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Abstract

Purpose: Population-based screening programs for the early detection of breast cancer have
significantly reduced mortality in women, but they are resource intensive in terms of time, cost,
and workload and still have limitations mainly due to the use of 2D imaging techniques, which
may cause overlapping of tissues, and interobserver variability. Artificial intelligence (AI) sys-
tems may be a valuable tool to assist radiologist when reading and classifying mammograms
based on the malignancy of the detected lesions. However, there are several factors that can
influence the outcome of a mammogram and thus also the detection capability of an AI system.
The aim of our work is to analyze the robustness of the diagnostic ability of an AI system
designed for breast cancer detection.

Approach: Mammograms from a population-based screening program were scored with the AI
system. The sensitivity and specificity by means of the area under the receiver operating char-
acteristic (ROC) curve were obtained as a function of the mammography unit manufacturer,
demographic characteristics, and several factors that may affect the image quality (age, breast
thickness and density, compression applied, beam quality, and delivered dose).

Results: The area under the curve (AUC) from the scoring ROC curve was 0.92 (95% confi-
dence interval = 0.89 − 0.95). It showed no dependence with any of the parameters considered,
as the differences in the AUC for different interval values were not statistically significant.

Conclusion: The results suggest that the AI system analyzed in our work has a robust diagnostic
capability, and that its accuracy is independent of the studied parameters.
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1 Introduction

Breast cancer is the most common cause of cancer death among women worldwide, as well as
the cancer with the highest incidence.1 The implementation of population-based screening pro-
grams has significantly reduced mortality among women, as early detection of breast cancer
increases the likelihood of successful treatment.2 However, these programs are based on 2D
imaging diagnostic methods, which may lead to inaccuracies in terms of sensitivity (true positive
rate) and specificity (true negative rate) as the overlapping of tissues can cause certain lesions to
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be hidden, while clusters of healthy tissue are perceived as lesions. To improve this aspect,
screening programs recommend obtaining two views per breast: a craniocaudal (CC) and a
mediolateral oblique (MLO) view, which increases the time taken by the radiologist to evaluate
the examination. Screening programs are resource-intensive, both in terms of the time spent by
radiologists reading mammograms and the financial cost.3 To facilitate the reading of mammo-
grams, computer-aided diagnosis (CAD) systems were introduced in 1980. However, the detec-
tion capability of these systems relied on prior knowledge of the physical characteristics of breast
lesions, which led to biased results, so the benefit of using CAD in screening is still unclear.4 On
the contrary, with the introduction of artificial intelligence (AI), and mostly the introduction of
deep learning (DL) algorithms, these systems have indeed proven to be an improvement, as
several studies show that the diagnosis of the radiologists improves with the help of an AI sys-
tem, with no need to lengthen the mammography reading time.4–6 Moreover, AI-based systems
are unaffected by fatigue or subjective diagnosis.

Image quality can be defined on the basis of three important factors, including contrast, spa-
tial resolution, and signal-to-noise ratio (SNR). These factors are in turn altered by parameters
related to the image acquisition process, such as breast compression and thickness, which aims at
minimizing scattered radiation and thus increasing contrast and SNR, positioning, the x-ray
beam quality (determined by the anode/filter combination and voltage), and the radiation
dose.7,8 Furthermore, these parameters may affect differently in the detection of different
findings suggesting breast cancer, which are mainly soft-tissue lesions and calcifications.9,10

In the case of the former, the margins delimiting the lesion and its density are determinants
of its malignancy, whereas in the case of calcifications, their number, morphology and distri-
bution predominate.8 Thus, factors, such as contrast, may affect more severely the detection of
soft-tissue lesions, whereas spatial resolution or noise may be more decisive in detecting
calcifications.11,12

In addition, breast density (i.e., the percentage or absolute amount of fibroglandular tissue)
is also known for being an essential factor affecting image quality. There are several studies
claiming that the sensitivity of mammography screening is severely affected in women with
high breast density, as the presence of heterogeneous or extremely dense tissue patterns may
mask suspicious lesions.13–15 Moreover, studies have shown that women with high breast density
are at higher risk of developing breast cancer and with more aggressive tumor characteristics,16

which highlights the importance of this property. The age of the woman plays also an important
role in breast density, as it decreases with age and with the start of the menopause, although
it has been shown that it is not an accurate surrogate for breast density.17 The most frequently
used model among radiologists and screening examinations to classify breasts according
to their density is the breast imaging-reporting and data system (BI-RADS), which classifies
breasts into four categories: fatty, medium dense, heterogeneously dense, and extremely dense
breasts.

Neural networks are susceptible to image quality-related parameters, such as noise
distortions, contrast, blurring, or resolution.18,19 Therefore, just as image quality can affect image
interpretation and detection of breast lesions by expert radiologists,7,20,21 it might also be an
influential factor in the performance of a commercial AI-based CAD system. Currently, there
are studies analyzing the effect of breast density on these systems,22,23 but to the best of our
knowledge, the relationship of their performance with other parameters has not yet been inves-
tigated. The exponential development of AI systems applied to diagnostic imaging leads to the
need to develop methods to evaluate their performance and determine whether there are param-
eters that may affect it. Consequently, the aim of this study is to evaluate the performance of a
commercial AI system on a large cohort of screening exams as a function of different technical
and demographic parameters.

2 Materials and Methods

On this study, the performance of a stand-alone AI-based screening tool is analyzed. For this
purpose, the AI predictions on a particular set of screening examinations (inference) are
compared against the clinical diagnostic on the same set (ground truth).
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2.1 AI System

In this work, we have evaluated the robustness of the AI system marketed under the name
Transpara® (version 1.6.0, ScreenPoint Medical, The Netherlands). The model is composed
of two modules that use DL convolutional neural networks, image analysis algorithms, and fea-
ture classifiers to detect both calcifications24,25 and soft tissue lesions (nodules or masses, dis-
tortions in the architecture of the breast parenchyma, and asymmetries).26–28 The soft tissue and
calcification findings (showed as contoured and diamond marked regions, respectively) are sub-
sequently combined to determine the suspicious region findings, assigning each region a value
between 1 and 100, which represents the level of suspicion that the lesion is malignant
(100 being the highest level of suspicion). Finally, dedicated algorithms are used to combine
the scores of all regions detected on the right/left breast CC/MLO images into the exam-based
score (AI score), which ranges from 1 to 10 (10 representing the higher probability that cancer is
present). This score represents the overall probability of cancer on mammography, and it is cali-
brated so that approximately the same number of exams classified as normal (which is 10% of
the total number of normal exams) falls in each AI score level (1 to 10).

The analyzed system works on full-field digital mammograms and is supported by exami-
nations performed by mammography units of different manufacturers. At the moment of this
study, the algorithm had been trained on 8800 biopsy-diagnosed cancer-positive exams,
5000 benign exams diagnosed by biopsy or by 1 year of patient follow-up, and 183,000 non-
cancerous exams, verified by 1 year of follow-up in the case of clinical diagnostic exams, or by
2 years of follow-up in the case of screening programs. These examinations were originated from
devices from four different vendors (Siemens, Hologic, General Electric, Philips) and from
institutions across Europe, United States, and Asia.29 Since Transpara is a commercial product
and is not an open-source code, it is neither possible to provide further details on the model
architecture nor on the train-test split that was used to train and validate the model.
However, it is worth noting that none of the images that were used in this study had been pre-
viously seen by the algorithm during its training, validation, or testing.

2.2 Characteristics of the Study

This study has been carried out based on the results obtained when applying the AI system to a
collection of mammography exams belonging to a population-based screening program, which
were acquired consecutively between January and November 2018. Examinations within this
time period were retrospectively collected from the picture archiving and communication sys-
tem (PACS) without applying any additional selection criteria. The screening exams were all
acquired at a single European institution with devices from two different vendors: Mammomat
Inspiration (Siemens Healthineers, Forchheim, Germany) and Selenia Dimensions (Hologic
Inc, Bedford, Massachusetts, United States), roughly 70% acquired with the former and
30% with the latter. To simplify, from now on, we will refer to these mammography units
as “Vendor 1” (Siemens) and “Vendor 2” (Hologic). The imaging protocol consisted of the
acquisition of two views per breast (CC and MLO) and the double reading of the mammogram
by two radiologists independently. In total, six radiologists were involved in the screening read-
ing in this sample. No information is available on interval cancers (cases diagnosed between
consecutive screening rounds) or on the follow-up for normal exams.

Each examination was accompanied by the following details: the age of the woman, the
thickness of the breast, the compression applied during the examination, the glandular dose,
the density of the breast, the mammography unit in which the examination was performed, with
its corresponding anode/filter combination, and the clinical diagnostic (ground truth), dichoto-
mized as 0, without cancer, or 1 with cancer, corroborated by biopsy as the gold standard. For
each patient, breast density was estimated independently for each of the four views (CC and
MLO for each breast) as the volumetric breast percent dense tissue volume (PDV), using a
DL algorithm that works on processed digital mammograms, developed by Vanegas et al.30

However, the mean value of both breasts in CC view was taken as the PDV for each patient,
since the value in MLO view may be affected by the presence of the pectoral muscle in the
images. The population characteristics are shown in Table 1.
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Regarding beam quality, Vendor 1 keeps the anode/filter combination of W/Rh for all exam-
ined breasts, regardless of thickness [Fig. 1(a)], whereas in the units from Vendor 2, the rhodium
filter (W/Rh) is preferred for breasts thickness of less than ∼70 mm, and silver (W/Ag) for
greater thicknesses [Fig. 1(b)]. The characteristics of both units (Vendor 1 and Vendor 2) are
shown in Table 2.

Fig. 1 Distribution of exams performed with (a) Vendor 1 (Siemens) and (b) Vendor 2 (Hologic)
and the anode/filter combination as a function of the breast thickness.

Table 1 Overall demographic and examination-related characteristics of the examinations
included in the study [median, range and interquartile range (IQR)]. They are shown for all the
examinations, and for those obtained with the unit from Vendor 1 and from Vendor 2.

Parameter Total Siemens Hologic

Number of exams 17,777 12,125 (68.2%) 5,652 (31.8%)

Cancer prevalencea 114 (6.4/1000) 81 (6.7/1000) 33 (5.9/1000)

Age Median 58 58 57

Range 48 to 69 48 to 69 50 to 69

IQR 54 to 63 54 to 63 53 to 63

Thickness (mm) Median 59 59 59

Range 13 to 117 13 to 117 16 to 106

IQR 49 to 68 49 to 68 48 to 68

PDV (%) Median 10.15 9.86 10.78

Range 4.55 to 44.22 4.55 to 42.34 5.07 to 44.22

IQR 8.11 to 13.55 7.83 to 13.23 8.75 to 14.20

Compression (N) Median 117 115 121

Range 16 to 275 16 to 220 25 to 275

IQR 100 to 140 99 to 138 100 to 145

Glandular dose (mGy) Median 1.2 1.1 1.7

Range 0.04 to 5.2 0.04 to 4.1 0.5 to 5.2

IQR 0.9 to 1.6 0.9 to 1.4 1.2 to 2.1

aRatio of positive cancer examinations, corroborated by biopsy as the gold standard.
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2.3 Statistical Analysis

The sensitivity and specificity of the AI system has been studied by means of the area under the
curve (AUC) of the receiver operating characteristic (ROC) curve. We have evaluated the in-
fluence of the following technical and demographic parameters on the results of the AI algo-
rithm: the mammography unit manufacturer and the corresponding anode/filter combination
(beam quality), the round of screening in which the woman is examined, the age of the patient,
the compression applied, the thickness of the breast, the PDV, and the delivered glandular dose.

To this end, the AUC of the system was obtained for different intervals of these parameters and
then the respective AUC values were compared to determine whether there are statistically sig-
nificant differences between them. These intervals were defined as follows: two intervals separated
by the median for the age, compression, thickness, and dose, and four for the density, separated on
the basis of the quartiles. In all cases except for the density, the median was chosen as the threshold
value to maximize the statistical power of the comparison, avoiding unbalanced intervals in num-
ber of exams (especially of cancer-positive tests). Particularly, breast density was divided based on
the quartiles of the distribution to show the possibility of making a comparison of performance
between four classes, which was inspired by the BI-RADS classification of breast densities.
However, this does not imply a one-to-one relationship between the four intervals and
BI-RADS category scales. In the case of the vendor, the anode/filter combinations and the round
of screening, no intervals have been distinguished, but the comparison has been made between the
AUCs obtained for each case (i.e., Vendor 1 versus Vendor 2; W/Rh versus W/Ag, etc.).

Spearman’s rank correlation coefficient (ρ) was used to obtain the correlations between the
different parameters, to show that they are independent and therefore require separate analysis,
assuming weak correlation for values 0 ≤ ρ ≤ 0.40, and strong correlation for values of
ρ ≥ 0.70.33 A Kruskal–Wallis test was performed to determine whether there were statistically
significant differences between PDVs obtained from each view (CC and MLO). Bootstrapping
was used to calculate the 95% confidence interval (CI) of the AUC. In the case of this study,
bootstrapping analysis was also used to obtain the P-value (P) and to analyze whether there
were statistically significant differences between two samples by hypothesis testing. For all stat-
istical tests, we assumed a 95% confidence level, so significance was assumed if P < 0.05. The
libraries SciPy34 and scikit-learn35 from Python 3.8 have been used in the statistic analysis of this
study and to obtain the AUC values of the ROC curves.

3 Results

3.1 Correlation between Parameters

The values of the Spearman’s rank correlation coefficients (Table 3) indicate a weak correlation
between most parameters except for breast thickness and dose, especially in the case of Vendor 2.
With the exception of these two parameters, the lack of correlation between the rest indicates that
the analysis should be performed independently for each of them.

3.2 AI System’s Overall Performance

The distribution of screening exams according to the AI score is shown in Fig. 2(b). As seen in
the image, normal exams are evenly distributed throughout all the categories, with ∼10% of all

Table 2 Technical characteristics of the different mammography units involved in the study.31,32

Vendor Anode Filter Detector Detector size Detector pitch Pixel array

Siemens W 50 μm Rh aSe 24.0 × 30.0 cm 85 μm 2800 × 3518

Hologic W 50 μm Rh aSe 23.3 × 28.7 cm 70 μm 3328 × 4096
50 μm Ag

aAbbreviations: aSe, amorphous selenium; W, tungsten; Rh, rhodium; Ag, silver.
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the tests being grouped together in each one, which was expected due to the calibration of the
system. The AI system classifies about 90% (87.7%) of all positive tests into category 10, which
represents the maximum probability of the presence of cancer, and 96.5% into categories 5 to 10,
both inclusive. The AI system’s overall AUC resulted in 0.92 (95% CI = 0.89 to 0.95). The ROC
curve is represented in Fig. 2(a). For a threshold score of 10.0, the sensitivity and specificity
values are obtained as 87.7% and 87.5%, respectively.

3.3 Dependence of the AI System with the Different Parameters

3.3.1 Mammography unit manufacturer

The diagnostic capability of the system as a function of the mammography equipment (inde-
pendent of image quality) was determined by the AI score of the examinations performed with
each equipment. The median of the AI scores obtained with Vendor 1 (Me = 5.83) and Vendor 2
(Me = 4.86) was found to be significantly different according to the Kruskal–Wallis test
(ΔMe ¼ 0.97, P < 0.001). For a threshold value of 10.0, the sensitivity and specificity of the
system with the exams performed by Vendor 1 is 90.1% and 86.4%, respectively, whereas for the

Fig. 2 (a) Distribution of true negative, true positive, and total screen exams as a function of the AI
system’s score (1 to 10). It is observed that normal tests are evenly distributed across all catego-
ries, with approximately 10% of all tests falling into each category, which is to be expected due to
the calibration of the system. (b) ROC Curve and AUC value of the AI system evaluated over all
exams.

Table 3 Spearman’s rank correlation coefficient values (ρ) for the different parameter pairs for the
total cohort of exams and for the exams performed by both vendors.

Parameters Total Siemens Hologic

Age versus thickness 0.02 0.02 0.01

Age versus density −0.23 −0.02 −0.23

Thickness versus compression 0.27 0.26 0.3

Thickness versus dose 0.66 0.66 0.85

Thickness versus density −0.57 −0.59 −0.55

Compression versus dose 0.24 0.2 0.3

Compression versus density −0.28 −0.27 −0.35

Dose versus density −0.09 −0.09 −0.28
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examinations performed by Vendor 2 are 81.8% and 89.7%, respectively . However, as seen in
Figs. 3 and 4, the distribution of screening exams as a function of the AI score is similar for both
vendors. In addition, no significant differences (P > 0.05) were found between the AUC of the
AI system obtained only with the examinations performed with Vendor 1 (AUC = 0.93 (95%
CI = 0.89 to 0.96)) from those with Vendor 2 (0.92 (95% CI = 0.86 to 0.96)), this difference
resulting in 0.01 (95% CI ¼ −0.05 to 0.07, P ¼ 0.48).

3.3.2 Anode/filter combination

In the case of Vendor 2, the AUC of the model was obtained as a function of the anode/filter
combination used (W/Ag or W/Rh, as shown in Table 2). The Kruskal–Wallis test indicates that
there are not statistically significant differences between the scores of the two samples
(P ¼ 0.85). In addition, the AUC with both combinations was obtained 0.90 (95% CI = 0.84
to 0.96) with W/Rh and 0.95 (95% CI = 0.93 to 0.98) with W/Ag, resulting in a not significant
difference of 0.05 (95% CI ¼ −0.005 to 0.104, P ¼ 0.47).

3.3.3 First round of screening

The distribution of screening examinations performed as a function of the age of the woman is
shown in Fig. 5. It has been considered that women between 48 and 51 years old are initiated into

Fig. 3 (a) Distribution of true negative, true positive, and total number of exams as a function of the
AI score and (b) ROC curve and AUC value of the AI system for the examinations performed with
Vendor 1 (Siemens).

Fig. 4 (a) Distribution of true negative, true positive, and total number of exams as a function of the
AI score and (b) ROC curve and AUC value of the AI system for the examinations performed with
Vendor 2 (Hologic).
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the program, therefore being examined in their first round of screening. As seen in the figure, this
round concentrates the majority of exams (both cancer and non-cancer cases). The AUC of the
system was 0.92 (95% CI = 0.86 to 0.97) with the examinations from the first round and 0.92
(95% CI = 0.89 to 0.96) from the rest of the rounds, which resulted in an AUC difference of
0.0001 (95% CI ¼ −0.060 to 0.072, P ¼ 0.48), considered not statistically significant.

3.3.4 Age of the woman

The ROC analysis has been also performed by dividing mammography exams into two intervals
according to the age of the woman [Fig. 6(a)]. The first group comprises women between 48 and
58 years old, as it has been previously shown that the first interval does not affect the

Fig. 5 Histograms of the number of exams performed resulting in (a) cancer cases (truth = 1) and
(b) noncancer cases (truth = 0) according to the age of the women considered in the study.

Fig. 6 Comparison of the different ROC curves together with the corresponding AUC (legend)
obtained for each of the intervals of each parameter, being (a) age of the woman, (b) thickness
of the breast, (c) applied compression, (d) density in terms of PDV, (e) glandular dose from Vendor
1, and (f) glandular dose from Vendor 2.

Riveira-Martin et al.: Multi-vendor robustness analysis of a commercial artificial intelligence system. . .

Journal of Medical Imaging 051807-8 Sep∕Oct 2023 • Vol. 10(5)



performance, whereas the second group comprises women between 59 and 69 years old. The
AUC of the system accounting for the exams from the first interval results in 0.92 (95% CI = 0.87
to 0.96) and for the second interval is 0.93 (95% CI = 0.89 to 0.97). The difference between both
AUCs is not statistically significant, being 0.01 (95% CI ¼ −0.05 to 0.08, P ¼ 0.51).

3.3.5 Thickness of the breast

The AUC has been computed for two samples according to the thickness of the breast [Fig. 6(b)].
The first sample corresponds to low thickness breasts (from 13 to 59 mm) and the second to high
thickness breasts (from 60 to 117 mm). It has been obtained that the AUC of the system for the
examinations corresponding to the first interval (0.92, 95% CI = 0.86 to 0.96) does not show
significant differences with the AUC from the second interval (0.93, 95% CI = 0.89 to 0.96),
being this difference 0.01 (95% CI ¼ −0.04 to 0.08, P ¼ 0.49).

3.3.6 Compression applied

The values representing the compression applied to the breast during the examination were also
divided into two intervals: low compression values (20 to 117 N) and higher values (118 to
275 N) [Fig. 6(c)]. The difference between the AUC of the AI system with data from the first
interval (0.95, 95% CI = 0.92 to 0.98) and from the second interval (0.90, 95% CI = 0.85 to 0.94)
was 0.05 (95% CI ¼ −0.003 to 0.11, P ¼ 0.49), which is not statistically significant.

3.3.7 Density of the breast

The AUC was obtained according to each of the four intervals into which the PDV was divided,
and compared across all [Fig. 6(d)]. The AUC of the system for each interval and their com-
parison is shown in Table 4, where it can be seen that the difference between AUCs for each pair
of intervals is not statistically significant.

3.3.8 Delivered dose

We obtained the dependence of the AI system’s performance with the delivered dose according
to the manufacturer of the unit. For each vendor, the dose values were divided into two intervals,
as shown in Table 5. In the case of Vendor 1, the difference in AUCs from two intervals is 0.01
(95% CI ¼ −0.06 to 0.09, P ¼ 0.485) [Fig. 6(e)] and in case of Vendor 2 this difference results
in 0.11 (95% CI = 0.003 to 0.23, P ¼ 0.476) [Fig. 6(f)], both differences being not statistically
significant.

Table 4 AUC values for each of the four density intervals and AUC differences (ΔAUC) between
each pair of intervals. For visualization purposes, the comparisons between int 1 versus int 3 and
int 4 versus int 3 are not shown, although they present AUC differences of 0.03 (95%CI ¼ −0.05 to
0.11) and 0.001 (95%CI ¼ −0.11 to 0.10), respectively, with P > 0.05 for both. The P-value higher
than 0.05 indicates that there are no statistically significant differences between intervals.

Interval PDV range (%) AUC CI (95%) Intervals ΔAUC CI (95%) P

1 4.55 to 8.11 0.93 0.88 to 0.97 Int 2 versus Int 1 0.03 −0.03 to 0.07 0.50

2 8.11 to 10.15 0.96 0.91 to 0.99 Int 2 versus Int 4 0.05 −0.03 to 0.16 0.48

3 10.15 to 13.55 0.90 0.84 to 0.96 Int 2 versus Int 3 0.06 −0.02 to 0.14 0.49

4 13.55 to 44.22 0.91 0.81 to 0.98 Int 1 versus Int 4 0.02 −0.07 to 0.13 0.48

aAbbreviations: ΔAUC, difference between AUC for each interval.
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4 Discussion

Image quality has a major impact on the diagnostic rate of AI to evaluate breast cancer, as high-
quality images may favor the detection and diagnosis of lesions.36 Therefore, in this work, we
have evaluated the predictive ability of the AI system is independent of the mammography unit
manufacturer (based on two vendors) Transpara and its potential dependency on certain param-
eters that may affect the image quality and thus, the prediction of the system.

Spearman’s rank correlation coefficients showed weak correlations between most of the ana-
lyzed parameters, except for breast thickness and dose, which show stronger positive correlation
especially in the case of Vendor 2. This correlation was expected, as showed by other studies,37

as larger thicknesses require higher doses to maintain optimal image quality.10 In addition, thick-
ness and density also showed an inverse weak correlation with the grade of breast density, which
has also been showed in the literature.37 However, no pair of parameters showed such a strong
correlation as to be excluded from the analysis.

The obtained AUC index of the system, accounting for all the examinations (0.92, 95% CI =
0.89 to 0.95) indicates high classification accuracy. In addition, the sensitivity (87.7%) and
specificity (87.5%) values for a threshold score of 10.0, are in the range of the reference values
of sensitivity and specificity for mammographic screening exams in the United States, which are
86.9% and 88.9% respectively, obtained from the Breast Cancer Surveillance Consortium
(BCSC).38 The high proportion of correctly classified cases (category 10) indicates that the ana-
lyzed system is highly sensitive, which is consistent with the value of the AUC obtained from the
ROC curve. This value is also consistent with other studies performed with Transpara for differ-
ent sets of examinations.4,6,22,29,39

The values for sensitivity and specificity of the system for the examinations performed by
each vendor are also similar to the reference values from the BCSC.38 Nevertheless, it is impor-
tant to note that the number of examinations performed with Vendor 1 is considerably higher
than with Vendor 2 (68% versus 32%, respectively). This implies that the data are unbalanced,
which may explain why a statistically significant difference was found between the medians of
the two groups and the lower AUC for Vendor 2 (Figs. 3 and 4). However, the ratio of positive
cancer examinations is similar in both groups (~6/1000), which may explain that this difference
was found to be not statistically significant. Therefore, we conclude that the diagnostic capability
of Transpara, obtained in terms of sensitivity and specificity, does not depend on the mammog-
raphy equipment used, in this case, Siemens and Hologic. In addition, it was shown that the
anode/filter combination in the case of Vendor 2 units neither affects the accuracy of the system.
These results are in agreement with other studies that use multicenter and multi-vendor data
(Siemens Healthineers, Hologic, Philips, General Electric) to demonstrate the stand-alone breast
cancer detection with Transpara.4,29

Breast cancer screening programs are performed at 2-year intervals. In the first round of
screening, when women between 48 and 51 years old are initiated into the program, many
of the lesions are seen for the first time, so radiologists refer more women to the specialist
oncologist and more cancers are detected. That is why most of the examinations are concentrated
on this first round, as seen in Fig. 5. Besides, it has been shown that breast cancer prevalence, the
cancer detection rate, and all secondary screening mammography performance measures
increase substantially with age.40 However, this study showed that neither the age of the woman

Table 5 Dose intervals for both vendors. The range of the interval and the AUC of the system for
the examinations within it are shown.

Vendor Interval Range (mGy) AUC CI (95%)

Siemens 1 0.04 to 1.1 0.92 0.85 to 0.97

2 1.2 to 4.1 0.93 0.88 to 0.97

Hologic 1 0.5 to 1.7 0.85 0.73 to 0.95

2 1.8 to 5.2 0.96 0.93 to 0.98
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nor the fact that the examination belongs to the first round of screening affects the accuracy of the
system.

Compression, thickness, and glandular dose are also potential parameters that can affect
image quality and thus the AI system capability, as they directly impact upon factors, such
as image blurring or spatial resolution, which are crucial for lesion detection in the case of
radiologists.8 However, we obtained that the AUC of the system was not affected by different
values of these parameters. Nevertheless, regarding the glandular dose given with Vendor 2
[Fig. 6(f)], it is worth noting that the ROC curve for interval 2 (higher doses) comprises a larger
AUC than for interval 1 (lower doses), in turn, making the difference greater (0.11 (95% CI =
0.003 to 0.23). This result may be due to the fact that the proportion of cases with cancer is lower
in the low-dose interval (4.5/1000 versus 7.2/1000 in the first and second interval, respectively),
so more cases would be needed to backup this result.

Breast density (PDV) is the only parameter that has been treated differently, dividing its
distribution into four intervals. As indicated in previous sections, this classification was inspired
by the BI-RADS classification. Initially, it was intended to establish a one-to-one relationship
between interval boundaries and BI-RADS values reported by other authors, such as the Volpara
density grades.41 However, since our data are not evenly distributed, the classes were not bal-
anced in terms of the number of exams, thus diminishing the statistical power of the comparison.
Nevertheless, it was found that the capacity of Transpara, in terms of AUC, does not vary accord-
ing to the four defined density categories. This result is in agreement with another two studies
that analyze the diagnostic capacity of Transpara as a function of density. In the study by Dustler
et al.,23 they found no evidence of significant differences in the risk scores assigned to breast
cancer cases in different BIRADS density categories, but point out that the system applies sys-
tematically higher scores for normal cases in certain BIRADS density categories. Lauritzen
et al.22 found that the AI-based screening worked equally well across all breast densities.

Our results suggest that the AI system analyzed in this work (Transpara®, version 1.6.0,
ScreenPoint Medical, The Netherlands) has a robust diagnostic capability, and that its accuracy
is independent of the mammography equipment used, beam quality, screening round, woman’s
age, breast thickness and applied compression, density defined as PDV, and glandular dose.
As future work, it would be interesting to improve the statistical power of the study by increasing
the proportion of cases with cancer, as well as to include information on the outcome of the
system with benign lesions. With respect to breast density, it would also be worth performing
the same analysis on the four BI-RADS densities, in addition to studying the dependence of other
parameters that have not been considered in this study, such as the positioning, radiographic
techniques, the race or ethnicity of the woman, the reproductive history, or history of
cancer.

5 Conclusion

Population-based screening programs play a crucial role in the early detection of breast cancer,
and AI-based systems represent a breakthrough in both speed and accuracy of diagnosis. This
will enable more cost-effective scenarios in which the role of the human reader will change
significantly. However, before being put into practice, it is necessary to thoroughly validate these
systems and demonstrate that their diagnostic capability does not depend on factors related to
either image quality or the screening population. The AI system analyzed in this work has been
shown to be a robust and highly accurate model, whose diagnostic capability has not been
affected by the parameters studied.
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