19 79.28 16.81 1.43

5_1_3 73.82 2.12 62.47 3.82 24.06

5_1_4 67.91 2.31 51.64 7.96 29.78

5_2_1 82.35 7.3 69.4 8.35 10.35

5_2_2 83.06 8.21 67.24 9.06 8.73

5_2_3 67.01 2.32 50.85 7.01 30.67

5_2_4 88.58 6.54 69.4 8.97 4.88

5_3_1 85.78 7.2 60.36 15.78 7.02

5_3_2 87.09 5.45 65.32 17.05 7.46

5_3_3 83.63 7.02 59.21 13.63 9.35

5_3_4 71.96 3.55 57.39 11.96 24.49

5_4_1 72.55 8.37 60.9 17.55 19.08

5_4_2 91.1 5.22 78.35 15.12 3.68

5_4_3 84.17 5.67 68.21 14.85 10.16

5_4_4 73.43 8.09 64.85 23.45 18.48
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6.2 CMC and Watchlist ROC Curve Performance

The CMC andWatchlist ROC curves for each pre-processing combination on an individual data-
set are depicted on the left and right portion of Figs. 15–19, respectively. The highest and average
rank-10 DIR achieved during the investigation was 98.6% and 87.35%, respectively. The plots
also demonstrated that the DIR did not improve beyond rank-3. However, Joshi et al.7 method
achieved 100% DIR on each dataset till rank-2. In the case of Watchlist ROC plots, ideally, the
curves are expected to deviate marginally for DIR and show significant variations on FAR. But
the plots from Figs. 15–19 demonstrated that the identification rate reduced considerably com-
pared to FAR. Moreover, the average DIR in zero MasterPrint generation test, σ0, has reduced
from 76.14% in the Joshi et al.7 work to 65.96% during the investigations. Thus, delivered a
degraded accuracy of more than 10%. The plots thus showed that the average identification
accuracy was reduced by more than 12% when diverse combinations of pre-processing methods
were employed in Joshi et al.7 work. However, it is still infeasible to label any single thresholding

(a) (b)

Fig. 15 CMC plot (a) and Watchlist ROC plot (b) for CrossMatch Sample DB dataset.

(a) (b)

Fig. 16 CMC plot (a) and Watchlist ROC plot (b) for FVC2002 DB1_A dataset.
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or thinning method, or their specific combination as more suitable for fingerprint recognition due
to their inconsistent performance in CMC and Watchlist ROC plots.

7 Discussion

The investigation illustrated that the partial fingerprint identification and MasterPrint mitigation
method presented by Joshi et al.7 delivered low performance on crucial parameters when a vari-
ety of thresholding and thinning methods were employed in place of the adaptive thresholding
approach8 and Zhang–Suen thinning algorithm9 employed in Joshi et al.7 work. The combination
of Bernsen’s local image thresholding and K3M thinning algorithm produced above 90% DIR
on three datasets, namely, DB1_A, NIST sd302b, and sd302d. But the approach generated more
than 15% MasterPrints during the same experiment. Another binding of Bernsen’s local image

(a) (b)

Fig. 17 CMC plot (a) and Watchlist ROC plot (b) for FVC2002 DB2_A dataset.

(a) (b)

Fig. 18 CMC plot (a) and Watchlist ROC plot (b) for NIST sd302b dataset.
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thresholding and Hilditch thinning algorithm delivered greater than 90% DIR on FVC datasets
while generating more than 11% MasterPrints. Thus, the DIR and the percentage of MasterPrint
generated by various pre-processing combinations on five benchmark datasets showed that no
pairing has consistently performed better over the other methods. Moreover, the entries from
Tables 3–7 also confirmed that it is infeasible to suggest specific thresholding or thinning method
as appropriate for partial fingerprint identification when experimented with given datasets.
Precise thresholding and thinning of fingerprint ridges are the driving factors for accurate minu-
tiae detection. The literature on image processing includes several approaches for thresholding
and thinning grayscale images. All the thinning and thresholding approaches from the literature
are incompatible for high-security applications like anonymous user identification through a
fingerprint. Conclusively, the results confirmed that high-security applications and user identi-
fication systems employing biometric traits of an individual are greatly influenced by the choices
made in the pre-processing stage.

Jabeen and Khan53 proposed a hybrid algorithm for false minutiae and boundary elimination.
The algorithm removes false minutiae from a thinned fingerprint image arising due to bridges,
spikes, and ridge breaks. Xiao and Raafat54 presented a false minutiae detection and elimination
method. The authors represented false minutiae using structural and statistical approaches. Kim
et al.50 method for false minutiae removal employed in the experimentation, and other similar
approaches utilise thinned images for false minutiae detection and elimination. Hence, an inap-
propriate binarized and thinned fingerprint image is the agent behind the improper functioning of
any false minutiae removal scheme.

Although there is no lower bound on the count of minutiae matched to decide if the
fingerprints are matched, some legal procedures accept at least an 8 to 17 minutiae match
for evidence.55 An average minutiae density on a 500 dpi fingerprint is estimated to be
0.246 minutiae∕mm2.56 Such statistics should be employed to confirm that accurate minutiae
detection and matching was carried out by a novel method proposed in future involving thresh-
olding and thinning methods in the pre-processing phase. A robust novel fingerprint identifi-
cation method should be experimented with fingerprint datasets employing diverse sensor types.
A fingerprint identification system can generate MasterPrints if the fingerprint pre-processing
approaches are not precisely tested on several datasets using different sensors.

The first method addressing the MasterPrint vulnerability for partial fingerprint identification
was published by Joshi et al.7 A thorough search of the relevant literature on thresholding and
thinning of fingerprint images yielded no prior work that experimented with diverse combina-
tions in the pre-processing stage to study the impact on the identification accuracy, and the

(a) (b)

Fig. 19 CMC plot (a) and Watchlist ROC plot (b) for NIST sd302d dataset.
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percentage of MasterPrint generated using a partial fingerprint identification method. The work
in this paper is a maiden attempt to demonstrate that every image pre-processing approach might
not be suitable for a high-security person identification using partial fingerprints. Thus the work
initiates the requirement of image pre-processing methods extensively tested on fingerprint
datasets from diverse sensors.

As future scope of this work, we will study the feasibility of robust partial fingerprint
identification and MasterPrint mitigation method for poor quality latent fingerprints and utilize
multiple pre-processing schemes to prove its practicability. As experimental results showed that
pre-processing methods highly affect an identification system’s accuracy, the initial goal will be
to experiment with different pre-processing and false minutiae removal approaches on poor
quality partial and latent fingerprint datasets acquired using dissimilar sensor types.

8 Conclusion

The MasterPrint vulnerability makes a partial fingerprint identification system susceptible to
presentation attacks. This paper presented an investigation using sixteen combinations of thresh-
olding and thinning methods on a partial fingerprint identification system to study their impact
on identification accuracy and the percentage of MasterPrints generated. The results demon-
strated that the existing partial fingerprint identification and MasterPrint mitigation approach
performed unsatisfactorily when diverse combinations of thresholding and thinning methods
were employed during the pre-processing stage. The investigation showed that existing thresh-
olding and thinning methods are incompatible for minutiae-based fingerprint identification sys-
tems. The results also confirmed that average minutiae density is a preferable measure compared
to the average minutiae count for feature extraction from the fingerprint image. Furthermore, the
investigations demonstrated that the system performance can be barely improved by using false
minutiae removal methods if the underlying thresholding and thinning approaches does not pro-
duce thinned images that retains the ridge patterns and ridge connectivity from the original gray-
scale fingerprint images. Thus, the work in this paper instigates the requirement of rigorously
tested pre-processing methods suitable for fingerprint images.
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