Retraction Notice

The Editor-in-Chief and the publisher have retracted this article, which was sub-
mitted as part of a guest-edited special section. An investigation uncovered evi-
dence of compromised peer review and determined the paper is out of the scope
of the journal. The Editor and publisher no longer have confidence in the results
and conclusions of the article.

MS disagrees with the retraction. SD either did not respond or could not be
reached.



DeepFNN-DTBA: prediction of drug-target binding
affinity via feed-forward neural network on
drug-protein sequences

Moolchand Sharma®©* and Suman Deswal
Deenbandhu Chhotu Ram University of Science and Technology,
Haryana, India

artificial intelligence and machine learning have become popular. ) ging also pro-
vides significant amounts of anatomical, functional, and molegula atign, accelerating
drug discovery and development. Imaging technologies help lise@se, mechanisms
find new pharmacological targets and evaluate new drug candid 1 they work
In this research, we developed a model based on di i OyS sequence

information for targets and medicines to ascertain bin
neural network (FNN)-DT binding affinity. Existing ediction of binding
affinity of DTs either employ three-dimensional structures in4ligand complexes or
i ifi this research: a dense
. These findings sup-
ity in DTIs, which use 1D

network with dropouts were used to show the prot
port the proposed DL-based approach for predic
representations of targets and medicines. In one sets, the proposed FNNs
outperformed the Kronecker regularized least squ ting machines, deep drug
target affinity algorithm, wide drug-target affini i ed convolutional neural net-
work model techniques with a 0.89 concord .235 mean square error. © 2022 SPIE
and IS&T [DOI: 10.1117/1.JEL.32.5.052304]
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1 Introduction

ety is an emerging field of study because it is important for
utics and the identification of new drug candidates.'~
ceptors, enzymes, etc., present in human cells that inter-
Phenotypic changes are created by the drug’s effect on
acologica s, The DTIs must be understood by the pharmaceutical
n.” Hence, new target proteins are uncovered with the help of molecular

i earch. Sometimes drugs target incomplete proteins. In recent years,
een drugs and their targets has been done using experimental
DA-approved drug candidates have satisfactory activity because of toxicity.'
¢ is time-consuming and expensive.'' To discover DTIs, new computational tech-
ired.

Drug-target interactio
the creation of prote

based strategies have been used to identify DTs.!? Techniques that leverage

ligand similarity are'@sed to arrange the pharmacological properties and relationships between
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target proteins. Keiser et al.'* devised an approach to discover protein targets using chemical
two-dimensional (2D) structural similarities. Protein domain information is not used in this
method. The quality and integrity of target structure information are critical to target-based
techniques.'*!> The use of molecular docking and scoring functions is necessary for making
predictions about DTIs. Molecular docking predicts the best way fo icand to attach to a
receptor to make a stable complex. A scoring function shows this compl¢ ffinity. Docking
methods cannot be used on protein targets with three-dimensional (3D)
unknown. The ligand-based and target-based prediction methods use simil
of the ligand and the stereo structure of the target to predict the relations
and the target.

Even though new therapeutic targets and ligands are being found, i

it easier to find treatments for the disorders being investigated.
challenge, DTT prediction algorithms can be classified into two §
used to determine if a medicine interacts with a targ otéi
dictions about the strength of DT binding using regre

Affinity values for how well a protein binds to a li

a drug interacts with its target (DT). Low IC50 val
a robust binding affinity. Dissociation and inhibit
logarithms, pK, or pK;, are commonly used to e
data for DTI prediction research based on binary cat
(nonbinding) information is uncommon. Negative
DT pairings are unknown. System accuracgy is
samples that impair prediction systems. i g affinity scores instead of synthetic neg-
ative samples in DT prediction provide i sets and eliminates the need for
artificial negative samples.

The deep drug target affinity (
improved in this study. We traine
(1D) representations) to estimate
acteristics or 3D structu f bi
input line entry system (
protein sequences were f
encoder. From there, a feed-forw twork (FNN) was trained on the representations.
This dataset'” was utilizeddoste
other models, such a
model,'® wide drug-te

g binding. A low K; means
pressed by their negative
f K, and K,.'® Collecting
llenging because negative
ples are those in which the

g affinities. In place of the exterior char-
lexes, protein sequences and simplified molecular
s of compounds are used. SMILES strings and

arity-based convolutional neural network (CNN)
deDTA),” gradient boosting machines (SimBoost),”! and
onRLS).”> Two different blocks are used to represent
rther concatenated and then entered into a thick and
outperforms the other techniques listed above on the
U >sted model obtains the lowest mean squared error (MSE).
he paper’s primary contributions.

dinding affinity (DTBA) DTA prediction model using an FNN is
o determine the binding affinity.

el performs best against the existing five state-of-the-art methods with a CI score
nd an MSE of 0.234.

ast optimal model with the most optimal encoding approaches for DT bind-
ch can be groundbreaking in the development of novel drugs.

* Advising
ing affinities, v

After an introductory section, the study is divided into three sections: a literature review
in Sec. 2, a description of the current setup in Sec. 3, and the results of the research in
Sec. 4. The next consists of datasets, evaluation parameters, and experimental setup. The

Journal of Electronic Imaging 052304-2 Sep/Oct 2023 « Vol. 32(5)



Sharma and Deswal: DeepFNN-DTBA: prediction of drug-target binding affinity via feed-forward neural. ..

other section includes the experiments and results, followed by a discussion and a list of
sources cited.

2 Literature Review

The effectiveness of a candidate ligand in the early stages of drug discove
target is based on its affinity (e.g., a protein). There are ~10% synthetically 2
ecules. Exploring this space is computationally infeasible. In spite of th
explosion draws attention to a major challenge in drug discovery: how t¢
affinity of a large number of small molecules. There is a significant tra
money, and precision in both experimental and computational drug screent
pharmaceutical industry, ML is used to improve both the virtual diug
based evaluations of small compounds. Over the past decade, d highly effective
in several Al research areas. The study of artificial neural netwo
ment of this method because they have been proven to be superi
various fields, including those of image and speec
processing. In the last several years, DL has finally
research. The ability to foretell a compound’s bioactivi ticial component
of modern drug discovery.* Over the past two decades, een a tremendous rise in the
amount of compound activity and biological data t imental techniques
including high-throughput screening (HTS),** “p ers.”® There are new
approaches for developing quantitative structure-a (QSAR) models, such as
matrix factorization’” and DL, that have been ar e but have recently been
employed. DL has taken advantage of the ever-incr: data and the ever-growing
computing capacity. The versatility of the NN archit i ts it apart from most other

i d CNNs will be explored in
this course. In QSAR modeling, single-lay, been utilized for a long time. Still, as data
ed-forward networks have become a
ch as matrix factorization and DL,
ector machines (SVMs), neural net-
the ever-increasing processing power

or a therapeutic

logical choice for predicting bioactivity.
are used alongside established met
works, and random forests (RFs).%’
of computers have benefitted D

Multilayer feed-forward ne
have been used for a long ti
ing power keeps growing. CNNs

oice for predicting bioactivity because they
and because the amount of data and comput-
llent choice for processing biological images

because they use high- hnology. CNNs have gained significant success
in the field of computg use of DL in drug discovery is advancing quickly, with new
papers being publis i€ almost weekly. Dahl et al.*® used a large number of 2D
topologic : ck Kaggle challenge dataset. The deep neural network

andle tens of thousands of descriptors without feature selec-
avoid the overfitting problem that plagues traditional ANNSs; (3) hyper-
ber of nodes per layer, type of activation functions, etc.) opti-
mize DNN performance; and (4) DNN models that execute many tasks out-
at perform a single task.>>*” Mayr et al.>! found that multitask DNN models won
enge on a dataset of 12,000 compounds for 12 high throughput toxicity experi-
ments. Training e model was done in parallel on GPU processors, the same as Dahl’s
design.?®3? The D pcluded a dropout network and a rectified linear unit (ReLU) activation
function. During training, they used an extensive feature set containing static descriptors (3D, 2D
descriptors, and predefined toxicophores) and dynamically produced extended connectivity fin-
ger-print (ECFP) descriptors to make DNN self-feature deduction easier. In each hidden layer, a
statistical association analysis using only ECFP was carried out for DNN models, allowing the
discovery of substructures closely associated with well-known toxicophores. A single-task DNN
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Table 1 Comparison of existing approaches on the benchmark DAVIS dataset.

DAVIS dataset Encoding technique

Author, year and
references Model used MSE and Cl (concordance index)

Protein-drug

Ozturk et al.'® DeepDTA 0.420 and 0.886 S-W- CNN
Ozturk et. al.'® DeepDTA 0.261 and 0.878
Ozturk et. al.'® DeepDTA 0.419 and 0.835
Ozturk et. al.™® DeepDTA 0.608 and 0.790
Shim et al."® SimCNN-DTA 0.3190 and 0.8501
Oztiirk et al.?° WideDTA 0.262 and 0.886

He et. al.?! SIMBOOST 0.282 and 0.872 S-W-PS
Pahikkala et. al.?? KronRLS 0.37%and 0,871

Abbasi et al.®® DeepCDA 96

Note: S-W: Smith-Waterman, PS-Pubchem Sim,

and more traditional ML approaches were outpe N that can perform several
tasks at the same time.

In a comprehensive study, Ramsundar et al stematic development of
multitasking DNNs and the effectiveness of single- Is. Multitask models con-

33

against other well-known ML methods, s RFs, and many more, on seven datasets
selected from ChEMBL by Koutsoukas gt al. ML, DNN outperformed them all. A
comparative analysis of existing approac bleencoding models for each method is
shown in Table 1.

Table 1 displays standard data
shown that current techniques, i

oteins (DAVIS datasets). It has been
niques, used by expert systems for

In the current framework i re that is often used, is used. CNN is built with
i ~'The pooling layer is used to reduce the number of
more general. Some layers are FC in the model. CNN
endencies using filters. The number and size of filters
ire new knowledge. The model’s pattern-finding prow-
set.'® To learn about the relationship between SMILES
N blocks were used. Each CNN block comprises three
yers with filters that get progressively better. In the second and third con-
om the first layer were doubled and then tripled. After the convolu-

samples and make t
models can take into
in a CNN are crucial
ess imp ith the

4 Methodology

This section consists of the proposed architecture followed by datasets and methods used for
evaluation against the different state-of-the-art methods.
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Fig. 1 Existing model with ILES and protein sequences.'®

4.1 Proposed Mode

We used a regression analy igand interactions to estimate protein—ligand
ead of CNNss to form the basis for our predictive

model. The connection N do not create a cycle in an ANN. Thus, inputs

that can be found. I : ove in a single direction and never backward despite
passing through mult C Figure 2 shows the architecture of an FNN.

Hidden

Outputs

Fig. 2 Architecture of FNN.
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Fig. 3 DeepFNN-DTBA affinity prediction.

To learn representations from 0 d protein sequences, our proposed
approach, DeepFNN-DTBA, em, ESPF encoding technique. The dense neural network’s
final input dimension flattening and concatenating the data from both
encoders (none, 6700). rate of 0.2 follows the first dense layer with
2048 neurons. To avoid ove egularization approach in which certain neu-

rd dense layer. 1024 neurons made up the fourth
dense layer, followed dyer of 0.01. There are 512 neurons in the last dense layer
and another dropout

proposed model.

ing on a regression problem, we chose MSE as the loss func-
ector and f/ is the vector of actual outputs. The sample size is

n

1 !
MSE = (fi = f1)’. O

i=1
The learning process was finished within 200 epochs, and a mini-batch size of 32 was utilized

to update the network’s weights. Adam was the optimization technique used in the training of the
networks, and the default learning rate was 0.001. For the Davis data set, the input dimensional
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Table 2 Parameter settings for DeepFNN-DTBA prediction.

Kayer (type) Output shape Parameters Connected to

input_1 (InputLayer) (None, 2586) 0

input_2 (InputLayer) (None, 4114) 0
Concatenate (concatenate) (None, 6700) 0
Dense (dense) (None, 2048) 13,723,648
Dropout (Dropout) (None, 2048) 0
dense_1 (Dense) (None, 1024) 2,098,176
batch_normalization (None, 1024) 4096

(BatchNormalization)

dense_2 (Dense) (None, 1024) alization [0] [0]

dropout_1 (Dropout) (None, 1024) ense_2 [0] [0]
dense_3 (Dense) (None, 512) dropout_1 [0] [0]
dropout_2 (Dropout) (None, 512) dense_3 [0] [0]
dense_4 (Dense) (None, 1) dropout_2 [0] [0]

Total parameters: 17,400,833.
Trainable parameters: 17,398,785.
Nontrainable parameters: 2048.

Interactions
Davis (Ky) 30,056
matrix for the drug is (3005 t is (30056, 4114). Therefore, each of the test
findings in Table 4 employed the cture summarized in Table 2 to make the com-

4.2 Dataset

Our proposed model ing the Kinase dataset Davis,'” which had previously been
ting the DTBA prediction models. The Davis dataset
ctivity experiments and relevant inhibitors’ K, values.
orty-two proteins and 688 ligands are involved. Table 3 is a summary of

the'standard value is K; in nM. We used the values transformed into
to a prior source’’ as explained in the following equation:

pky < —log 10(%). 2)

The left panel of Fig. 4(a) shows how the binding affinity values are spread out in a pK,
form. More than half of the data (20,931 out of 30,056) is taken up by the peak at pK,; value
5(10,000 nM). So, pairs like these have weak binding affinities (K; > 10,000 nM) and are not

found in primary screening,?> making them “true negatives.” The PubChem compound identifier
were used to get the compound SMILES strings from the PubChem compound database for the
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Fig. 4 Davis datasets are summarized in the left a
tribution, (b) the SMILES string length distribution, a

Davis dataset.*® Figure 4(b) shows the length'd on of SMILES strings for the Davis com-
pounds. SMILES compounds can be 10
retrieved from UniProt using gene names/}
sequence lengths. The maximum pr
is 788.

An integer/label encoding wa ¢ gories in the inputs. For both represen-
tations, the encoding techni sed is ESPF. To figure out which functional groups of
drugs cause a certain pro oding method that breaks drugs and proteins into a
discrete set of medium-siz ized to the data that we have and that have
good predictive values. ES te pair encoding algorithm and the subword
units® in natural language process ase of sequences of entities is fed into ESPF
(e.g., the amino acid seq d SMILES for the drug). This database identifies
and substitutes the ori ce (word) in a database with the most likely combination of
subsequences (subwa dutput is the subsequences vocabulary set and their frequen-

umbers. Figure 4(c) illustrates protein
is 2549 characters, and the average

s sequence can then be turned into a bit vector in which
e discovered subsequences set.

utputs a suitably-sized substructure ordered partition. It success-
tial functional groups for drugs and motifs for proteins. The suitably-sized
a tractable path to see which substructures contribute to ML
and protein sequences were capped at 85 and 1200 bytes, respec-
avis could create an effective representation form. Proteins might have up to 1000
eir sequences, whereas SMILES were limited to 100. We selected these extreme
ast 80% of proteins and 90% of compounds based on the trends in Figs. 4(b)
ences are padded with zeros, and longer ones are trimmed.

lengths to cove
and 4(c). Shorter

4.3 Performance Evaluation Parameters

DTIs are not binary. Therefore, the CI is used to make predictions about the model’s accuracy.
Furthermore, the order of predictions for randomly selected drug target pairings is represented
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formally by the correlation coefficient.”> This indicates that the y; prediction for the more
significant affinity value is higher than that for f;, the less significant y;, as demonstrated in
the following equation:

Cr=- S hfi- 1),

Yi>yj

The step function is denoted by 4(u), which provides the values 1.0, O
on whether u is greater than or equal to 0. These values are set as u
respectively. Z is a normalization constant equal to the number of data pa
the label that are distinct from one another. The concordance index values ca
1.0, as shown in equation 4, with 0.5 indicating a random predic

function is given as

1, ifu>0

h(u) =< 0.5, if “
0, ifu
Another metric used and explained in Sec. 4.1 is

4.4 Experimental Setup
As can be seen in Table 2, the learned parameter: in the model, which then
provided a more accurate performance measure on th est set. We have done pre-
processing with the DeepPurpose package orflow. Our tests were con-
ducted on a Windows 11 machine equipg
at 2.3 GHz and an NVIDIA GeForce RT i ard (4 GB). Using GPUs in tandem

with cuDNN allowed the task to be don

ing representations for medications and targets

based on their sequences. an FNN combining dense and dropout layers

to learn drug and target repr . WideDTA, the similarity-based CNN model,

comparative analysis techniques that take input
similarity matrices for pre . These techniques were used to establish a base-
line for further exami pproaches mentioned above used the Smith-Waterman (S-W),
Pubchem Sim (PS), a yorithins to compute the pairwise similarities of the proteins and
ligands. After that, bdel by feeding ESPF and ESPF as encoding strategies

into our FND e performed. In the CNN DeepDTA model, the amount of

ce'the beginning of one epoch was just 4 s. As a result, we also
e of 0.895 for the CI and a score of 0.234 for the MSE. Table 4 present the
fined from the independent test set for each of the five models
g the parameters given in Table 2. The comparison analysis with
the-art models is depicted in Fig. 5, along with the proposed model.

ae proposed model, the combination of dense and dropout layers worked success-
fully to find t ding nature between the drug and its target. The dense layer is the layer that is
most deeply relate he layer that comes before it, and it is responsible for working to change
the dimension of the output by performing matrix-vector multiplication. The dropout layer is a
mask that, when applied, prevents specific neurons from contributing information to the layer
below it while leaving all other neurons unaltered. We can use a dropout layer in the input vector
to nullify some of the features of the input vector. Alternatively, we can apply it to a hidden layer,
which will nullify some of the neurons buried behind the hidden layer. Dropout layers are
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Table 4 The average Cl and MSE scores for the Davis dataset with the existing
and proposed models.

Models Proteins Compounds Cl and MSE

DeepDTA™® S-W CNN 0.886

DeepDTA'® CNN CNN

DeepDTA™ CNN PS
0.
DeepDTA'™® S-W 9
SiImCNN-DTA'® S-W S- 5
0.319
WideDTA® P 0.886
0.262
P 0.872
0.282
0.871

SimBoost?'
KronRLS??
0.379
DeepCDA® S- PS 0.839
0.459
Proposed DeepFNN-DTBA ES ESPF 0.895
0.234
PS-Pubc im, and PDM-Protein Domains and Motifs.

0.85 0886 0872 0871 (g3qg 0895

M Concordance index (Cl) B Mean square error (MSE)

Fig. 5 Comparative analysis with the state-of-the-art models showing Cl score and MSE score.
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1"

Actual values

Predicted values

Fig. 6 Comparison between predicted and actua

significant in training because they prevent the training odel. To better
trust the model’s anticipated values, we compare them tual measurements of affinity
acquired from the DAVIS datasets. Figure 6 shows that i jonship between the
projected ESPF-ESPF target affinity score and the target affinity score
from the Davis dataset. This is why we count on th ictiye model to yield estimates (p)
that are just as precise as the true values (y). i around the x =y line in
Fig. 6 indicates that our model performs far bette

To circumvent the computational impossibility of i tire molecular space (10%°)
for drug repurposing, we can use DL mode 2 space or explore the space.

in areas such as target prediction
tion. Undoubtedly, clinical labo-
ethods, and molecular space can be

success of drug repositioning. Due to its
and drug repositioning, DL has recently
ratories will save time and money
reduced.

This study aimed to provid accurately predict whether or not a drug will
successfully attach to a target prots ining both sequences. The FNNs are used in affin-
ity prediction tasks based @md tein sequence representations. The Davis kinase
drug datasets are utili 1mulat10n process. Therefore, the performance of the FNN
model on the Davis S antly improved, and the combination of the dense layer

Iready in use. As the datasets grow, this information’s
I score went from 0.886 to 0.895, which is a substantial
vent from 0.261 to 0.234, which is a significant decrease.
DL archltecture it is possible to find hidden or embedded information more

targeted because @ development focuses on a small group of proteins or because they cannot
be drugged. Our research is focused on finding the best way to train a deep-learning model to
identify potential therapeutic targets. Successful models can be used directly in the evaluation
process or alternative hyperparameter combinations can be tried. Predicting drug-target affinities
using a trustworthy hybrid model is equally challenging. The optimal values for a model’s hyper-
parameters can be found with the help of a bioinspired algorithm, which can then be used in the

Journal of Electronic Imaging 052304-11 Sep/Oct 2023 « Vol. 32(5)



Sharma and Deswal: DeepFNN-DTBA: prediction of drug-target binding affinity via feed-forward neural. ..

model’s development and refinement. Imaging also plays an important role in the research and
discovery of drugs by giving data that may be used to locate prospective drug targets or monitor
the effects of drugs already in use. The current state-of-the-art in this field is constantly improv-
ing and becoming more refined and powerful.
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