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comparing different radiologic imaging modalities
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ABSTRACT. Purpose: The most frequently used model for simulating multi-reader multi-case
(MRMC) data that emulate confidence-of-disease ratings from diagnostic imaging stud-
ies has been the Roe and Metz model, proposed by Roe and Metz in 1997 and later
generalized by Hillis (2012), Abbey et al. (2013), and Gallas and Hillis (2014). These
models have been used for evaluating MRMC analysis and sample size methods. The
models suggested in these papers for assessing type I error have been null models,
where the expected area under the receiver-operating-characteristic curve across read-
ers is the same for each test. However, for these null models, there are other differences
that would not exist if the two tests were identical. None of the papers mentioned above
discuss how to formulate a null model that is also an identical-test model, where the two
tests are identical in all respects. The purpose of this paper is to show how to formulate
a Roe and Metz identical-test model and to show its usefulness for validating the error
covariance constraints employed by the Obuchowski-Rockette (1995) method.

Approach: For a given Roe-and-Metz model, the corresponding Roe-and-Metz
identical-test model is derived by modifying the Roe and Metz null model under the
assumption that the two tests are identical.

Results: The importance of the Obuchowski-Rockette model constraints for avoid-
ing negative variance estimates is established using data simulated from the Roe
and Metz identical-test model. It is also shown that negative variance estimates can
occur at nontrivial rates when the two tests are not identical but somewhat “close” to
being identical.

Conclusions: The findings of this paper are important because it has recently been
shown (Hillis, 2022) that the commonly used MRMC method proposed by Gallas
(2006) and Gallas et al. (2009) uses the same test statistic as the unconstrained
Obuchowski-Rockette method.
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1 Introduction
For the typical diagnostic radiology study, several readers (usually 4 to 10 radiologists) assign
confidence-of-disease ratings to each case (i.e., subject) based on one or more corresponding
radiologic images, using one or more tests (typically imaging modalities), with the numbers
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of diseased and nondiseased cases each typically between 25 and 100. The resulting data are
called multi-reader multi-case (MRMC) data. These studies are typically used to compare differ-
ent imaging modalities with respect to reader performance. Often measures of reader perfor-
mance are functions of the estimated receiver-operating-characteristic (ROC) curve, such as
the area under the ROC curve (AUC). Throughout we assume AUC is the reader performance
metric of interest. Two commonly used methods for analyzing reader performance outcomes that
allows conclusions to generalize to both the reader and case populations are the method proposed
by Obuchowski and Rockette1 and later modified by Hillis,2 which will be referred to as the
“OR” method, and the method proposed by Gallas3 and Gallas et al.,4 which will be referred
to as the “Gallas” method.

The most frequently used model for simulating MRMC data has been the model first pro-
posed by Roe and Metz5 and later generalized by Hillis,6 Abbey7 and Gallas and Hillis.8 We will
refer to each of these models as a “Roe and Metz” or “RM” model when there is no need to
distinguish between them. These RM models have been used for evaluating MRMC analysis and
sample size methods. As discussed by Hillis,9 these RM models generate continuous confidence-
of-disease ratings based on an underlying binormal model for each reader, with the separation
between the normal and abnormal rating distributions varying across readers.

The parameter settings included in the original RM paper5 result in RM “null” models,
where the mean AUC across readers is the same for each test. These null models are useful for
evaluating the performance of MRMC methods with respect to type I error for the hypothesis of
equal test AUCs. However, these null models can result in correlations for the simulated ratings
that would be different if the two tests were identical. For example, it will be shown that between-
test correlations of case ratings generated from the RM null model are less than or equal to
corresponding correlations when the two tests are identical.

An RM null model where the two tests are identical will be referred to as an “identical-test”
model. Although there is no reason to compare two tests that are known to be identical, some-
times it is of interest to compare two tests that are quite similar is most respects, e.g., when the
two tests are the same imaging modality but used with slightly different radiation doses. For
this situation a researcher likely would want to test if the lower-dose modality is noninferior
or equivalent to the higher dose modality. For such situations, it is important to know that the
MRMC analysis method being used performs well when the tests are close to being identical,
not only in terms of AUC, but in other ways.

A discussion of how to determine parameter settings that result in an identical-test model is
not provided in the original RM paper or in any of the previously mentioned papers that general-
ize the original RM model. The purpose of this paper is to show how to formulate an RM iden-
tical-test model and to show its usefulness for validating the need for the error covariance
constraints employed by the OR method. A summary of the paper is as follows: a review of
the various RM models is provided in Sec. 2, the definition and derivation of an RM identi-
cal-test model are provided in Sec. 3 with illustrative examples in Sec. 4, a brief review of the
conventional OR, unconstrained OR and Gallas methods is provided in Sec. 5 with simulation
studies comparing the methods in Sec. 6, a discussion of how a negative OR variance can occur is
presented in Sec. 7 with illustrative simulation studies in Sec. 8, followed by a summary and
discussion in Sec. 9.

2 Roe and Metz null Models: Original, Constrained, and
Unconstrained Unequal-Variance

2.1 Original RM Null Model
Let X denote a confidence-of-disease rating assigned by a reader to a case; X is often called
a decision variable (DV). The original RM simulation model proposed by Roe and Metz5 is
a mixed four-factor (test, reader, case, and truth) ANOVA model for X with case nested within
truth; test, reader, and truth crossed; test and truth treated as fixed factors; and reader and case
treated as random factors.

Using their notation, their null model is given as

EQ-TARGET;temp:intralink-;e001;114;86Xijkt ¼ μposIft¼þg þ Rjt þ Ckt þ ðτRÞijt þ ðτCÞikt þ ðRCÞjkt þ ðτRCÞijkt þ Eijkt; (1)
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where Xijkt denotes the confidence-of-disease rating assigned to case k of truth state t by reader j
when reading under test i, with t = “−” indicating a nondiseased case and t = “+” indicating a
diseased case. Here μpos is the expected difference in the means for the diseased and nondiseased
DV distributions, Ift¼þg is an indicator function that takes the value 1 when t ¼ þ and 0 when
t ¼ −, Rjt is the interaction effect of reader j and truth state t, Ckt is the effect of case k nested
within truth state t, the multiple symbols in parentheses denote interactions, and Eijkt is the error
term. By comparison, the nonnull model given by Roe and Metz is the same as Eq. (1) except that
it also includes a test-by-truth interaction term, denoted by τit, which is implicitly set to zero in
the null model Eq. (1).

All effects in Eq. (1) are random except for μpos. The random effects are mutually indepen-
dent and normally distributed with zero means. Roe and Metz denote the corresponding variance
components by σ2R, σ

2
C, σ

2
τR, σ

2
τC, σ

2
RC, σ

2
τRC, and σ2E. They note that σ2τRC and σ2E cannot be

estimated separately for this model with no replications, and hence define

EQ-TARGET;temp:intralink-;e002;117;574σ2ε ≡ σ2τRC þ σ2E: (2)

Although not mentioned by Roe and Metz, the omission of effects that do not depend on
truth is justified by the invariance of the ROC curve to location shifts; thus, inclusion of these
terms would not change the ROC curve for a given reader. Note that interactions with truth are
denoted only by a t subscript in Eq. (1). Roe and Metz constrain the sum of the error variance and
variance components involving case to be equal to one:

EQ-TARGET;temp:intralink-;e003;117;489σ2C þ σ2τC þ σ2RC þ σ2ε ¼ 1: (3)

It can be shown (e.g., Hillis9) that the reader nondiseased and diseased DV distributions have
unit variances (and hence their ROC curves are symmetric about the negative 45 deg diagonal),
with the reader true AUCs varying across the reader population and having the same expectation
for each test. Furthermore, a randomly selected reader has the same ROC curve under each test.

2.2 Constrained and Unconstrained Unequal-Variance RM Null Models
In practice, estimated binormal-model nondiseased and diseased DV variances for a fixed reader
are often different, with diseased subjects typically having more variable case ratings. To better
emulate real data, Hillis6 modified the original RM model by allowing the error variance and
variance components involving case to depend on truth, with variance components involving
diseased cases set equal to those involving normal cases multiplied by the factor 1∕b2,
b > 0: Specifically, the null model is given by Eq. (1) with variance components (using an
obvious notation) denoted as

EQ-TARGET;temp:intralink-;e004;117;307σ2R; σ
2
τR; σ

2
Cð−Þ; σ

2
τCð−Þ; σ

2
RCð−Þ; σ

2
εð−Þ; σ

2
CðþÞ; σ

2
τCðþÞ; σ

2
RCðþÞ; σ

2
εðþÞ; (4)

with

EQ-TARGET;temp:intralink-;e005;117;268σ2CðþÞ ¼ b−2σ2Cð−Þ; σ
2
τCðþÞ ¼ b−2σ2τCð−Þ; σ

2
RCðþÞ ¼ b−2σ2RCð−Þ; σ

2
εðþÞ ¼ b−2σ2εð−Þ: (5)

Similar to Eq. (3), the constraint

EQ-TARGET;temp:intralink-;e006;117;229σ2Cð−Þ þ σ2τCð−Þ þ σ2RCð−Þ þ σ2εð−Þ ¼ 1; (6)

is imposed. It follows that

EQ-TARGET;temp:intralink-;sec2.2;117;190σ2CðþÞ þ σ2τCðþÞ þ σ2RCðþÞ þ σ2εðþÞ ¼ b−2:

Following Hillis,6 we refer to this as the “constrained unequal-variance RM null model.”
It follows6 from Eq. (5) that setting b ¼ 1 results in the original RM model and that b is the
conventional binormal-model slope coefficient for each reader’s ROC curve.

A more general RM null model, called the “unconstrained unequal-variance RM null model”
by Hillis,9 results if the variance components σ2CðþÞ, σ

2
τCðþÞ, σ

2
RCðþÞ, and σ

2
εðþÞ are not constrained

to satisfy any particular relationship with σ2Cð−Þ, σ
2
τCð−Þ, σ

2
RCð−Þ, and σ

2
εð−Þ. This model includes the

original and constrained unequal-variance RM null models as special applications.
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2.3 Comparison of the RM Null Models
The original RM null model and the constrained and unconstrained unequal-variance RM null
models all have the same mixed linear model formulation, given by Eq. (1); all of them also
constrain the sum of the variance components corresponding to effects involving nondiseased
cases to be equal to 1, as given by Eq. (6). The null models differ only with respect to their
constraints on the variance components corresponding to effects involving diseased cases, with
the original RM model requiring that the variance components be the same as those for the non-
diseased cases, the constrained unequal-variance model requiring that they differ by a factor of
1∕b2 from those for the nondiseased cases, and the unconstrained unequal-variance model not
placing any constraints on them.

3 Proposed RM Identical-Test Model

3.1 Definition of Identical-Test Model
I define two tests to be “identical” if they are the same in all respects. I will derive an RM
identical-test model by applying this definition to an unconstrained unequal-variance RM null
model; since this model includes the original and constrained unequal-variance RM null models
as specific applications, the derivation can also be applied to those models. Recall that the uncon-
strained unequal-variance RM null model is defined by mixed linear model Eq. (1) with variance
components given by Eq. (4) subject only to constraint Eq. (6).

3.2 Derivation of an RM Identical-Test Model
In this section I derive the RM identical-test model by modifying the unconstrained unequal-
variance RM null model. The definition of identical tests implies that model effects (excluding
the error term) cannot differ by test in an RM identical-test model. Thus, if tests i ¼ 1 and i ¼ 2

are identical, it follows that model effects in Eq. (1) that include test do not depend on the value of
the test subscript i. Specifically, ðτRÞijt, ðτCÞikt, and ðτRCÞijkt in Eq. (1) cannot depend on the
value of subscript i; hence ðτRÞ1jt ¼ ðτRÞ2jt, ðτCÞ1kt ¼ ðτCÞ2kt, and ðτRCÞ1jkt ¼ ðτRCÞ2jkt.

Thus I can derive the RM identical-test model from the unequal-variance RM null model
using the following result.

Result 1. Setting test subscript values (i) in Eq. (1) equal to 1 for model effects (excluding
the error term) results in the corresponding RM identical-test model.

Applying Result 1 results in none of the model effects that include test depending on the
value of the test subscript, since it will be the same for all of these effects.

Applying Result 1 to the unequal-variance RM null model given by mixed linear
model Eq. (1) with variance components Eq. (4) subject only to constraint Eq. (6) results in
the identical-test RM null model

EQ-TARGET;temp:intralink-;sec3.2;114;283X̃ijkt ¼ μposIft¼þg þ Rjt þ Ckt þ ðτRÞ1jt þ ðτCÞ1kt þ ðRCÞjkt þ ðτRCÞ1jkt þ Eijkt;

where X̃ijkt is the identical-test model DV. Consolidating random effects results in the equivalent
model

EQ-TARGET;temp:intralink-;e007;114;225X̃ijkt ¼ μposIft¼þg þ R̃jt þ C̃kt þ ðfRCÞjkt þ Ẽijkt; (7)

where
EQ-TARGET;temp:intralink-;sec3.2;114;193

R̃jt ¼ Rjt þ ðτRÞ1jt;
C̃kt ¼ Ckt þ ðτCÞ1kt;

ðfRCÞjkt ¼ ðRCÞjkt þ ðτRCÞ1jkt;
Ẽijkt ¼ Eijkt:

Corresponding variance components for R̃jt, C̃kt, ðfRCÞjkt, and Ẽijkt are given as

EQ-TARGET;temp:intralink-;e008;114;104σ2
R̃
¼ σ2R þ σ2τR; (8)

EQ-TARGET;temp:intralink-;e009;114;66σ2
C̃ðtÞ ¼ σ2CðtÞ þ σ2τCðtÞ; (9)
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EQ-TARGET;temp:intralink-;e010;117;724σ2eRCðtÞ ¼ σ2RCðtÞ þ σ2τRCðtÞ; (10)

EQ-TARGET;temp:intralink-;e011;117;700σ2
ẼðtÞ ¼ σ2εðtÞ − σ2τRCðtÞ: (11)

It follows from Eqs. (6) and (9)–(11) that

EQ-TARGET;temp:intralink-;e012;117;677σ2
C̃ð−Þ þ σ2eRCð−Þ þ σ2

Ẽð−Þ ¼ 1: (12)

In summary, the RM identical-test model derived from the unconstrained unequal-variance
null RM model is given by model Eq. (7) with variance components Eqs. (8)–(11) and con-
straint Eq. (12).

Because the original, constrained unequal variance, and unconstrained unequal variance
RM null models specify values for σ2εðtÞ ¼ σ2τRCðtÞ þ σ2EðtÞ without specifying specific values for

either σ2EðtÞ or σ
2
τRCðtÞ, values must be assigned to σ2τRCðtÞ, t ¼ þ;− for the null model in order to

determine values for σ2eRCðtÞ and σ2
ẼðtÞ in the identical-test model using Eqs. (10) and (11).

For simplicity, for the remainder of this paper I will assume

EQ-TARGET;temp:intralink-;e013;117;539σ2τRCð−Þ ¼ σ2τRCðþÞ ¼ 0 (13)

in the unconstrained unequal variance RM model, resulting in

EQ-TARGET;temp:intralink-;e014;117;502σ2eRCðtÞ ¼ σ2RCðtÞ; (14)

EQ-TARGET;temp:intralink-;e015;117;460σ2
ẼðtÞ ¼ σ2εðtÞ; (15)

in the identical-test model. On the other hand, if the values for σ2τRCð−Þ or σ
2
τRCðþÞ are specified,

then the values for σ2eRCðtÞ and σ2
ẼðtÞ can be computed using Eqs. (10) and (11).

When using the identical-test model for simulations, ratings X1jkt and X2jkt are simulated,
corresponding to tests 1 and 2, respectively. But since the only term on the right of Eq. (7) that
depends on test is the error term, it follows that for a given reader, case, and truth status, the
ratings for the two tests will differ only because their error term values will not be the same.

Note that because the derivation was based on an RM null model, the resulting RM identical-
test model is also an RM null model and is a specific application of the unconstrained unequal-
variance RM null model.

3.3 Comparison of the RM Null Model and the Corresponding RM Identical-Test
Model

The following relationships for the ratings generating from an unconstrained unequal-variance
RM null model and its corresponding RM identical-test model Eqs. (7)–(15) can be shown.

1. Conditional on disease status, the RM null model and the corresponding RM identical-test
model result in the same rating distributions for both tests. Specifically, for either test 1
ði ¼ 1Þ or test 2 ði ¼ 2Þ, Xijk− and X̃ijk− have Nð0; σ2R þ σ2τR þ 1Þ distributions and
X2jkþ and X̃1jkþ have Nð0; σ2R þ σ2τR þ σ2CðþÞ þ σ2τCðþÞ þ σ2RCðþÞ þ σ2εðþÞÞ distributions,
where “Nð0; σ2Þ” indicates a normal distribution with mean 0 and variance σ2.

2. Within-test rating covariances are the same for both models. Specifically, for either test 1
ði ¼ 1Þ or test 2 ði ¼ 2Þ, covðXijkt; Xij 0k 0t 0 Þ ¼ covðX̃ijkt; X̃ij 0k 0t 0 Þ. (Note: here and for rela-
tionship 3 below we do not assume j ≠ j 0; k ≠ k 0 or t ≠ t 0.) For example, the covariance
between ratings for two different nondiseased cases for the same reader and test is given by
cov
k 0≠k

ðXijk−; Xijk 0−Þ ¼ σ2R þ σ2τR ¼ σ2
R̃
¼ cov

k 0≠k
ðX̃ijkt; X̃ijk 0tÞ, and hence is the same for both

models.
3. For the RM null model, between-test covariances are the same or less than correspond-

ing RM identical-test model between-test covariances. That is, covðX1jkt; X2j 0k 0t 0 Þ ≤
covðX̃1jkt; X̃1j 0k 0t 0 Þ: For example, the covariance between ratings for two different
nondiseased cases for the same reader but for different tests is given as
cov
k 0≠k

ðX1jk−; X2jk 0−Þ ¼ σ2R ≤ σ2R þ σ2τR ¼ σ2eR ¼ cov
k 0≠k

ðX̃1jk−; X̃2jk 0−Þ.
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In summary, we see that the only difference between the rating distributions for the two
models is that the between-test covariances for the unconstrained unequal-variance RM model
can be less than those for the RM identical-test model.

3.4 RM Identical-Test Model Expressed in Terms of a Null Unconstrained
Unequal-Variance RM Model with Altered Variance Components

It follows from Eqs. (7)–(15) that the RM identical-test model can be expressed in terms of an
unconstrained unequal-variance RM null model, with RM identical-test variance components
(indicated by an overline) defined in terms of the unconstrained unequal-variance RM null model
variance components as follows, with t ¼ −;þ

EQ-TARGET;temp:intralink-;e016;114;616σ2R ¼ σ2R þ σ2τR; (16)

EQ-TARGET;temp:intralink-;e017;114;578σ2τR ¼ 0; (17)

EQ-TARGET;temp:intralink-;e018;114;558σ2CðtÞ ¼ σ2CðtÞ þ σ2τCðtÞ; (18)

EQ-TARGET;temp:intralink-;e019;114;535σ2τCðtÞ ¼ 0; (19)

EQ-TARGET;temp:intralink-;e020;114;512σ2RCðtÞ ¼ σ2RCðtÞ; (20)

EQ-TARGET;temp:intralink-;e021;114;489σ2τRCðtÞ ¼ 0; (21)

EQ-TARGET;temp:intralink-;e022;114;466σ2EðtÞ ¼ σ2εðtÞ: (22)

The advantage of this approach is that for simulations, an unconstrained unequal-variance
RM null model that is already programmed can be easily modified to produce identical-test
simulations by altering the values of the null model variance components using Eqs. (16)–(22).

3.5 General Definition of an RM Identical-Test Model
It follows from Eqs. (12) and (16)–(22) that an unconstrained unequal-variance null RM is
an RM identical-test model if it can be expressed by mixed linear model Eq. (1) with

EQ-TARGET;temp:intralink-;e023;114;370σ2τR ¼ σ2τCðþÞ ¼ σ2τCð−Þ ¼ σ2τRCðþÞ ¼ σ2τRCð−Þ ¼ 0 (23)

and

EQ-TARGET;temp:intralink-;e024;114;331σ2Cð−Þ þ σ2RCð−Þ þ σ2Eð−Þ ¼ 1: (24)

This result can also be applied to original RM null or constrained unequal-variance RM null
models, since they are specific applications of the unconstrained unequal-variance RM null
model. In particular, it follows from Eqs. (5), (23), and (24) that a constrained unequal-variance
null RM or an original RM null model is an RM identical-test model if it can be expressed by
mixed linear model Eq. (1) with

EQ-TARGET;temp:intralink-;e025;114;244σ2τR ¼ σ2τCð−Þ ¼ σ2τRCð−Þ ¼ 0 (25)

and constraint Eq. (24).

4 Examples of RM Null and RM Identical-Test Models
Table 1 illustrates the derivation of several RM identical-test models from RM null models using
Eqs. (16)–(22). In row 1 of the table are the parameter values for one of the RM null models
proposed by Roe and Metz.5 In row 2 are the variance components for the corresponding RM
identical-test model, computed using Eqs. (16)–(22).

Similarly, in row 3 are the parameter values for a constrained unequal variance null RM
model given by Hillis,6 which has the same median AUC and the same variance components
for random effects involving nondiseased cases as the original RM null model in row 1, but sets
b ¼ 0.711 so that the median mean-to-sigma ratio10 will be 4.50. In row 4 are the corresponding
identical-test parameter values, derived using Eqs. (16)–(22).

Hillis: Roe and Metz identical-test simulation model for validating multi-reader. . .
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Finally, in row 5 is an unconstrained unequal variance null RM model6 with the correspond-
ing identical-test model variance components, again derived using Eqs. (16)–(22), given in row 6.

5 Review and Comparison of Conventional OR, Unconstrained
OR, and Gallas MRMC Methods

5.1 OR Method
The OR method assumes a test × reader factorial ANOVA model for AUC estimates and other
reader performance measure estimates resulting from an MRMC study, with each AUC estimate
corresponding to one reader using one of several tests (typically an imaging modality). Here we
are assuming the study design discussed in the first paragraph of Sec. 1. Unlike a conventional
ANOVA model, the errors are assumed to be correlated to account for correlation due to each
reader evaluating the same cases.

The OR model is given as

EQ-TARGET;temp:intralink-;e026;117;286θ̂ij ¼ μOR þ τi∶OR þ Rj∶OR þ ðτRÞij∶OR þ εij∶OR; (26)

where μOR is the fixed intercept term, τi∶OR denotes the fixed effect of test i, Rj∶OR denotes the
random effect of reader j, ðτRÞij∶OR denotes the random test × reader interaction, and εij∶OR is the
error term. The Rj∶OR and ðτRÞij∶OR are assumed to be mutually independent and normally dis-

tributed with zero means and respective variances σ2R∶OR and σ2τR∶OR. (We include “OR” in effect
and variance component subscripts to distinguish OR effects and variance components from
similarly notated RM-model quantities.) The εij∶OR are assumed to be normally distributed with
mean zero and variance σ2ε∶OR and are assumed uncorrelated with the Rj∶OR and ðτRÞij∶OR. Three
possible error covariances are assumed:

EQ-TARGET;temp:intralink-;sec5.1;117;156

Covðεij∶OR; εi 0j 0∶ORÞ ¼

8><
>:

Cov1 i ≠ i 0; j ¼ j 0ðdifferent test; same readerÞ
Cov2 i ¼ i 0; j ≠ j 0ðsame test; different readerÞ
Cov3 i ≠ i 0; j ≠ j 0ðdifferent test; different readerÞ:

The OR model assumes11

EQ-TARGET;temp:intralink-;e027;117;83Cov1 ≥ Cov3; Cov2 ≥ Cov3; Cov3 ≥ 0: (27)

Table 1 Examples of RM null models and corresponding RM identical-test models.

Row RM model
Model
type μþ ðAzÞa σ2Cð−Þ σ

2
τCð−Þ σ

2
RCð−Þ σ

2
εð−Þ σ2CðþÞ σ2τCðþÞ σ

2
RCðþÞ σ

2
εðþÞ σ2R σ2τR

1 (a) Original5 Null 1.50 (0.856) 0.3 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.0055 0.0055

2 Identical-
test

1.50 (0.856) 0.6 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.0110 0.0000

3 (b) Const.
unequal var.6

Null 1.831 (0.856) 0.3 0.3 0.2 0.2 0.593 0.593 0.40 0.40 0.0082 0.0082

4 Identical-
test

1.831 (0.856) 0.6 0.0 0.2 0.2 1.186 0.0 0.40 0.40 0.0164 0.0000

5 (c) Unconst.
unequal var.9

Null 1.50 (0.826) 0.3 0.3 0.2 0.2 0.4 0.45 0.25 0.35 0.007 0.004

6 Identical-
test

1.50 (0.826) 0.6 0.0 0.2 0.2 0.85 0.00 0.25 0.35 0.011 0.000

Notes: “Const.” = constrained; “Unconst.” = unconstrained; and “var.” = variance; b = 0.771 for the constrained
unequal variance RM model, RM model (b).
aAz is equal to the median AUC across the reader population; the purpose of the parentheses is to indicate that
it is not an RM model parameter used for simulating data, but rather is included to provide additional infor-

mation about the model. It is computed using Az ¼ Φðμþ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2− þ σ2þ

q
Þ, where σ2− ¼ σ2Cð−Þ þ σ2τCð−Þ þ σ2RCð−Þ þ

σ2εð−Þ ¼ 1 and σ2þ ¼ σ2CðþÞ þ σ2τCðþÞ þ σ2RCðþÞ þ σ2εðþÞ.

Hillis: Roe and Metz identical-test simulation model for validating multi-reader. . .
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The OR model can alternatively be described with population correlations

EQ-TARGET;temp:intralink-;e028;114;724ri ¼ Covi∕σ2ε ; i ¼ 1;2; 3; (28)

instead of the covariances, i.e., with Covi replaced by riσ2ε, i ¼ 1;2; 3.
These error variance-covariance parameters are typically estimated by averaging corre-

sponding fixed-reader estimates computed using the jackknife,12–14 bootstrap,14,15 or the method
proposed by DeLong et al.16 (DeLong), with DeLong only for empirical AUC estimates. These
three estimation methods are consistent but are not unbiased. An unbiased error covariance
method, which we will refer to as the “unbiased” method, was recently proposed by Hillis17

for use when empirical AUC is the outcome. This method utilizes the unbiased method
fixed-reader method discussed by Gallas (Ref. 3, p. 362) for estimating the error variance [which
Gallas notes is equivalent to the expressions given by Bamber (Ref. 18, p. 402)] and extensions of
it for estimating the error covariances. OR analysis using this method is included in the freely
available R software package MRMCaov.19

5.2 Conventional OR Test Statistic and Variance Estimate
The conventional OR test statistic for testing the null hypothesis of no test effect
(H0∶τ1 ¼ : : : ¼ τNT

) is given as

EQ-TARGET;temp:intralink-;e029;114;510FOR ¼ MSðTÞ
MSðT � RÞ þmax½NRðdCov2 − dCov3Þ; 0� ; (29)

where MSðT � RÞ ¼ 1
ðNT−1ÞðNR−1Þ

PNT
i¼1

PNR
j¼1ðθ̂ij − θ̂i• − θ̂

•j þ θ̂
••
Þ2, MSðTÞ ¼

NR
NT−1

PNT
i¼1ðθ̂i• − θ̂

••
Þ2, NT ≥ 2 is the number of tests, NR is the number of readers and dCov2

and dCov3 are the Cov2 and Cov3 estimates. Here a subscript replaced by a dot indicates the

average across the corresponding levels; e.g., θ̂i• ¼
PNR

j¼1 θ̂ij∕NR. Under H0, F has an approxi-
mate F distribution with numerator degrees of freedom NT − 1 and denominator degrees of
freedom2

EQ-TARGET;temp:intralink-;e030;114;377ddfH ≡
fMSðT � RÞ þmax½NRðdCov2 − dCov3Þ; 0�g2

½MSðT � RÞ�2∕½ðNT − 1ÞðNR − 1Þ� : (30)

For NT ¼ 2 tests, Eq. (29) can be written in the form

EQ-TARGET;temp:intralink-;e031;114;318FOR ¼ ðθ̂1• − θ̂2•Þ2cvarORðθ̂1• − θ̂2•Þ
; (31)

where

EQ-TARGET;temp:intralink-;e032;114;259

cvarORðθ̂1• − θ̂2•Þ ¼
2

NR
fMSðT � RÞ þmax½NRðdCov2 − dCov3Þ; 0�g; (32)

is the OR estimate for the variance of θ̂1• − θ̂2•.
Note that Eqs. (29)–(32) incorporate the error-covariance constraints given in Eq. (27).

We will sometimes refer to these as the “conventional OR” F statistics, denominator degrees of
freedom estimate and variance estimate, to distinguish them from the unconstrained versions of
these statistics discussed below.

5.3 Unconstrained OR Test Statistics and Variance Estimate
The importance of the OR constraints given in Eq. (27) will be demonstrated by simulations in
Sec. 6. In this section the OR test statistics and variance estimate are defined without constraints
Eq. (27) imposed. Use of these unconstrained test statistics in place of Eqs. (29)–(32) will be
called the “unconstrained OR” method.

Hillis: Roe and Metz identical-test simulation model for validating multi-reader. . .
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The unconstrained OR test statistics, denominator degrees of freedom and variance are
given as

EQ-TARGET;temp:intralink-;e033;117;712FOR;unconstrained ¼
MSðTÞ

MSðT � RÞ þ NRðdCov2 − dCov3Þ ; (33)

EQ-TARGET;temp:intralink-;e034;117;655ddfH;unconstrained ¼
fMSðT � RÞ þ NRðdCov2 − dCov3Þ; 0g2
½MSðT � RÞ�2∕½ðNT − 1ÞðNR − 1Þ� ; (34)

and

EQ-TARGET;temp:intralink-;e035;117;615FOR;unconstrained ¼
ðθ̂1• − θ̂2•Þ2cvarOR;unconstrainedðθ̂1• − θ̂2•Þ

; (35)

where

EQ-TARGET;temp:intralink-;e036;117;562

cvarOR;unconstrainedðθ̂1• − θ̂2•Þ ¼
2

NR
fMSðT � RÞ þ NRðdCov2 − dCov3Þg: (36)

Note that

EQ-TARGET;temp:intralink-;e037;117;507FOR ¼ FOR;unconstrained if dCov2 − dCov3 ≥ 0; (37)

and that Eq. (35) is not defined if Eq. (36) is not positive.

5.4 Equivalence of Gallas and Unconstrained OR F Statistics
When the outcome is the empirical AUC and there are two tests, Hillis17 has shown that the
Gallas method F statistic for testing the null hypothesis of no difference in test AUCs is equiv-
alent to the unconstrained OR method F statistic Eq. (35) when the unbiased covariance esti-

mation method is used to compute dCov2 and dCov3. However, the Gallas denominator degrees of
freedom estimate differs from the conventional and unconstrained OR denominator degrees of
freedom estimates.

5.5 Relationship of OR Model and RM Identical-Test Model
Hillis9 derived the OR parameters for the distribution of empirical AUC estimates simulated
using the unconstrained unequal-variance RM model. I show in Appendix A that it follows from
these results that for data simulated from the unconstrained unequal-variance RM identical-test
model

EQ-TARGET;temp:intralink-;e038;117;291μOR þ τ1∶OR ¼ μOR þ τ2∶OR; (38)

EQ-TARGET;temp:intralink-;e039;117;256Cov2 ¼ Cov3; (39)

EQ-TARGET;temp:intralink-;e040;117;238σ2τR∶OR ¼ 0: (40)

These results are intuitive. The first result states that the expected AUCs (as given by μOR þ
τi∶OR for test i) must be the same for each test and the second result states that Cov2 and Cov3
must be equal, which makes sense since for equal tests the covariances have the same definition.
To understand the third result, we note that it can be shown [Ref. 9, p. 2069] that σ2τR is equal to
half of the variance of the within-reader differences of the expected AUCs; under the assumption
of the identical-test RM model, these differences are zero, and hence σ2τR ¼ 0.

6 Simulation Studies Comparing Conventional and Unconstrained
OR Based on RM Null and Identical-Test Models

6.1 Simulation Study Using Tables 1(a) and 1(b) RM Null and Identical-Test
Models

Multi-reader rating data for five readers, each reading the same cases under two tests, were
simulated based on the original RM null and corresponding RM identical-test models, and

Hillis: Roe and Metz identical-test simulation model for validating multi-reader. . .
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on the constrained unequal variance RM null and corresponding RM identical-test models, given
in Tables 1(a) and 1(b), respectively. (Results based on the Table 1(c) model are omitted from
Table 1 for brevity and because the Table 1(c) RM null model parameter values, unlike the other
two RM null model parameter values, have not been previously suggested in the literature.) For
each model, 5000 simulated MRMC samples were generated for case sample sizes of 25/25 and
50/50 each, where “25/25” indicates 25 nondiseased and 25 diseased cases. The empirical AUC
was computed for each simulated MRMC sample with OR error covariances estimated using the
unbiased error-covariance method. The null hypothesis of equal test AUCs, versus the two-sided
alternative hypothesis, was tested at the 0.05 significance level using both the conventional and
unconstrained OR test statistics, given by Eqs. (31) and (35). Results of the simulations, pre-
sented in Table 2, include the empirical type I error rate; the proportion of samples having neg-
ative variance estimates, as defined by Eq. (32) or Eq. (36); and the proportion of negative values

for dCov2 − dCov3.
If the variance estimate was negative, the type I error rate could not be computed because the

test statistic Eq. (31) or Eq. (35), which is required for deciding whether to accept or reject the
null hypothesis of equal test AUCs, was not defined for all the simulated samples; this situation is
indicated in Table 2 by “NA” (not applicable).

Table 2 OR analysis results using the unbiased covariance method, for 5 readers reading the
same cases under both tests, with 5000 MRMC samples simulated from Table 1 RM null models
(a) and (b) and their corresponding identical-test models for each case size combination.

No. of
cases RM model Model type OR F statistic

Rates

cvarðθ̂1 − θ̂2Þ < 0 Type I error dCov2 − dCov3 < 0

25/25 (a) Original Null Conventional 0 0.050 0

Unconstrained 0 0.050 0

Identical-test Conventional 0 0.043 0.52

Unconstrained 0.039 N/A 0.52

(b) Const.
unequal var.

Null Conventional 0 0.048 0

Unconstrained 0 0.048 0

Identical-test Conventional 0 0.033 0.53

Unconstrained 0.049 N/A 0.53

50/50 (a) Original Null Conventional 0 0.053 0

Unconstrained 0 0.053 0

Identical-test Conventional 0 0.046 0.52

Unconstrained 0.026 N/A 0.52

(b) Const.
unequal var.

Null Conventional 0 0.051 0

Unconstrained 0 0.051 0

Identical-test Conventional 0 0.046 0.53

Unconstrained 0.031 N/A 0.53

Notes: see Table 1 for definitions of “RM model” and “Model type”; OR F statistic = “Conventional” if the OR
constrained F statistic Eq. (32) is used and = “Unconstrained” if the unconstrained F statistic Eq. (33) is used;
“25/25" indicates 25 nondiseased and 25 diseased cases; “type I error” is the proportion of samples where the
null hypothesis of no test effect is rejected; “N/A” stands for “not applicable” and indicates that the empirical type
I error rate could not be computed because the variance of the test statistic, computed using Eq. (36), was

negative for some samples. Note that although dCov2 − dCov3 is not constrained in this table, in the computation
of the conventional OR variance it is constrained to be nonnegative.

Hillis: Roe and Metz identical-test simulation model for validating multi-reader. . .
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6.1.1 RM null model results

We see from Table 2 that when model type = “null,” the empirical type I error rates are the same
for the conventional and constrained OR methods, with the type I rates varying between 0.048
and 0.051. That these rates are the same can be explained by Eq. (37) and by the nonnegativity ofdCov2 − dCov3 for all the samples (as indicated in the last column).

6.1.2 Identical-test model results

In contrast to the null model results reported above, we see in Table 2 that the identical-test
model type I error rates depend on whether the conventional or unconstrained OR method was
used.

Conventional OR results. For the identical-test models the conventional OR type I error
rates vary between 0.033 and 0.046 with no negative variance estimates.

Unconstrained OR results. For the identical-test models, all of the unconstrained OR type
I error rates were undefined (as indicated by “NA” in Table 2) because of negative variance
estimates. For the original RM identical-test and constrained unequal variance RM identical-test
models, respective negative unconstrained OR variance rates were 0.039 and 0.049 for 25/25
samples and 0.026 and 0.031 for 50/50 samples. Note that these negative variance estimate rates
apply also to the Gallas F statistic, since it is the same as the unconstrained OR F statistic,
as discussed in Sec. 5.4.

6.2 Simulation Study Using Original Roe and Metz Null Models and
Corresponding Identical-Test Null Models

In the original Roe and Metz5 paper, four different variance component “structures,” denoted as
“HL,” “LL,” “HH,” and “LH,” are given for μþ ¼ 0.75, 1.5, and 2.50, resulting in twelve different
parameter combinations. In the upper half of Table 3 are the four variance component structures
for μþ ¼ 1.5. In the lower half of Table 3 are the corresponding RM identical-test model struc-
tures that result from application of Eqs. (16)–(22) to the structures in the upper half of Table 3.

Table 3 Subset of original 12 sets of Roe and Metz5 (RM) null simulation model parameter values
and corresponding RM identical-test model parameter values. The Table 4 simulation results are
based on these parameter values. The complete set of 12 sets of parameter values is included in
Table 8.

Structure μþ Az σ2C σ2τC σ2RC σ2ε σ2R σ2τR

(a) Original RM model parameter values

HL 1.5 0.856 0.3 0.3 0.2 0.2 0.0055 0.0055

LL 1.5 0.856 0.1 0.1 0.2 0.6 0.0055 0.0055

HH 1.5 0.856 0.3 0.3 0.2 0.2 0.0300 0.0300

LH 1.5 0.856 0.1 0.1 0.2 0.6 0.0300 0.0300

(b) Corresponding RM identical-test model parameter values

HL 1.5 0.856 0.6 0.0 0.2 0.2 0.0110 0.0000

LL 1.5 0.856 0.2 0.0 0.2 0.6 0.0110 0.0000

HH 1.5 0.856 0.6 0.0 0.2 0.2 0.0600 0.0000

LH 1.5 0.856 0.2 0.0 0.2 0.6 0.0600 0.0000

Notes: μþ is the median and mean separation of the normal and abnormal DV distributions across the reader
population, and Az ¼ Φðμþ∕

ffiffiffi
2

p Þ is the median reader-specific true area under the ROC curve.
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(See Table 8 in Appendix B for a similar table that includes all twelve parameter combinations
and corresponding RM identical-test parameter specifications.)

For each parameter combination in Table 3, 2000 MRMC samples were simulated for each
of 6 combinations of 3 reader levels (3, 5, and 10 readers) and 2 sample size levels (25/25 and
50/50). Each set of 2000 samples was analyzed using the conventional and unconstrained OR
methods, using both unbiased and DeLong error-covariance estimates.

For each error covariance method and model type (null or identical-test), Table 4 presents the
analysis results for each reader and sample size combination, averaged across the four structures
in Table 3. For example, the type I error of 0.061 in the first row of Table 4 is the average of four
empirical type I error rates, corresponding to the four original RM null model structures, resulting
from performing a conventional OR analysis using the DeLong covariance method on each of
2000 simulated MRMC samples for each structure, with each simulated MRMC sample con-
taining rating data from 3 readers reading 25 nondiseased and 25 diseased cases. (For brevity,
averages of the four empirical type I error rates are reported rather than the rates for each separate
structure, since the averages are sufficient to reveal the problem of negative variances with the
unconstrained OR method.)

Results of the simulations, presented in Table 4, include the empirical type I error rate and
the negative-variance rate. The negative-variance rate is the proportion of samples having neg-
ative variance estimates, as defined by Eq. (32) or Eq. (36), for both the conventional and uncon-
strained OR methods. As in Table 2, a value of “NA” for the type I rate indicates at least one
sample had a negative variance estimate, and hence an undefined type I error rate. Table 4 also
includes the averages of the empirical AUC estimates for tests 1 and 2 and the averages of the OR
estimates for Cov2, Cov3, and σ2TR;OR; these last three estimates depend on the OR error covari-
ance method but not on the use of conventional or unconstrained OR.

From Table 4, I make the following remarks.

1. OR results are similar for DeLong and unbiased covariance methods. For the original
RM null model, a comparison of rows 1 to 6 with 13 to 18 shows only slight differences
between the DeLong and corresponding unbiased covariance method results. Similarly,
there are only slight differences between the DeLong and unbiased covariance method
results for the RM identical-test model, as can be seen from comparing rows 7 to 12 with
19 to 24.

2. Conventional OR has acceptable type I rates and no negative variances. For the con-
ventional OR method, type I error averages (across the four structures) are between 0.041
to 0.064, with the overall average type I rate average (not shown) equal to 0.050 for both
the unbiased and DeLong methods. As shown in the “var< 0” column, none of the conven-
tional OR variance estimates, computed using Eq. (32), were negative as expected, since it
is impossible for Eq. (32) to be negative.

3. Unconstrained OR type I errors are undefined for most parameter combinations
because of negative variances. For the unconstrained ORmethod using the DeLong covari-
ance estimation method, 10 of the 12 sets of 8000 samples (2000 samples × 4 structures)
resulted in negative variance estimates (see rows 1-12, “Unconstrained OR” columns). As a
result, type I error was not defined for any of the 6 identical-test parameter combinations, and
only for 2 of the 6 null model combinations (for 10 readers and 50/50 cases, rows 3 and 6).
For the identical-test model, the negative-variance (“var< 0”) rates for the unconstrained OR
method range from 0.3% to 10.4%, with rates being higher for smaller numbers of cases and
readers. For the null model the rates were much smaller, with the highest negative-variance
rate equal to 0.9%; again, rates were higher for smaller numbers of cases and readers. The
above comments also apply to the results for the OR method using the unbiased covariance
estimation method in rows 13 to 24.

4. OR parameter relationships for an identical-test model are validated. For the
identical-test models, the Cov2 and Cov3 estimates are approximately equal and the
OR test-by-reader variance component (σ2TR∶ORÞ estimates are approximately zero, regard-
less of which covariance method is used. Also, the AUC estimates are approximately equal
for each test. These empirical results validate the OR parameter relationships given by
Eqs. (38)–(40) in Sec. 5.5 for identical-test models.
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7 Understanding How a Negative Variance Occurs
We can rewrite Eq. (36) in the form

EQ-TARGET;temp:intralink-;e041;117;707

cvarOR;unconstrainedðθ̂1• − θ̂2•Þ ¼ Aþ B (41)

where

EQ-TARGET;temp:intralink-;e042;117;669A ¼ 2

NR
MSðT � RÞ; B ¼ 2ðdCov2 − dCov3Þ: (42)

The A term will never be negative because MSðT � RÞ cannot be negative. ThuscvarOR;unconstrainedðθ̂1• − θ̂2•Þ can be negative only if dCov2 − dCov3 is sufficiently negative to result
in B < −A. For the unconstrained unequal-variance RM identical-test model, dCov2 and dCov3
have the same distributions; thus EðdCov2 − dCov3Þ ¼ 0 and dCov2 − dCov3 has a symmetric dis-
tribution about 0. It follows that B will be negative with probability 0.5, which is in agreement

with the results in Table 2 where the negative dCov2 − dCov3 rates are ∼50%.
It has been shown by Hillis,17 under the assumption of the unconstrained unequal-variance

RM model, that

EQ-TARGET;temp:intralink-;e043;117;526

EðAÞ ¼ 2

NR
½ðσ2ε∶OR − Cov1Þ þ σ2τR∶OR − ðCov2 − Cov3Þ�

¼ 2σ2ε∶OR
NR

½ð1 − r1Þ þ σ2τR∶OR∕σ2ε∶OR − ðr2 − r3Þ�: (43)

Here and elsewhere in this section I often express Covi ¼ riσ2ε∶OR, i ¼ 1;2; 3 because it has
been shown9 that these correlations remain approximately constant for a given RM model across
different reader sample sizes and case sample sizes, making them easy to interpret.

To simplify the discussion, I now assume that the estimates dCov2 − dCov3 are unbiased,
which is the case when the unbiased error-covariance method is used with OR. Making this
assumption, it follows from Eqs. (41)–(43) that

EQ-TARGET;temp:intralink-;e044;117;379E½cvarOR;unconstrainedðθ̂1• − θ̂2•Þ� ¼
2σ2ε∶OR
NR

½ð1 − r1Þ þ σ2τR∶OR∕σ2ε∶OR þ ðNR − 1Þðr2 − r3Þ�: (44)

Although Eq. (44) assumes unbiased Cov2 and Cov3 estimates, typically we expect the right
side of Eq. (44) to approximate the left side when a reasonable alternative error covariance
estimation method is used, such as the jackknife or DeLong method.

From Eq. (44) it follows that E½cvarOR;unconstrainedðθ̂1• − θ̂2•Þ� increases as ðr2 − r3Þ and
σ2τR∶OR increase, assuming all other parameters in the model remain the same. Thus, recalling
that for an RM identical-test model ðr2 − r3Þ ¼ 0 and σ2τR∶OR ¼ 0, it seems likely that the prob-
ability of a negative variance will decrease as ðr2 − r3Þ or σ2τR∶OR increase. On the other hand,
because Eq. (44) does not depend on the difference of the AUCs, as shown by the omission of
τ1∶OR and τ2∶OR, there is no indication that the probability of a negative variance will decrease or
increase as the magnitude of the AUC difference increases.

8 Simulation Studies for Examining Effects of AUC1 − AUC2;r2 − r1
and σ2τR;OR on Negative Variance Rates

8.1 Purpose
The simulations in Sec. 6 established the usefulness of the identical-test RM model for detecting
the negative variance problem inherent in using the unconstrained OR procedure. A natural fol-
low-up question to ask is, “to what extent does the unconstrained OR procedure have this prob-
lem when the conditions of the identical-test RM model are not exactly satisfied?” The purpose
of this section is to empirically address this question by simulating data from RM simulation
models that are not identical-test RM models.
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As discussed in Sec. 5.5, data simulated from an identical-test RM model results in AUC
estimates such that three conditions are true: (1) the tests have equal expected AUCs; (2) the OR
Cov2 and Cov3 parameters are equal, or equivalently, r2 − r3 ¼ 0 where r2 and r3 are the OR
correlations defined by Eq. (28); and (3) the OR test-by-reader interaction variance component
σ2τR is zero. These conditions are implied by Eqs. (38)–(40). In this section I simulate data from
RMmodels that have been formulated such that not all of these conditions are true, and thus none
of the simulation models are identical-test RM models. The results of these simulations will
allow us to answer the question posed in the previous paragraph, as well as to provide support
for the conjectures in Sec. 7 regarding the associations between each of the three conditions and
the negative variance rate.

8.2 Simulations

8.2.1 Overview

Data are simulated that result in OR distributions with parameter values similar to those esti-
mated for two real datasets that are analyzed by the unconstrained OR method with empirical
AUC as the outcome and using the unbiased error-covariance method. In each of the 2 exam-
ples, 10,000 MRMC samples are simulated from 8 different constrained unequal-variance RM
models, with each corresponding empirical AUC distribution corresponding to one of eight
possible combinations of 2 different levels for r2 − r3; σ2τR∶OR and AUC1 − AUC2. The two
levels are 0.01 and 0.04 for ðr2 − r3Þ, 0.0000 and 0.0002 for σ2τR, and 0.00 and 0.04 for
AUC1 − AUC2 (note that AUCi ¼ μOR þ τi∶OR). All of these values are representative of real
datasets. The case and reader sample sizes for the simulated MRMC samples are the same as
for the original datasets. Although r̂2 − r̂3 < 0 for both of the original datasets, a negative
value for r2 − r3 is not included as one of the study design parameters because the OR model
assumes r2 − r3 ≥ 0.

8.2.2 Example: simulations based on Kundel dataset

Kundel et al.20 compared reader AUCs for hard-copy and soft-copy computed radiograph chest
images selected randomly from a medical intensive care unit. Four radiologists blindly read both
types of images obtained from the same patients. Six months separated the end of the hard-copy
readings and the start of the soft-copy readings. A five-point ordinal scale was used to rate the
likelihood of the presence of the condition (which we will consider to be the disease) implied by
the reason for requesting the corresponding examination. Ninety-five images, consisting of
29 diseased and 66 nondiseased images, were read under each test condition. The difference of
the empirical AUC estimates was 0.0375 (p ¼ 0.0916) and r̂2 − r̂3 was 0.38 − 0.40 ¼ −0.02,
computed from a conventional OR analysis using the unbiased covariance method. The uncon-
strained variance estimate was not negative.

The OR parameter estimates for the original data, using the unbiased covariance method, are
shown in Table 5(a). In Table 5(b) are eight sets of parameter values similar to the original data
estimates, corresponding to the eight possible combinations of the levels of r2 − r3; σ2τR and
AUC1 − AUC2. Table 5(c) presents constrained unequal-variance RM model parameter values
that result in simulated data that can be described by the OR parameters in Table 5(b); these were
computed using the algorithm developed by Hillis et al.21 Because some of these RM models are
not null models, μpos in Eq. (1) is replaced by μi; i ¼ 1;2; thus μi is the expected difference in the
means for the diseased and nondiseased DV distributions for test i:

Table 5(d) presents the estimates of the OR parameter estimates and the negative variance
and negative r̂2 − r̂3 rates computed from the simulated data, based on the RM models in
Table 5(c). The excellent agreement between Tables 5(b) and 5(d) confirms that the RM model
parameter values in Table 5(c) were appropriately chosen. In Table 5(d) negative variance rates
range between 0.8% and 4.2% and negative r̂2 − r̂3 rates range between 14% and 41%.

Figure 1 displays a plot of the negative variance rate for each combination of the true values
of r2 − r3; σ2τR andAUC1 − AUC2. The labels on the x-axis indicate the levels of r2 − r3 and σ2τR,
with “LL” indicating both at the lowest level, “LH” indicating the low level of r2 − r3 and the
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high level of σ2τR, etc. From Fig. 1, we see that higher negative variance rates are associated with
lower levels of both r2 − r3 and σ2τR∶OR, in agreement with the conjectures in the previous section.
The effect of AUC1 − AUC2 is minimal except when both ðr2 − r3Þ and σ2τR∶OR are at their
lowest levels, as shown by the first pair of points; for this situation the negative variance rate
is higher for the larger magnitude of AUC1 − AUC2. As noted in the previous section, there was
no indication from Eq. (44) as to whether there would be any effect from AUC1 − AUC2.

8.2.3 Example: simulations based on Franken dataset

Franken et al.22 compared the diagnostic accuracy of interpreting clinical neonatal radiographs
using a picture archiving and communication system workstation versus plain film. The case
sample consisted of 100 chest or abdominal radiographs (67 abnormal and 33 normal). The read-
ers were four radiologists with considerable experience in interpreting neonatal examinations.
The readers indicated whether each patient had normal or abnormal findings and their degree of
confidence in this judgment using a 5-point ordinal scale. The difference of the empirical AUC
estimates was 0.0109 (p ¼ 0.1188) and r̂2 − r̂3 was 0.32 − :0.34 ¼ −0.02, computed from a
conventional OR analysis using the unbiased covariance method. The unconstrained variance
estimate was negative.

Table 6 gives results for this dataset in the same format as Table 5. Similar to Table 5, there is
excellent agreement between Tables 6(b) and 6(d) that confirms that the RM model parameter
values in Table 6(c) were appropriately chosen. In Table 6(d), negative variance rates range
between 0.3% and 2.2% and negative r2 − r3 rates range between 7% and 36%.

Figure 2 displays a plot of the negative variance rate for each combination of the true values
of r2 − r3; σ2τR andAUC1 − AUC2. Similar to Fig. 1, higher negative variance rates are associated
with lower levels of both r2 − r3 and σ2τR∶OR, in agreement with the conjectures in the previous
section. The effect of AUC1 − AUC2 is minimal, with the negative variance rate slightly higher
for the larger magnitude of AUC1 − AUC2 when r2 − r3 is at its low level, as shown by the first
two pairs of points.

8.2.4 Summary of simulation results

From the results of the simulations in Secs. 8.2.2 and 8.2.3, we saw that the negative variance
problem for the unconstrained ORmethod is present even when conditions Eqs. (38)–(40), which
are implied by the identical-test RMmodel, do not hold. Moreover, the simulations supported the

Fig. 1 Negative unconstrained OR AUC-difference variance rates, as defined by Eq. (36), for
different combinations of OR parameter values. RM model parameter values used for simulating
the data are similar to estimates from an OR analysis of the Kundel et al.20 data. There were 10,000
simulated MRMC samples for each set of RM parameter values, with each sample corresponding
to 4 readers reading the same 29 diseased and 66 nondiseased images.
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conjectures given in Sec. 7. Specifically, we saw that while higher negative variance rates were
associated with lower levels of both r2 − r3 and σ2τR∶OR, there was little association with the
magnitude ofAUC1 − AUC2. Surprisingly, the largest effect of the magnitude of the AUC differ-
ence, shown by the first pair of points in Figs. 1 and 2, shows the negative variance rate to be
higher for the larger AUC difference magnitude of 0.04.

In summary, these results suggest that negative variance estimates can be a problem for the
unconstrained OR procedure when r2 − r3 and σ2τR∶OR are small, regardless of the difference in
the AUCs, with the negative variance rate diminishing with increasing numbers of readers and
cases. However, we caution that these findings are based on only two simulation studies and
will need to be confirmed by additional studies.

9 Summary and Discussion
Sometimes it is of interest to compare two tests that may be similar in most respects, such as
when noninferiority or equivalence testing is appropriate. For this situation it is important to be
able to assess how well a particular MRMC analysis method performs, and hence there is a need
for simulation models that emulate this situation. This need was the motivation for developing the
RM identical-test model, where the two tests are exactly the same.

The derivation of the RM identical-test model from a particular RM null model was straight-
forward: simply change the test subscript for all of the RM null model effects to 1, which results
in none of the test effects depending on test. This derivation was illustrated for the unconstrained
unequal-variance RM model,9 which includes the constrained equal-variance6 and original5 RM
null models as special cases. It was shown that the null and corresponding identical-test model
rating distributions are the same and the within-test covariances are the same, but the between-
test covariances for the null model can be less than those for the identical-test model. In terms of
the reader empirical AUCs computed from ratings generated from the identical-test model, it was
shown that the expected test empirical AUC estimates are equal, Cov2 and Cov3 are equal,
and σ2τR∶OR ¼ 0.

The RM identical-test simulations showed how the performance of the unconstrained OR
method is unacceptable because of a nontrivial percentage of negative variance estimates.
Because negative estimates can occur, the significance level cannot be estimated unless the action
to be taken when a negative estimate occurs has been specified in advance of the analysis and is
incorporated into the simulation study. In contrast, the conventional OR method did not have the
negative variance problem because its variance estimate can never be negative, and it had an
acceptable type I error rate.

Fig. 2 Negative unconstrained OR AUC-difference variance rates, as defined by Eq. (36), for
different combinations of OR parameter values. RM model parameter values used for simulating
the data are similar to estimates from an OR analysis of the Franken et al.22 data. There were
10,000 simulated MRMC samples for each set of RM parameter values, with each sample cor-
responding to 4 readers reading the same 67 abnormal and 33 normal abdominal radiographs.
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The original RM null model5 simulations also revealed that the unconstrained OR
variance estimate could be negative, but the rates were much smaller than for the identical-test
model.

Of course, in practice we would rarely expect two tests to be identical. But if an analysis
method does not perform satisfactorily when two tests are exactly the same, then it seems likely
that the performance will also not be acceptable when the tests are “close” to being identical. This
situation was illustrated in the simulations in Sec. 8, where RM models were created to result in
OR distributions somewhat similar to those for two real datasets. In both of those examples, there
were nontrivial rates of negative variance estimates (3.2% and 1.55%) with moderate deviations
from an identical-test model with respect to two categories (AUC1 − AUC2 ¼ 0.04 and
σ2τR∶OR ¼ 0.0002Þ and a slight deviation with respect to the other category (r2 − r3 ¼ 0.01).
Furthermore, the results of the two examples in Sec. 8 suggest that increasing the AUC difference
does not reduce the negative-variance rate; if future research shows this relationship to hold in
general, then this result implies that negative variance rates can be nontrivial even when the AUC
difference is substantial.

Although there has never been any suggestion in the literature that the unconstrained version
of OR should be used instead of the conventional version, the findings of this paper are relevant
because of the relationship between the unconstrained OR method and the often-used Gallas
analysis method. As discussed in Sec. 5, recently17 it has been shown that the Gallas test statistic
for comparing two tests is equivalent to the unconstrained OR test statistic when empirical AUC
is the outcome and the unbiased error-covariance method is used. Thus we recommend that the
Gallas method not be used. For the Gallas method to be a statistically acceptable method, there
would have to be a defined follow-up analysis procedure to use if the Gallas variance is negative,
as well as simulation studies validating the performance of this two-step approach.

In my opinion, it is much easier to interpret an RM model in terms of the OR parameter
values describing the resulting empirical AUC distribution based on data simulated from the
model, as opposed to interpreting the RM parameter values in terms of the distribution of
the confidence-of-disease ratings. It was shown in Sec. 5.5 that an unconstrained unequal-vari-
ance RM identical-test model will have an empirical AUC distribution with Cov2 − Cov3 ¼ 0 (or
equivalently, r2 − r3 ¼ 0), no reader-by-test interaction, and equal expected test AUC values.
These three OR relationships are intuitively obvious for identical tests and they can be thought
of as the criteria by which tests can be identical in terms of the empirical AUC distributions.

In contrast, it has been shown [Ref. 9, Tables 4 and 6] that the original5 12 sets of RM model
parameter values lead to OR distributions with identical expected test AUC values, but with
0.05 < r2 − r3 < 0.29, and for 10 of the sets, 0.000287 < σ2τR∶OR < 0.001629; for the other 2 sets,
σ2τR∶OR ¼ 0.00004. To obtain some perspective on the size of the interaction variance component,
we note that σ2τR∶OR ¼ 0.0002 implies that the middle 95% probability range is 0.08 for the true
AUC1 − AUC2 difference for a randomly selected reader, as discussed in Hillis and Schartz;23

for this reason, we consider σ2τR∶OR ¼ 0.0002 to be at least moderate test-by-reader interaction.
Thus, in terms of the 3 OR identical-test criteria, 10 of the 12 original RM parameter sets
describe tests that are similar with respect only to the OR equal-test AUC criterion, with the
other 2 sets describing tests also approximately similar with respect to the OR σ2τR∶OR ¼ 0

criterion. But none of them describes tests that are approximately similar with respect to all three
OR criteria.

In summary, the RM identical-test model is useful because it allows for assessment of an
MRMC analysis method for the situation where the two tests are identical and it is easy to derive
from a previously formulated RM null model. Ideally, an MRMC analysis method would be
assessed with respect to a wide range underlying rating models. Thus the RM identical-test
model should typically be used in conjunction with other RM models.

For brevity, results of the simulation studies in this paper have been limited to the minimum
needed to accomplish the two purposes of the paper: to show how to formulate an identical-test
RM model and to show its usefulness for validating the need for the OR error covariance
constraints. For example, a more extensive analysis might include estimating the type I error,
not just for the two-sided nonequivalence set of hypotheses, but also for the noninferiority and
equivalence sets of hypotheses; reporting results in Tables 4 and 5 for each structure instead of
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averaging across the four structures; and reporting results for more combinations of RM param-
eter values.

Finally, for future research, I recommend creating a new set of RMmodel parameter sets that
correspond to real datasets, as was done in Sec. 8. Doing this will allow for a better understanding
of what types of studies are emulated by the simulated data. Recently21 an algorithm has been
developed that maps OR parameter estimates obtained from real datasets to constrained unequal-
variance RM model parameter values; this algorithm can be easily implemented using the R
function OR_to_RMH, available in the R package MRMCaov.19 This algorithm was utilized
in Sec. 8 to create the RM parameter values corresponding to the two real-datasets.

10 Appendix A Derivation of the Relationships Between the OR
Model and Unconstrained Unequal-Variance RM Identical-Test
Model Given in Sec. 5.5

The OR parameters that describe the distribution of the empirical AUC estimates computed from
MRMC data simulated from the unconstrained unequal-variance RMmodel have been expressed
as functions of the RM model parameters by Hillis.9 Table 7 presents the relationships for the
three OR parameters given in Sec. 5.5.

The unconstrained unequal-variance RM model assumed in Table 7 is the same as the
unconstrained unequal-variance RM null model discussed in Sec. 5.5, but with the addition
of the test-by-truth interaction effect τit to the mixed linear model Eq. (1). It follows that the
expected difference between the nondiseased and diseased decision-variable distributions is
δ1 ¼ μpos þ τ1þ for test 1 and δ2 ¼ μpos þ τ2þ for test 2.

Relationships Eqs. (38)–(40) in Sec. 5.5 are for the unconstrained unequal-variance RM
identical-test model, which is the same as the model assumed in Table 7 with the following
constraints imposed

EQ-TARGET;temp:intralink-;e045;114;422σ2τR ¼ σ2τCðþÞ ¼ σ2τCð−Þ ¼ σ2τRCðþÞ ¼ σ2τRCð−Þ ¼ 0; (45)

and

EQ-TARGET;temp:intralink-;e046;114;384δ1 ¼ δ2: (46)

Table 7 The OR Cov2 and Cov3 parameters corresponding to empirical AUC estimates computed
from MRMC data simulated from the unconstrained unequal-variance RM model, expressed as
functions of the RM model parameters.
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Notes: these results are taken from Table 3 in Hillis.9 FBVNð:; :; ρÞ is the standardized bivariate normal distri-
bution function with correlation ρ; δi ¼ μþ þ τiþ; V ¼ σ2fixedð−Þ þ σ2fixedðþÞ þ 2ðσ2R þ σ2τRÞ, where σ2fixedð−Þ ¼ σ2Cð−Þ þ
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Relationships Eqs. (38)–(40) follow directly from the results in Table 8 when constraints
Eqs. (45) and (46) are imposed. Specifically
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EQ-TARGET;temp:intralink-;sec10;117;561μOR þ τ1;OR ¼ μOR þ τ2;OR ¼ Φ
�

δ1ffiffiffiffi
V

p
�
;

where

EQ-TARGET;temp:intralink-;sec10;117;512V ¼ σ2
fixedð−Þ þ σ2

fixedðþÞ þ 2ðσ2R þ σ2τRÞ
¼ σ2Cð−Þ þ σ2RCð−Þ þ σ2εð−Þ þ σ2CðþÞ þ σ2RCðþÞ þ σ2εðþÞ þ 2ðσ2R þ σ2τRÞ:

In addition, we can write

EQ-TARGET;temp:intralink-;sec10;117;445

σ2R∶OR ¼ FBVN

�
δ1ffiffiffiffi
V

p ;
δ2ffiffiffiffi
V

p ;
2σ2R
V

�
−
�
Φ
�

δ1ffiffiffiffi
V

p
�
Φ
�

δ2ffiffiffiffi
V

p
��

¼ FBVN

�
δ1ffiffiffiffi
V

p ;
δ1ffiffiffiffi
V

p ;
2σ2R
V

�
−
�
Φ
�

δ1ffiffiffiffi
V

p
�

2
�
;

and the first term on the right in the Table 7 expression for σ2τR∶OR can be expressed in the
form

EQ-TARGET;temp:intralink-;sec10;117;346

5
X2
i¼1

	
FBVN

�
δiffiffiffiffi
V

p ;
δiffiffiffiffi
V

p ;
2ðσ2R þ σ2τRÞ

V

�
−
�
Φ
�

δiffiffiffiffi
V

p
��

2



¼ 5
X2
i¼1

	
FBVN

�
δ1ffiffiffiffi
V

p ;
δ1ffiffiffiffi
V

p ;
2ðσ2R þ σ2τRÞ

V

�
−
�
Φ
�

δ1ffiffiffiffi
V

p
��

2



¼
	
FBVN

�
δ1ffiffiffiffi
V

p ;
δ1ffiffiffiffi
V

p ;
2ðσ2R þ σ2τRÞ

V

�
−
�
Φ
�

δ1ffiffiffiffi
V

p
��

2



¼ σ2R∶ORðusing the previous resultÞ:

Replacing the first term on the right in the Table 7 expression for σ2τR;OR by σ2R∶OR
yields

EQ-TARGET;temp:intralink-;sec10;117;190σ2τR∶OR ¼ σ2R∶OR − σ2R∶OR ¼ 0:

11 Appendix B Original Roe and Metz Null Simulation Model
Parameter Values and Corresponding RM Identical-Test Model
Parameter Values

For completeness, Table 8 lists the 12 sets of the orginal Roe and Metz5 (RM) null simulation
model parameter values and the corresponding RM identical-test model parameter values.
Table 3 is a subset of this table.
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Code, Data, and Materials Availability
The two datasets (VanDyke and Kundel) analyzed in this article are publicly available as part of the
R package MRMCaov.19 Code for performing the conventional OR analysis using either the
unbiased or DeLong or jackknife error covariance methods is also included in the MRMCaov pack-
age. Although code for performing unconstrained OR analysis is not included in MRMCaov, one
can perform the unconstrained OR analysis based on the MRMCaov conventional OR analysis
output.

Table 8 12 original sets of Roe and Metz5 (RM) null simulation model parameter values and
corresponding RM identical-test model parameter values. Table 3 is a subset of this table.

Line Structure μþ Az σ2C σ2TC σ2RC σ2ε σ2R σ2τR

(a) Original RM null model parameter values

1 HL 0.75 0.702 0.3 0.3 0.2 0.2 0.0055 0.0055

2 LL 0.75 0.702 0.1 0.1 0.2 0.6 0.0055 0.0055

3 HH 0.75 0.702 0.3 0.3 0.2 0.2 0.0110 0.0110

4 LH 0.75 0.702 0.1 0.1 0.2 0.6 0.0110 0.0110

5 HL 1.5 0.856 0.3 0.3 0.2 0.2 0.0055 0.0055

6 LL 1.5 0.856 0.1 0.1 0.2 0.6 0.0055 0.0055

7 HH 1.5 0.856 0.3 0.3 0.2 0.2 0.0300 0.0300

8 LH 1.5 0.856 0.1 0.1 0.2 0.6 0.0300 0.0300

9 HL 2.5 0.961 0.3 0.3 0.2 0.2 0.0055 0.0055

10 LL 2.5 0.961 0.1 0.1 0.2 0.6 0.0055 0.0055

11 HH 2.5 0.961 0.3 0.3 0.2 0.2 0.0560 0.0560

12 LH 2.5 0.961 0.1 0.1 0.2 0.6 0.0560 0.0560

(b) Corresponding RM identical-test model parameter values

1 HL 0.75 0.702 0.6 0 0.2 0.2 0.0110 0.0000

2 LL 0.75 0.702 0.2 0 0.2 0.6 0.0110 0.0000

3 HH 0.75 0.702 0.6 0 0.2 0.2 0.0220 0.0000

4 LH 0.75 0.702 0.2 0 0.2 0.6 0.0220 0.0000

5 HL 1.5 0.856 0.6 0 0.2 0.2 0.0110 0.0000

6 LL 1.5 0.856 0.2 0 0.2 0.6 0.0110 0.0000

7 HH 1.5 0.856 0.6 0 0.2 0.2 0.0600 0.0000

8 LH 1.5 0.856 0.2 0 0.2 0.6 0.0600 0.0000

9 HL 2.5 0.961 0.6 0 0.2 0.2 0.0110 0.0000

10 LL 2.5 0.961 0.2 0 0.2 0.6 0.0110 0.0000

11 HH 2.5 0.961 0.6 0 0.2 0.2 0.1120 0.0000

12 LH 2.5 0.961 0.2 0 0.2 0.6 0.1120 0.0000

Notes: μþ is the median and mean separation of the normal and abnormal DV distributions across the reader
population, and Az ¼ Φðμþ∕

ffiffiffi
2

p Þ is the median reader-specific true area under the ROC curve.
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