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ABSTRACT. Purpose: Random matrix theory (RMT) is an increasingly useful tool for under-
standing large, complex systems. Prior studies have examined functional mag-
netic resonance imaging (fMRI) scans using tools from RMT, with some success.
However, RMT computations are highly sensitive to a number of analytic choices,
and the robustness of findings involving RMT remains in question. We systemati-
cally investigate the usefulness of RMT on a wide variety of fMRI datasets using
a rigorous predictive framework.

Approach: We develop open-source software to efficiently compute RMT features
from fMRI images and examine the cross-validated predictive potential of eigen-
value and RMT-based features (“eigenfeatures”) with classic machine-learning
classifiers. We systematically vary pre-processing extent, normalization procedures,
RMT unfolding procedures, and feature selection and compare the impact of these
analytic choices on the distributions of cross-validated prediction performance for
each combination of dataset binary classification task, classifier, and feature. To
deal with class imbalance, we use the area under the receiver operating character-
istic curve (AUROC) as the main performance metric.

Results: Across all classification tasks and analytic choices, we find RMT- and
eigenvalue-based “eigenfeatures” to have predictive utility more often than not
(82.4% of median AUROCs > 0.5; median AUROC range across classification tasks
0.47 to 0.64). Simple baseline reductions on source timeseries, by contrast, were
less useful (58.8% of median AUROCs > 0.5, median AUROC range across clas-
sification tasks 0.42 to 0.62). Additionally, eigenfeature AUROC distributions were
overall more right-tailed than baseline features, suggesting greater predictive poten-
tial. However, performance distributions were wide and often significantly affected
by analytic choices.

Conclusions: Eigenfeatures clearly have potential for understanding fMRI func-
tional connectivity in a wide variety of scenarios. The utility of these features is
strongly dependent on analytic decisions, suggesting caution when interpreting
past and future studies applying RMT to fMRI. However, our study demonstrates
that the inclusion of RMT statistics in fMRI investigations could improve prediction
performances across a wide variety of phenomena.
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1 Introduction
Though first developed to describe the fluctuation of nuclei energy levels in quantum physics,1,2

Random matrix theory (RMT) has been shown to have extremely broad potential. In small-scale
physical systems, RMT universalities have been observed in quantum chaotic systems, complex
nuclei, atoms, molecules and disordered mesoscopic systems;1–7 at larger scales, RMT has been
applied to atmospheric physics,8 stock cross-correlations,9 social networks,10 random networks,11

network-formation in liquids,12,13 and amorphous clusters.14–16 Within biological systems, RMT
has also been used to successfully model aspects of amino acid functional relationships,17

synchrony in epileptic seizures,18 and in protein–protein interactions both in different species19

and breast cancer.20 RMT has also been used to guide statistical decisions in principal compo-
nents analyses21–23 and, more recently, has provided insights into the behaviors of deep neural
networks.24,25

At its most rudimentary, RMT describes the expected behavior of the eigenvalues—also
often called the spectra or levels—of a number of classes of random matrices.1,26,27 A random
matrix is a matrix where each entry is a random variable. Typically, each random variable is
independent and identically distributed (iid), however, modern extensions allow for some
dependence.28 A class or ensemble of random matrices can be defined by the type of iid
distribution involved. For example, the Gaussian orthogonal ensemble (GOE1,2) is a “class” or
“ensemble” of random matrices that comprises orthogonal matrices with each entry being
sampled from a standard Gaussian, and the Marchenko–Pastur distribution describes the limiting
behavior of the singular values of iid rectangular random matrices where the iid distribution is
arbitrary.1 RMT often finds that in the infinite limit, the expected eigenvalue distribution of a
number of classes of random matrices can be described quite precisely.1,26,27

Of course, given a particular non-random matrix or instantiation of a random matrix, one
can, in general, only estimate the likelihood that it is a member of a certain class or ensemble
since certain RMT ensembles (such as the GOE) can yield arbitrary matrices with extremely low
probability. Thus RMT also includes statistical measures (“spectral observables”) and tools to
help compare empirical observations to theory.1,2

When or if RMT has real-world explanatory potential, this will most likely be when dealing
with a complex system of many (hundreds or more1) interacting components, rather than a sys-
tem that is too small for statistical regularities to reliably surface. If such a system has a matrix
representation, and the eigenvalues and spectral observables of this representation have distri-
butions similar to those predicted by RMT, it suggests that the system is either highly random or
chaotic. By contrast, if the observed spectra deviate significantly from RMT-predicted spectra,
this suggests otherwise. A number of studies have used RMT to make such interpretations and
comparisons between systems.8,10,11,19,20,29–32

1.1 RMT and Neurobiological Signals
In the human brain, each neuron, collection of neurons, or region of interest (ROI) is a potentially
interacting component in a complex system. RMTmay have potential in describing the totality of
these interactions, provided that measurements of functioning can be obtained with sufficient
spatial and temporal resolution to speak to some neurobiological or neuropsychological phe-
nomenon of interest.

For an imaging modality like functional magnetic resonance imaging (fMRI), where
changes in the blood-oxygenation-level-dependent (BOLD) signals are related to neural activity,
RMT may be an ideal starting point, as each voxel time course (or collection of such time
sources, i.e., ROIs) can be considered an interacting component of the system. Likewise, in func-
tional connectivity analyses, statistical relationships of the BOLD ROI time courses are inves-
tigated in the hope of gaining insights into brain function (see Refs. 33 and 34 for reviews, but
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also Refs. 35 and 36 for challenges facing functional connectivity analyses). In this framework,
each connection or correlation can be considered a system component, and the eigenvalues of
such a correlation matrix can be examined from the perspective of RMT.

The earliest study taking this approach demonstrated that spectra of the correlations between
electroencephalographic signals closely resemble those of the GOE.29 In fMRI, RMT has been
used to evaluate the quality of whole brain features extracted from fMRI data,37,38 and in
diffusion MRI to aid in the selection of the number of components to employ in principal-
component reduction analysis and denoising.22,23,38

RMT has also been used in ROI-based fMRI functional connectivity studies to investigate
differences between rest and task states,30 between subjects with and without attention-deficit
hyperactive disorder (ADHD),31 between pain and non-pain states,32 and between left-sided
versus right-sided motor imagery.39 Although no differences were found in the latter study,
across the first three studies, the spectra of resting or low-attention states exhibited properties
close to the GOE. These findings suggest that certain aspects of psychological processes
might be characterized, in part, by features computed from the eigenvalues of fMRI correlation
matrices, and that these features might vary in an interpretable manner across psychological
processes. If this is the case, RMT could aid in understanding the functioning of the human
brain.

1.2 Eigenvalue Features
The basic insight of RMT is thus that eigenvalues alone may provide interesting information
about highly complex systems. However, real systems are usually noisy and involve a mixture
of random and non-random components and interactions. RMT is statistical in nature, describing
only the expected behavior of the spectra of iid random matrices. To this end, a number of sum-
mary statistics or “spectral observables”1,2 can be computed from empirically observed spectra,
with these spectral observables sometimes being better suited for further analysis, or for the
comparison of empirical observations to theory. Two such summary statistics that have been
popular8,10,11,19,20,29–32 are the “spectral rigidity” and “level number variance” (“rigidity” and
“level variance” for short; details in Sec. 3).

However, from a predictive standpoint, these summary statistics may mask predictively use-
ful information. If the basic RMT insight is that the eigenvalues alone can provide understanding
of a system, then those eigenvalues (or other simple transformations of them) ought also to be
predictively useful. We examine a number of such features in this study and refer to both RMT-
derived features, such as the rigidity and level variance, and non-RMT-derived features collec-
tively as “eigenfeatures” in this study.

1.3 Functional Connectivity Reduction
The functional connectivity—often, the matrix of correlations of various collections of voxels of
an fMRI scan—is a priori a useful representation of the fMRI data. However, the full correlation
matrix between all voxels is itself often computationally infeasible to work with, and thus is
reduced in various ways prior to being used in analyses.

Typical reductions include the use of a “seed” voxel or collection of voxels:40,41 the mean
signal over that ROI is correlated with all other N ROIs of interest to generate a reduced func-
tional connectivity matrix (or image) with one correlation value at each non-seed ROI. This sort
of reduction reduces the functional connectivity to N values but necessarily biases the analysis to
the seed ROI.

Likewise, one can work with ROI mean signal reductions, or independent component analy-
sis reductions,40,41 and work with the N × N matrix of the correlations of these reductions. This
analysis is, a priori, sensitive to the choice of ROIs, and, in the case of anatomical atlases/
parcellations for ROIs, may also lack theoretical justification.

RMT suggests a potentially useful reduction in the form of the eigenvalues of the voxelwise
functional connectivity matrix. An N × t matrix of N time series of length t, and where t ≪ N
will have a symmetric correlation (or covariance) matrix with t − 1 non-zero, positive real-valued
eigenvalues. These eigenvalues can be computed highly efficiently via transposition of the
voxelwise correlation or covariance matrix.
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1.4 Limitations of Previous Work
Previous studies applying RMT to functional connectivity data31,32,39 took largely descriptive/
explanatory approaches, noting only differences in RMT across subgroups and/or conditions.
For example, Wang et al.31 and Gu et al.39 used a Kolmogorov–Smirnov test, and Wang et al.
used a t-test to provide evidence of differences in various RMT metrics. However, statistically
significant differences in a metric do not necessarily imply practical significance or predictive
utility,42 nor do they imply generalization or replicability.43 Cross validation, by contrast,
attempts to more directly assess these properties.44

In addition, the previous papers do not provide publicly accessible code to reproduce results.
The extraction of the spectral rigidity and level variance is computationally demanding and math-
ematically and algorithmically non-trivial and additionally requires an “unfolding” procedure.1,2

Unfolding is an exponential fitting procedure that involves a number of highly subjective deci-
sions regarding outliers and the flexibility of the fitting function. These decisions are, unfortu-
nately, often poorly documented or even entirely missing from method descriptions, despite
being known to often dramatically impact RMT conclusions.45–49

In addition to the flexibility in the implementation and application of RMT to empirical data,
there is also flexibility introduced by analytic choices made in the complex preprocessing pipe-
lines of fMRI.50 These “researcher degrees of freedom,”51 in combination with the absence of
reproducible code and data availability, and predominance of descriptive and explanatory
approaches, may raise doubts about the basic robustness and practical utility of past RMT-based
functional connectivity analyses.

What is missing is a rigorous, systematic, reproducible investigation of the predictive value
of RMT metrics across a wide variety of data, analytic choices, RMT features, and preprocessing
decisions, with RMT features being compared to simpler alternative baseline predictors.
The current study aims to remedy this.

2 Datasets

2.1 Overview
We selected fMRI data publicly available on the OpenNeuro platform.52 Selection criteria were
somewhat subjective, but we required each dataset to (1) comprise 10 or more human subjects,
(2) have all fMRI runs have the same spatial and temporal resolutions, (3) have fMRI images that
can be split into various classes for a number of binary classification tasks, and (4) allow rea-
sonable classification of each run using all of the run 4D voxel data only. That is, for this last
point, classification of a run should be reasonable in the absence of run-specific task or event
timings or details and should not require using only some subset of the total set of 3D volumes
(e.g., those associated only with some task or event timings). This yielded seven datasets total.

In order not to inundate readers with dataset details and because this is an exploratory inves-
tigation of RMT, which is not committed to any specific theory (In fact, datasets and, later, the
classification tasks were chosen without investigation into any findings or publications associ-
ated with the data, both in order to reduce bias in our decisions, and because the original authors
analytic/statistical approaches and intentions have very limited relevance to our whole-brain,
voxelwise, multiverse predictive approach.), we refer the reader to the original publications
and/or data releases when greater detail is needed and highlight only the most basic aspects of
each dataset here. Dataset scan parameters and acquisition details are summarized in Table 1,
and sample and subgroup sizes are summarized in Table 2.

2.2 Datasets and Classification Tasks
The “aging” dataset54 included rs-fMRI data for 34 subjects with a mean age of 22 years (range:
18 to 32 years) and 28 subjects with a mean age of 70 years (range: 61 to 80 years). For our
analysis, we make the binary classification task the prediction of subject age-group membership,
i.e., younger v older.

The “bilinguality” dataset55,56 examined English and Spanish-speaking monolinguals and
multilinguals during a prolonged resting state. The original study grouped participants into three
subgroups: early versus late bilinguals versus monolingual controls.56 For our analysis, we make
the binary classification task monolingual v bilingual.
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Table 2 Sizes and other details for classification task subgroups. ID, Identifier for paper; sub-
group, name of subgroup used in classification task; subjects, number of subjects; task, fMRI task;
ANT, ANT.53

ID Subgroup Subjects Task Scans per subject

Aging Older 28 Resting-state 1

Younger 34 Resting-state 1

Bilingual Bilingual 59 Resting-state 1

Monolingual 33 Resting-state 1

Depress Depression 51 Resting-state 1

Control 21 Resting-state 1

Learn Task 24 Learn image sketches 16

Rest 24 Resting-state 2

Osteo Duloxetine 19 Resting-state 1

Pain 37 Resting-state 1

Nopain 20 Resting-state 1

Park Parkinson’s 25 ANT 12

Control 21 ANT 12

Attention Vigilant 11 Resting-state 2

Non-vigilant 11 Resting-state 2

Trait-attentive 11 Resting-state 2

Trait-non-attentive 11 Resting-state 2

Task-attentive 11 Resting-state 2

Task-non-attentive 11 Resting-state 2

Table 1 Included fMRI dataset details. Name, identifier for paper. Dimensions listed as
M × N × P, indicate P axial slices each with dimensions M × N . TR, time of repetition (s).
Volumes, number of 3D volumes per run. n_scans, total number of 4D images in dataset (number
of subjects times number of runs per subject).

Name Dimensions Voxel size (mm) TR Volumes n_scans

Aging 74 × 74 × 32 3.0 × 3.0 × 4.0 2.0 300 62

Bilingual 100 × 100 × 72 1.8 × 1.8 × 1.8 0.88 823 90

Depress 112 × 112 × 25 2.0 × 2.0 × 5.0 2.5 100 72

Learn 64 × 64 × 36 3.0 × 3.0 × 3.0 2.0 195 432

Osteo 64 × 64 × 36 3.4 × 3.4 × 3.0 2.5 300 74

Park 80 × 80 × 43 3.0 × 3.0 × 3.0 2.4 149 552

Attention 128 × 128 × 70 1.5 × 1.5 × 1.5 3.0 300 90
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The “depression” dataset57,58 includes rs-fMRI scans from non-depressed controls and
mildly or moderately depressed subjects. In our analysis, the binary classification task is
depress v control.

The “learning” dataset59,60 has both rs-fMRI and task fMRI scans available for all subjects,
and task v rest is chosen as the binary classification task for our analysis. The task is complex
and difficult to summarize here adequately, but it involved multiple phases where subjects were
presented with various related abstract images, and then later tested for their memory of certain
aspects of the learned images. Thus the classification task might also be considered learning
v rest.

The “osteo” dataset61 includes whole-brain rs-fMRI scans of healthy, pain-free controls
(nopain condition), and individuals with knee osteoarthritis. Osteoarthritic patients were treated
for two weeks with either placebo (pain condition) or duloxetine (duloxetine condition).
We use the three binary classification tasks nopain v duloxetine, nopain v pain, and
pain v duloxetine for our analysis.

The “park” dataset62 includes subjects with non-demented Parkinson’s disease and healthy
controls performed a number of repetitions of the attention network task (ANT53) during scans.
The classification task for this dataset is Parkinson’s versus controls, i.e., park v ctrl.

The “attention” dataset63 is a high-resolution rs-fMRI dataset including a battery of psycho-
logical measures for each subject. Since previous studies employing RMT sometimes interpreted
their findings with respect to attentional processes,31,32 we divided subjects into various high
versus low attention binary classification tasks based on median splits of subsets of the metrics
available in this study.

The vigilant v nonvigilant task was formed based on self-report questionnaire
items involving “vigilance.”64 The trait_attend v trait_nonattend task was formed
using PANAS-X65 items related to self-reported wakefulness and attention over the past weeks.
Finally, the task_attend v task_nonattend classification task was constructed using
the scores of the Conjunctive Continuous Performance Task.66 This is a behavioral performance
task that requires the subject to quickly and selectively respond to only certain visual stimuli.
Details allowing exact reproduction of these splits are available in this paper’s source code.

3 Methods

3.1 fMRI Preprocessing
We limited preprocessing to a simple pipeline of, in order: (1) brain extraction, (2) slice timing
correction, (3) motion correction, and (4) registration to the MNI152.67,68 2mm isotropic, asym-
metric template version C made available through TemplateFlow.69

Brain extraction was performed first with BET70 and then with ANTs71 to clean up residue
left behind by BET. BET results were visually inspected for each image in each dataset, and BET
fractional intensity threshold (-f argument) values were modified to ensure brain extraction was
acceptable. Motion-correction was performed with FSL’s MCFLIRT72 and slice time correction
with FSL’s slicetimer73 tool. Finally, functional images were registered directly to the MNI152
template via ANTs.71

We limited preprocessing methods to these steps because data required for other typical
preprocessing steps (e.g., field intensity maps and physiological measurements) was missing,
but also because all pipeline intermediates were saved to later compare the effect of increasing
degrees of preprocessing on feature predictive utility (see Sec. 3.6), and it was important
to limit the number of preprocessing steps to prevent excessive computational costs and
comparisons.

3.2 Feature Extraction
When dealing with large inputs, any predictive analysis must reduce that input into predictively
useful features. Any method that reduces a larger set of data is potentially valid as a feature
extraction method, and RMT, which summarizes matrix data by summarizing the eigenvalue
distributions, may be useful for feature extraction. However, different feature extraction methods
may have different advantages and disadvantages in terms of the computational complexity,
amount of summary or selection involved, and in interpretability. RMT is both mathematically
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and computationally complex, and thus RMT-based features should be compared to alternate
features that may be easier to understand or compute.

Thus for each preprocessing degree and fMRI image, features were extracted from all N
non-constant brain voxels, where N may differ for each image. After this process, each scan
yields an N × t matrix M, where t is the number of volumes acquired. All features extracted
summarize this matrix M.

3.2.1 Raw eigenvalues

The computing time and memory requirements for calculating the full N × N matrix M of
Pearson correlation coefficients (and subsequent eigenvalues) are too large to be tractable.
However, since transposition does not change the eigenvalues, we can use the transpose to effi-
ciently compute these eigenvalues (see Appendix A). These raw eigenvalues (feature eigs in
Table 3), most directly test the idea that eigenvalues alone are useful functional connectivity
features.

However, not all eigenvalues may have predictive utility. We also examine as features the
central eigenvalues (defined as the middle 10%, 20%, or 40% of the sorted eigenvalues, eigs-
middle in Table 3) and tail eigenvalues (defined as the first and last 5%, 10%, and 20% of each
tail of the spectrum, eigsminmax in Table 3).

3.2.2 RMT features

To compare the observed eigenvalue distribution to some RMT theoretical predictions, the eigen-
values must be unfolded.1,2 The details and motivation behind the unfolding procedure are doc-
umented well elsewhere.2 Practically, the unfolding process can be viewed as a smoothing and
rescaling procedure where the originally observed spectrum λ1 ≤ : : : ≤ λn is smoothly mapped
to an unfolded spectrum e1; : : : ; en, such that

P
di∕n ≈ 1, if di ¼ eiþ1 − ei. For most empirical

data, the true smoothing function is not known, and so must be approximated.1,2 Typically,
a polynomial is chosen.45

Given empirically observed eigenvalues Λ, the spectral rigidity Δ3ðLÞ is calculated for any
positive real value L < maxðΛÞ as

EQ-TARGET;temp:intralink-;e001;117;362Δ3ðLÞ ¼
�
minA;B

1

L

Z
cþL

c
ðηðλÞ − Aλ − BÞ2

�
c
; (1)

where ηðλÞ is the number of unfolded eigenvalues less than or equal to λ, h·ic denotes the average
with respect to all starting points c, and where A and B denote the slope and intercept, respec-
tively, of the least squares fit of a straight line to ηðλÞ on ½c; cþ L�.2 Viewing the unfolded eigen-
values as a timeseries, the spectral rigidity for a value L is the “average non-linearity” of all
intervals of length L over the series.

The level number variance Σ2ðLÞ or level variance, for short, is closely related to the spectral
rigidity1 and is calculated as

EQ-TARGET;temp:intralink-;e002;117;241Σ2ðLÞ ¼ hη2ðL; cÞic − hηðL; cÞi2c; (2)

where ηðL; cÞ is the number of unfolded eigenvalues in ½c; cþ L�, and where c, L, and h·ic are as
above.2 Viewing the unfolded eigenvalues as an irregular timeseries, the level number variance is
the variation of the number of samples in all intervals of length L over the series.

As eigenfeatures, we compute the unfolded eigenvalues, and the spectral rigidity and level
number variance for all L ∈ f1;2; : : : ; 20g. These are unfolded, rigidity, and levelvar,
respectively, in Table 3.

Trimming variants. As the unfolding procedure operates on the sorted eigenvalues and
involves fitting a smooth polynomial or exponential to these values, extreme values are often
omitted from fitting.48,49 The number of eigenvalues to trim is subjective, and unfortunately, with
a large number of different source matrices, it is too destructive to naively use the same hard
criterion (e.g., largest 10%, largest three) for all unfoldings.
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Table 3 Feature groupings for summarization. eigs, non-RMT eigenfeatures and their combina-
tions with other non-RMT eigenfeatures. rmt, RMT eigenfeatures and their combinations. tseries,
baseline timeseries reductions.

Coarse grouping Fine grouping Feature id

eigs eigs eigs

eigs max eigsminmax10

eigsminmax20

eigsminmax5

eigs middle eigsmiddle10

eigsmiddle20

eigsmiddle40

eigs smooth eigs + eigs_smooth

eigs + savgol

eigs_savgol

eigs_smooth

rmt rmt + eigs eigs + levelvar

eigs + rigidity

eigs + rigidity + levelvar

eigs + unfolded

eigs + unfolded + levelvar

eigs + unfolded + rigidity

rmt only levelvar

rigidity

rigidity + levelvar

unfolded

unfolded + levelvar

unfolded + rigidity

unfolded + rigidity + levelvar

tseries Location T-max

T-mean

T-med

T-min

T-p05

T-p95

Scale T-iqr

T-rng

T-rrng

T-std
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We develop and test four trimming variants: no trimming, precision-based, largest, and
middle, with less subjective criteria for determining trimming thresholds. The details of these
trimming procedures are straightforward and can be found in Appendix B, or the source code.

Unfolding variants. Following any trimming, the eigenvalues are fit with a polynomial.
Because the choice of degree has been known to dramatically impact certain analyses involving
the spectral rigidity or level variance,45–49 we compute the rigidity and level variance with all
possible combinations of our trimming procedures and unfolding polynomial degrees of 3, 5, 7,
and 9.

3.2.3 Smoothed eigenfeatures

When computing RMT eigenfeatures, the polynomial fitting during unfolding has a smoothing
effect, as do the additional averaging hic operations. However, it is possible other, simpler trans-
formations of the eigenvalues (e.g., uniform or Savitsky–Golay smoothing) might have equal or
greater predictive utility. We thus also test smoothed variants of the eigenvalues as predictive
features: the sorted eigenvalues are smoothed with either a uniform (moving average) filter
or Savitsky–Golay, using window sizes of 3, 5, 7, and 9 to yield 8 total features (eigs_smooth
and eigs_savgol in Table 3).

3.2.4 Feature combinations

A combination of RMT and non-RMT eigenfeatures could be more predictive than either alone.
We test this with a variety of eigenfeature combinations, with a focus on combinations that
involve the simplest features (e.g., raw eigenvalues and unfolded eigenvalues) and then features
involving additional processing (e.g., smoothed eigenvalues, level variance, and rigidity).
Combined features are formed by concatenation so that if we have features f1; : : : ; fn with
dimensions p1; : : : ; pn, then the combined feature is ½f1; : : : ; fn� with

P
pi dimensions. The

final combinations chosen can be found in Table 3, where the “+” symbol indicates
concatenation.

3.2.5 Slicing variants

The largest, middle, or smallest eigenvalues could be most useful in characterizing any given
system. For example, if the smallest eigenvalues correspond to random/noise aspects of a system
but differences in the nature of the system noise most differentiate between systems, then the
smallest eigenvalues may have the most predictive utility. Likewise, the L value in each RMT
eigenfeature defines the degree of locality in which we summarize the spectrum: with small
L-values, the spectral rigidity summarizes the non-linearity of eigenvalues that are relatively
close to each other in magnitude. At large values of L, the rigidity summarizes the long-range
non-linearity of the spectrum.

Since predictive utility may vary with summary locality or with the region of the original
spectrum, we investigate various front, middle, and end contiguous slices of each eigenfeature in
all analyses, where the size of each slice is either the first or last 5%, 10%, or 20% of the full
eigenfeatures for non-middle slices, or the middle 10%, 20%, or 40% of the full eigenfeature for
the middle eigenvalues.

For combined features, slicing variants are also computed, with slicing performed first on
each feature to be combined. For example, if we have features f1; : : : ; fn with dimensions

p1; : : : ; pn, then the sliced max 25% feature for each component feature, f̂i is the last pi∕4
elements of fi, and the combined sliced feature is ½f̂1; : : : ; f̂n�.

3.2.6 Baseline features

If RMTor eigenvalue-based features fail to predictively outperform features that are simple sum-
mary statistics of the fMRI data, it is difficult to justify the greater computational and interpreta-
tional complexities of the former. We compute 10 simple statistical reductions of the voxel time
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series (“tseries” features in Table 3) to help assess the relative value of RMT features. That is,
each statistic reduces the fMRI data along the voxel dimension, yielding a feature of t dimensions
(e.g., the “mean” feature, T-mean, is the usual global mean signal).

The baseline reductions used as statistical summaries were: robust measures of location
(mean, max, and min); non-robust measures of location (median, 95th percentile, and 5th per-
centile); non-robust measures of scale (standard deviation and the range—T-rng in Table 3);
and robust measures of scale (interquartile range and difference between 95th percentile and
5th percentile—T-rrng in Table 3).

We do not take slice variants of these baseline features since the baseline features are still
time series. However, we do also evaluate a number of smoothing degrees of these features, to
account for noise and to be somewhat similar to the various smoothing variants for the eigen-
features. Each baseline feature is tested with a degree of uniform smoothing, where the size of the
smoothing window is either 1 (no smoothing), 2, 4, 8, or 16.

3.3 Classifiers
We use a variety of standard machine-learning classifiers available in the Scikit-learn74 Python
library to solve each classification task. We use a gradient-boosted decision tree, random forest
classifier, support vector classifier (SVC) with radial basis function, and k-nearest neighbors
classifiers with k equal to 3, 5, and 9 (KNN3, KNN5, and KNN9, respectively), in all cases
with the default hyperparameter values. We originally also attempted to test a simple logistic
regression classifier but found that this model frequently failed to converge for a number of
features, even after increasing iterations significantly.

3.4 Preprocessing Levels
Each preprocessing intermediate in the (1) brain extraction, (2) slice time correction, (3) motion
correction, and (4) template registration pipeline was saved and used for entirely separate feature
analyses. For example, all features were extracted from an fMRI image prepared with one of
four levels or degrees of preprocessing, where preprocessing level k includes preprocessing
steps 1 to k, inclusive, and starting at k ¼ 1.

3.5 Normalization
Because of the exponential distribution of the eigenfeatures, normalization is somewhat non-
trivial, and a simple standardization or min–max normalization is ineffective. We instead first
apply a logarithm to all eigenfeatures and then test each classifier with un-normalized or min–
max normalized versions of the log-features. Baseline features are also tested with un-normalized
and min–max normalized versions, but without any log transform.

3.6 Multiverse Analysis
We perform a “multiverse analysis75” to assess the overall predictive potential of the various
eigenfeatures across all previously mentioned analytic choices. That is, for each combination
of comparison task, classifier, and analytic choices, we use fivefold cross validation and use
the mean area under the receiver operating characteristic curve (mAUROC) across folds as our
metric to evaluate feature predictive utility.

The area under the receiver operating characteristic curve (AUROC) metric was chosen
because it handles class imbalances present in the various datasets and is naturally normalized
and interpretable such that mAUROC < 0.5 indicates predictive performance worse than guess-
ing, and mAUROC > 0.5 indicates positive predictive utility.76 However, we also collected as
performance metrics the accuracy, adjusted accuracy (proportion of samples in the entire dataset
largest class minus accuracy), and the F1 score. A complete table with these additional metrics is
available with the data for this study.

Each non-baseline feature is thus evaluated, for each dataset classification task and each
classifier, exactly 1280 times: there are 4 preprocessing levels × 2 normalization methods
× 4 trimming choices × 4 unfolding degrees × 10 slice choices. Each baseline feature is evaluated
exactly 40 times for each comparison task and classifier: 4 preprocessing levels × 2 normali-
zation methods × 5 smoothing window sizes. In total, with all the datasets and features examined
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in this study, this yields 2,053,920 mAUROC values to summarize, with five main analytic fac-
tors—preprocessing, normalization, trimming, unfolding/smoothing degree, and slicing—to
consider.

3.7 Software Release
Because the computation of these statistics is non-trivial and to make the unfolding procedure
more transparent and reproducible, we developed and release a separate, open-source Python
library empyricalRMT.77 The library allows for efficient, parallel computation of the spectral
rigidity and level variance via Monte Carlo methods, and automatically ensures convergence of
the statistics to user-specified tolerances. The library also makes available various other functions
useful for empirical RMT analyses, such as unfolding and trimming functions, and plotting
facilities for classic RMT ensembles.

4 Results

4.1 Overview
Summarizing this quantity of data requires some caution. Measures of location or scale, even
when robust, are, for the most part, misleading and uninformative when distributions are skewed.
In most cases, we find skewed mAUROC distributions, and so have chosen primarily to present
our findings visually, with kernel density estimates. Because aggregating across datasets with
different class imbalances can be extremely misleading, even with a metric like the mAUROC,78

we restrict such summaries to Table 4 only, and note that Table S1 in the Supplementary Material
is intended as a supplement only to the distribution plots: no conclusions should be drawn about
feature performance from the table values alone.

In addition, a large number of interactions are possible between each analytic factor in this
study. For example, it could be that trimming impacts the overall mAUROC distribution only at
a certain preprocessing level and for certain feature slicing. However, as there are too many
potential interactions to present, we limit our presentation to main effects.

To aid in summarizing the performances of the large number of different features, we also
summarize patterns of results across two abstract groupings of similar features (“coarse” and
“fine”) shown in Table 3. Thus, for example, figures depicting the coarse feature grouping “eigs”
in fact depict all observed mAUROC values for the fine feature groupings of raw, max, middle,
and smoothed eigenvalues, and the fine feature grouping “eigs smooth,” for example, depicts all
observed mAUROC values for both the eigs_savgol and eigs_smooth features.

4.2 Classification Tasks

4.2.1 Non-predictable comparisons

It is important, to reduce figure clutter and complexity, to exclude a classification task or an
analytic factor from summaries if there is no evidence that the classification task is solvable
in general, or if, when restricting the analytic factor to a particular instance, there is no evidence
of solvability. For example, if a particular trimming procedure were to render all classification
tasks unsolvable, it would be better to note this and exclude the associated mAUROCs from
further visualizations, rather than to have the mAUROC distributions diluted by the bad
procedure.

We take as lack of evidence of solvability an mAUROC distribution that is either (1) roughly
symmetric and has mean and median close to 0.5, i.e., performance appears random or (2) with
median and mode <0.5. Based on the mAUROC distributions for either coarsely grouped
(Fig. 1) or finely grouped features (Fig. S1 in the Supplementary Material), neither bilinguality
nor depression was predictable by either baseline or eigenfeatures. Additionally, the pain v
duloxetine comparison in the osteo dataset, and the trait_attend v trait_nonattend
conditions (“WeeklyAttend” in Fig. 1 and Fig. S1 in the Supplementary Material) in the “atten-
tion” dataset were also not meaningfully predictable by any feature. As such, we exclude these
classification tasks from further figures and discussion. We did not, however, find that any ana-
lytic factor resulted in unsolvability.
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Table 4 Numerical summaries of feature mAUROCs across predictable comparisons, and all
combinations of analytic choices, sorted by 95% percentile (robust max) value. Bold values indi-
cate column “best” values, when reasonable.

Feature Mean Min 5% 50% 95% max std

eigs + eigs_smooth 0.583 0.188 0.408 0.567 0.788 0.906 0.111

eigs + savgol 0.580 0.188 0.408 0.563 0.785 0.913 0.110

Unfolded 0.568 0.150 0.400 0.555 0.775 0.931 0.108

Unfolded + levelvar 0.569 0.150 0.400 0.555 0.775 0.925 0.108

Unfolded + rigidity 0.568 0.150 0.401 0.555 0.775 0.925 0.108

Unfolded + rigidity + levelvar 0.568 0.150 0.401 0.555 0.775 0.931 0.108

eigs + rigidity + levelvar 0.564 0.202 0.401 0.548 0.763 0.937 0.105

eigs + unfolded 0.564 0.202 0.401 0.549 0.763 0.919 0.105

eigs + unfolded + levelvar 0.564 0.202 0.400 0.548 0.763 0.933 0.105

eigs + unfolded + rigidity 0.564 0.202 0.401 0.548 0.763 0.920 0.105

eigs + levelvar 0.563 0.202 0.400 0.548 0.758 0.914 0.104

eigs 0.563 0.202 0.401 0.548 0.756 0.875 0.104

eigs + rigidity 0.563 0.202 0.400 0.548 0.756 0.882 0.104

eigs_smooth 0.569 0.188 0.417 0.556 0.755 0.907 0.102

T-p05 0.526 0.249 0.340 0.500 0.754 0.856 0.110

eigs_savgol 0.566 0.188 0.410 0.553 0.748 0.909 0.102

eigsminmax20 0.556 0.245 0.411 0.544 0.738 0.906 0.098

eigsminmax10 0.550 0.231 0.409 0.538 0.737 0.906 0.095

eigsminmax5 0.549 0.213 0.400 0.539 0.729 0.888 0.096

T-mean 0.557 0.208 0.427 0.558 0.717 0.814 0.085

levelvar 0.534 0.075 0.367 0.527 0.712 0.879 0.101

eigsmiddle40 0.547 0.324 0.419 0.533 0.697 0.785 0.084

Rigidity + levelvar 0.529 0.154 0.377 0.523 0.696 0.888 0.094

Rigidity 0.529 0.154 0.378 0.523 0.694 0.888 0.094

T-rrng 0.545 0.281 0.384 0.542 0.688 0.759 0.090

eigsmiddle20 0.545 0.321 0.419 0.533 0.686 0.798 0.080

T-iqr 0.494 0.175 0.312 0.490 0.682 0.759 0.099

eigsmiddle10 0.541 0.323 0.411 0.530 0.681 0.755 0.081

T-std 0.513 0.252 0.392 0.500 0.679 0.729 0.086

T-rng 0.538 0.279 0.392 0.539 0.678 0.779 0.092

T-max 0.540 0.275 0.385 0.546 0.678 0.754 0.095

T-med 0.539 0.221 0.399 0.541 0.665 0.702 0.077

T-p95 0.524 0.294 0.402 0.514 0.653 0.693 0.077

T-min 0.504 0.321 0.426 0.500 0.582 0.698 0.046
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4.2.2 Predictable comparisons

As visible in Fig. 1, when coarsely summarizing features, eigenfeatures were more likely to be
predictively useful than not, and except for in the task_attend v task_nonattend com-
parison, were also more predictively useful than the baseline features. Eigenfeatures most
strongly and consistently demonstrated predictive utility in the aging dataset older v younger
classification task, the osteo dataset nopain v duloxetine task, and in the attention
vigilant v nonvigilant comparison.

4.3 Largest mAUROCs
Considering the various analytic choices as tunable parameters, it makes sense to examine the
largest portion of mAUROCs as an indication of the maximum predictive potential of the eigen-
features. In this case, it is clear that eigenfeatures using RMT features almost always had the
highest potential predictive utility (Fig. 2). Figure S2 in the Supplementary Material shows that
this was primarily due to either the “rmt only” or “rmt + eigs” features (see Table 3). However,
RMTeigenfeatures were also most likely to cause poor performance and overfitting (indicated by
an mAUROC < 0.5; Fig. S3 in the Supplementary Material).

Examining these RMT features more closely, it is clear that these features’ performance
distributions differ mostly due to the unfolding procedure. That is, combined features that used
the unfolded eigenvalues plus some other RMT eigenfeature tended to have visually indistin-
guishable mAUROC distributions to those using the unfolded eigenvalues alone (Figs. S7 and
S8 in the Supplementary Material). Instead, the mAUROC distributions of these features differed
mostly in the tails (Figs. S2 and S3 in the Supplementary Material).

4.4 Effect of Preprocessing
At a coarse level of feature grouping, slice time correction followed by motion correction tended
to slightly increase the predictive utility of the eigenfeatures (Fig. 3) relative to brain extraction
only. Subsequent registration following these steps did not generally impact mAUROC distri-
butions further, except in the task_attend v task_nonattend comparison, where

Fig. 1 AUROC distributions across gross feature groupings and comparison tasks.
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Fig. 3 mAUROC distributions by preprocessing degree.

Fig. 2 Distributions of largest 500 mAUROCs by coarse feature grouping.
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registration reduced the predictive utility of the eigenfeatures (Fig. 3, second-last column). When
examining features more finely, it is clear that preprocessing most impacts the mAUROC dis-
tribution of the largest and central eigenvalues (“eigs middle” and “eigs max” in Fig. S4 in the
Supplementary Material).

4.5 Effect of Classifier
Within any feature grouping (coarse or fine) and within a classification task, mAUROC distri-
butions were generally similar across classifiers (Figs. S5 and S6 in the Supplementary Material).
Additionally, these figures also show that within each classification task, choice of classifier does
not result in dramatic changes to the rough rank ordering of features. For example, if features are
ranked on predictive utility, using the median, modal, or bulk of the mAUROC values, this rank
ordering appears to remain similar across classifiers.

In the attention task_attend v task_nonattend condition, eigenfeatures were
modally predictive only with the RF classifier, whereas in the aging data, an SVC was least
likely to have mAUROC < 0.5. Overall, however, differences in the mAUROC distributions due
to the classifier were small and inconsistent.

4.6 Normalization
There was no visible effect of feature normalization on mAUROC distributions.

4.7 Effect of Trimming
Trimming based on numerical precision (see Sec. 3.2.2 and Appendix B) did not result in mean-
ingfully different mAUROC distributions in any case (Fig. S7 in the Supplementary Material).
However, trimming away the largest, or both largest and smallest eigenvalues, generally had
a significant positive effect on the predictive quality of RMT features, most especially for
RMT features involving the unfolded eigenvalues. When employing these trimming methods,
these features were consistently more predictive than not (Fig. S7 in the Supplementary
Material).

4.8 Effect of Unfolding Degree
The choice of polynomial unfolding degree significantly impacted the mAUROC distributions
for most classification tasks and most RMT features, and most significantly for the level variance
features (Fig. S8 in the Supplementary Material). Overall, Fig. S8 in the Supplementary Material
weakly suggests that either smaller (degree = 3) or larger (degree = 9) unfolding degrees tend to
yield the most predictively useful RMT features. However, when restricting to the most predic-
tive RMT features (those including the unfolded eigenvalues), it seems clear from Fig. S8 in the
Supplementary Material that the largest unfolding degree of 9 produces the most favourable
mAUROC distributions.

4.9 Effect of Slicing
The best slice size and location depended complexly on the classification task and feature, and
few general summaries can be made of these interactions. However, features including the full
spectrum (e.g., raw eigenvalues, smoothed eigenvalues, and their combinations with RMT
eigenfeatures) were slightly more predictive when using the largest portions (“max-XX,” rows
in Fig. S9 in the Supplementary Material), and usually least predictive when features primarily
involved the smallest or central portions.

4.10 Choice of Summary Metric
We note briefly that most of the above findings regarding the impacts of analytic factors, and rank
ordering of feature predictive utilities, are similar when using the adjusted accuracy (see
Sec. 3.6), instead of the mAUROC (see Figs. S10–S18 in the Supplementary Material).
However, if comparison task predictability is defined as requiring adjusted accuracies to be more
positive than negative, then the learning and Parkinson’s datasets do not appear to be predictable
with any feature (Fig. S10 in the Supplementary Material).
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5 Discussion
In this study, eigenfeatures inspired by RMTand derived from the eigenvalues of the full, whole-
brain voxelwise fMRI correlation matrix were found to have predictive utility across a wide
variety of phenomena and analytic choices. Compared to simple baseline reductions of the
fMRI data, these eigenfeatures had more consistent predictive utility and a higher maximum
predictive potential (Figs. 1 and 2). In addition to evidence from previous studies,29,31,32 this
suggests RMT may be a useful analytic and theoretical tool for understanding functional
connectivity.

However, eigenfeature mAUROC values observed in this study were highly sensitive to the
overall analytic procedure, and there was no single analytic choice (e.g., choice of trimming
procedure, unfolding polynomial degree, number of preprocessing steps, or feature slicing) that
ensured, for any combination of feature and classification task, that all other analytic choices
resulted in mAUROC values >0.5. In addition, the mean, median, and modal mAUROCs were
generally close to 0.5 and adjusted mean and median accuracies also tended to be close to zero.
Thus we find limited evidence that functional-connectivity-based eigenfeatures have general,
“out of the box” predictive utility, with general utility likely requiring either careful tuning,
or different preprocessing decisions and analytic choices than those examined here.

Nevertheless, in all datasets, there were combinations of analytic choices that resulted in
cross-validated mean prediction performances well beyond mere guessing (Figs. S2 and S11
in the Supplementary Material and Table 5). Whether or not these should be considered to
have practical relevance depends on one’s goals, however, we note that with small datasets of
rs- or task-fMRI data, binary, subject-level classification using whole-brain features is generally
challenging.

For example, deep learning methods improve upon guessing by 17% for autism79 or 3% to
30% for ADHD,80 16% for severe depression,81 and 23% for obsessive compulsive disorder.82

Manual feature engineering with more separable conditions (e.g., schizophrenia) can result in
classification accuracies well above 90%,83 and with larger data, sophisticated custom feature
extraction methods can achieve near perfect accuracies at classifying task versus rest.84 However,
for functional connectivity data and with classical machine learning algorithms (such as SVC),
we in general only expect large prediction accuracies (e.g., >80%) when the group functional
connectivities are already strongly separated (e.g., Cohen’s d > 1.0).85 In this study, the (robust)
maximum improvements upon guessing are shown in Table 5 and vary from 3% to 26%.

It is somewhat surprising that the eigenfeatures examined here ever have net cross-validated
predictive utility. The reduction of the functional connectivity matrix to the sorted t − 1 eigen-
values uses all brain voxels (including gray matter voxels) and destroys a large amount of infor-
mation (radically different matrices can have identical sorted eigenvalues). The subsequent
small-degree polynomial fit used in the unfolding procedure further reduces variance in the raw
data, and all eigenfeatures, due to the eigenvalue sorting, are monotonically increasing curves (or
approximately monotonic). All such curves could likely be fit near-perfectly with 3 to 5 param-
eters, i.e., the inherent dimensionality of these features is quite small. Interpreting the eigenvalues
as the magnitudes of the principal components of the standardized data, this suggests that a rough
summary of the magnitudes of the principal components can often be surprisingly predictive
in fMRI.

We speculate that the unfolded eigenvalues may have predictive utility in part because of
their smoothing and rescaling effect (see also Sec. 4.3). Figure 4, which depicts the raw eigen-
values and unfolded eigenvalues with different trimming procedures, shows how the raw eigen-
values have strongly exponential distributions, even with logarithmic axes. This is due to the
magnitude of the largest eigenvalues, and the unfolded and trimmed feature distribution in
Fig. 4 are far less pathologically distributed.

5.1 Limitations
As it is unfortunately typical of fMRI research,86 the number of subjects in each dataset was quite
small (Table 2). With such small numbers of subjects, randomization cannot be expected to effec-
tively control group differences, and it is possible the predictive utility of the eigenfeatures was
due to capitalization of such differences. For example, eigenfeatures were generally predictive in
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the aging dataset, and it is quite possible for randomization failures to introduce age imbalances
across classes.

Likewise, one of the other more predictable classification tasks was the duloxetine v nopain
task in the osteoarthritis dataset. An active drug could introduce any number of physiological
confounds relevant to fMRI,87 but we could not control for such effects due to the absence of
physiological recording in most datasets.

In general, much larger fMRI datasets are needed to adequately control for and test what
exactly the connectivity eigenvalues actually predict and to test if these predictions generalize to
larger, different populations.

Table 5 Top three robust maximum (95th percentile) mAUROC and adjusted accuracy (acc+)
values for each predictable classification task and fine feature grouping, sorted by mAUROC.
A dash indicates that the fine feature grouping for that row was not in the top three, i.e., that the
top three performing features differed depending on the performance metric.

Classification task Source feature mAUROC acc+

Aging: younger versus older eigs smooth 0.834 0.226

rmt + eigs 0.828 0.212

eigs 0.823 0.211

Learning: rest versus task rmt + eigs 0.638 0.007

eigs 0.636 0.007

eigs max 0.631 —

eigs middle — 0.012

Osteo: nopain versus duloxetine rmt only 0.819 0.259

eigs max 0.812 0.226

rmt + eigs 0.806 —

eigs smooth — 0.212

Osteo: nopain versus pain tseries loc 0.762 0.104

tseries scale 0.697 —

eigs smooth 0.684 —

eigs middle — 0.069

eigs — 0.034

Parkinsons: ctrl versus park tseries scale 0.687 0.107

tseries loc 0.657 0.063

rmt only 0.590 0.027

TaskAttention: task_attend versus task_non-attend tseries loc 0.666 0.135

rmt only 0.660 0.121

tseries scale 0.656 0.124

Vigilance: vigilant versus non-vigilant eigs middle 0.733 0.184

eigs smooth 0.726 —

rmt + eigs 0.719 0.162

eigs — 0.162

Berger, Matharoo, and Levman: Random matrix theory tools for the predictive. . .

Journal of Medical Imaging 036003-17 May∕Jun 2023 • Vol. 10(3)



6 Conclusion
Eigenvalue-based features inspired by RMT and extracted from fMRI functional connectivity
matrices were found to have predictive utility across a wide variety of datasets and classification
tasks. However, the predictive utilities were modest and highly dependent on preprocessing steps
and other fitting and feature selection procedures.

Given the sensitivity to these decisions observed in this study and considering the lack of
consensus regarding the preprocessing of fMRI or other complex biological signal data, RMT
should probably not be currently considered a tool with “out-of-the-box” utility in these domains.
Although RMT likely still has potential to yield insights in a variety of contexts, our results
suggest that, absent strong evidence otherwise, it is not necessarily safe to assume that these
insights will generalize broadly beyond the specific preprocessing and analytic pipelines
involved.

Further research might establish specific sets of analytic choices that allow RMT to con-
sistently extract useful information in a wide variety of contexts. However, it is also possible that
each unique context might require a specific combination of choices. In this latter case, there
should be strong theoretical justification for the use of RMT, and for each of the various analytic
choices involved in its use: the variability of results seen in this study suggests that there may
often be a set of analytic choices that provide favourable results, and which can be weakly
justified by plausible, but ultimately post hoc justifications. Provided that these precautions are
followed and that future studies employing RMT also carefully investigate the sensitivity of
any findings to such analytic decisions, then there is likely considerable untapped potential for
RMT in the analysis of fMRI.

7 Appendix A: Correlation Eigenvalues via Transposition
Let X be a real n × p matrix with n > p. Let

EQ-TARGET;temp:intralink-;sec7;114;256Z ¼ normðXÞ ¼ ðX1 − X1j: : : jXp − XpÞ;

where Xi denotes column i of X. Denote the (unordered) set of eigenvalues of X as eigsðXÞ, and
let r ¼ ðp − 1Þ−1. Denote the covariance matrix of X as covðXÞ. Then:

EQ-TARGET;temp:intralink-;sec7;114;200

eigsðcovðXÞÞ ¼ eigsðr · ZZ⊤Þ
¼ r · eigsðZZ⊤Þ
¼ r · eigsððZZ⊤Þ⊤Þ
¼ r · eigsðZ⊤ZÞ:

Denote the correlation matrix of X as corrðXÞ, and let

EQ-TARGET;temp:intralink-;sec7;114;104Y ¼ standardizeðXÞ ¼ ððX1 − X1Þ∕σ1j: : : jðXp − XpÞ∕σpÞ:

Fig. 4 Raw eigenvalues (first subplot) and unfolded eigenvalues (polynomial degree 9; last 3 sub-
plots) for osteo dataset duloxetine v nopain classification task, brain extraction, and slice time
correction only. Median observed mAUROC = 0.643 (range = 0.346 to 0.925).
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Then

EQ-TARGET;temp:intralink-;sec7;117;724eigsðcorrðXÞÞ ¼ eigsðcovðYÞÞ ¼ r · eigsðY⊤YÞ:

8 Appendix B: Trimming Procedures
We implement three trimming procedures: precision-based, largest, and middle trimming.
The source code is the definitive reference for the procedures, but we describe the motivations
belows.

In precision-based trimming, we trim away any eigenvalues that are close enough to zero to
be considered a result of numerical error due to floating point representation. There are two
thresholds we consider, including the one used by NumPy88 for the determination of matrix rank,
and those recommended by LAPACK89 in their user guide on the error bounds for symmetric
eigenproblems and related additional details. We trim each matrix eigenvalues to whichever
threshold is largest for the matrix in question.

For largest trimming, we must determine a threshold in which to separate “large” from
“small” eigenvalues. The eigenvalues for our data tended to grow exponentially, so we instead
looked at thresholding on the logarithms. We then used k-means with k ¼ 2 on the precision-
trimmed eigenvalues and took the largest cluster (which also always had the smaller mean)
as the “largest” eigenvalues to trim away. “middle” trimming simply reflects the threshold found
by the largest trim method, e.g., if the largest trim method removes the last n precision-trimmed
eigenvalues, then we also trim the first n smallest eigenvalues remaining after precision-
trimming.

We chose one-dimensional k-means partly due to efficiency and simplicity and because of
the general relation to classical thresholding methods such as the Otsu method.90
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