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Abstract. Person reidentification tackles the problem of building a corre-
spondence between different images of the same person captured by dis-
tributed cameras. To date, attempts to solve this problem have focused on
either feature representation or learning methods. Usually, the greater the
number of the samples for each person, the better the reidentification per-
formance is. However, in the real world, we may not be able to acquire
enough samples to give acceptable performance. Here, we focus on the
so-called “single-shot versus single-shot” problem: matching one image of
a person to another. Because of the extremely small sample class size,
there is limited scope to statistically weaken the empirical risk for hand-
crafted feature representation. Therefore, we resort to metric learning
methods, such as the ranking-specialized metric learning to rank (MLR)
and the classification-based maximally collapsing metric learning (MCML).
Taking advantage of the complementarity between them, we propose a
novel “coupled metric learning” approach. This searches for the optimal
linear projection for the original feature space using MCML before minimiz-
ing the ranking loss via MLR. Experiments on widely used benchmark
datasets show encouraging results. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this

work in whole or in part requires full attribution of the original publication, including its DOI.
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1 Introduction

Inter-camera person image correspondence, known as person
reidentification, is one of the most challenging issues in
computer vision applications. Its difficulty is chiefly due
to variations in illumination, pose and viewpoint, and the
resemblance of human clothes, gait, and body shape in non-
overlapping cameras.'

Generally, according to the sample class size, person
reidentification can be categorized as: “multishot versus
multishot” (M versus M), “single-shot versus single-shot”
(S versus S), or “single-shot versus multishot” (S versus.
M).? In M versus M: both the query set and the corpus set
contain multiple images of each person. This can be regarded
as the topological problem of set-to-set correspondence. In
S versus S: each query set and each corpus set contain only
one image per person. Topologically, this is a point-to-point
correspondence problem. S versus M can refer to either one
image in the query set and multiple images in the corpus set
or one image in the corpus set and multiple images in the
query set for very person. This problem can be treated as
a point-to-set correspondence.

Current M versus M approaches follow two main direc-
tions. The first pays attention to either feature/signature de-
sign or feature/signature selection across sequential images
obtained from surveillance tracking. Such feature/signature
design considers not only appearance information but also
spatial-temporal information. Haar-like features and domi-
nant color descriptors,’ relying on the AdaBoost scheme
can build a satisfactorily invariant and discriminative signa-
ture. Histogram Plus Epitome,* which focuses on the overall
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chromatic contents via histogram representation and recur-
rent local patches via epitomic analysis, can extract the
complementary global and local features of the human
appearance. Bak et al.’ emphasized that different regions
of an object’s appearance ought to be matched using various
strategies. They attempted to obtain a distinctive representa-
tion by selecting the most descriptive features for a specific
class of objects. Relying on an entropy-driven criterion in a
covariance metric space, the authors formulated the appear-
ance matching problem as the task of feature selection. The
second M versus M direction addresses the problem from the
perspective of distance/dissimilarity crafting or optimization.
One typical method uses a mean riemannian covariance grid
(MRCG).® Relying on the dense grid structure, MRCG not
only records information about spatial-temporal changes in a
person’s appearance using a set of covariance descriptors in
the Riemannian space but also constructs a suitable dissimi-
larity measurement for mean Riemannian discriminants.
Another exemplary method is set based discriminative rank-
ing,7 which iteratively constructs convex hulls for set-to-set
distance measurements and optimizes the metric for ranking
based on these measurements.

For S versus S, there is only one sample image as a query
and one in the corpus for each person, and so it is impossible
to design a signature by exploiting spatio-temporal informa-
tion. Thus, many researchers are currently concentrating on
feature design. Related methods try to incorporate appear-
ance information and human-body-structure information
simultaneously, or learn a suitable metric space to distinguish
the sample class. One representative method of feature
design is symmetry-driven accumulation of local features
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(SDALF),? which adopts three powerful features to account
for symmetry and asymmetry of body structures. Another
feature design method is custom pictorial structure.® It
focuses on improving the localization of body parts to obtain
more reliable visual characteristics. Using metric learning,
this could be applied to construct a more discriminative
space than the original feature space for better ranking/
classification. The large margin nearest neighbor with rejec-
tion (LMNN-R)’ framework converts the issue of person
reidentification into a classification problem. It resorts to
LMNN'? to optimize a classification in a traditional support
vector machine (SVM) framework. Zheng Wei-Shi et al.!!
recast person reidentification as a learning problem for rel-
ative distance comparison in order to learn an optimal sim-
ilarity measurement between a pair of images of the same
person. Technically, they maximized the likelihood of a
pair of true matches having a relatively smaller distance
than that of a wrong match pair in a soft discriminant manner.
RankSVM'? reformulates the reidentification problem as a
ranking problem and learns a metric space in which the
potential true match is given the highest rank instead of
using a direct distance measurement. Though RankSVM uti-
lizes structural SVM" to learn a good pair-wise ranking
space, it neglects the role of the loss function in its optimi-
zation framework. Standing on the shoulders of metric learn-
ing to rank (MLR),"* optimizing mean reciprocal rank
(OMRR)" designs the loss function in a structural SVM
framework to learn a metric for a list-wise, rather than
pair-wise, ranking. The OMRR achieves more satisfactory
improvement than previous metric learning methods for
person reidentification.

The S versus M lies somewhere between M versus M and
S versus S, and therefore, a combination of M versus M
methods and S versus S methods are generally applicable.

By way of contrast, the S versus S problem seems more
difficult and its accuracy is far lower than the other two.
The S versus S not only shares the same challenges as M ver-
sus M and S versus M but also has a much smaller sample size
for each person, and this is the thing that leads to a bottleneck.

It is obvious that multishot images can be considered as
multiple single-shot images for each person. If the S versus S
problem could be conquered, the problems of M versus M
and S versus M would be readily solved as well. Therefore,
from a research perspective, S versus S is important for solv-
ing the general person reidentification problem. Moreover,
from an application perspective, research on the S versus S
problem is very valuable, as it cannot be guaranteed that we
will always have multiple samples for each person. For
example, we commonly want to retrieve a person with only
one query image for whom there is only one registered image
in the corpus. Even in visual surveillance systems, we may
only have one image of sufficient quality to serve as the
query and in the corpus due to occlusion or other unexpected
disturbances.

The S versus S person reidentification problem consid-
ered in this paper must handle an extremely small sample
class size—not only a single-shot sample image as the query
but also a single-shot sample image in the corpus for each
person. The difficulty is quite significant in this case because
the nature of the problem weakens the capability of statistical
techniques. There are no enough samples per class to design
a robust signature or learn a reliable distance measurement in
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a round. To solve this problem, we take advantage of the
complementarity of two existing metric learning methods
to present a new “coupled metric learning” (CML) method.
The CML maps the original feature space using a learned
linear projection, and this provides a good platform for
further optimization by MLR, thus resulting in a better
ranking space.

The rest of the paper is structured as follows. In Sec 2, we
introduce the CML framework by discussing and analyzing
linear projections using maximally collapsing metric learn-
ing (MCML) for an original feature space, which is benefi-
cial for the construction of a more reliable ranking space with
MLR. In Sec. 3, we justify the reasonability of our modeling
approach by comparing with other modeling choices. We
then experimentally demonstrate the superiority of CML
over MCML, MLR, and other applicable state-of-the-art
approaches in Sec. 4, using the recommended feature repre-
sentation of widely used benchmark datasets. Our conclu-
sions and future research directions are discussed in Sec. 5.

2 Coupled Metric Learning

The notion of distance is fundamental for many data mining/
machine learning algorithms. Traditionally, the distance met-
ric has been specified by an a priori assignment. However,
metric learning emphasizes that the distance measurement
should be learnt from training data.

Dimensional reduction techniques, which exploit the
embedding of data, can be categorized as unsupervised
metric learning methods such as principal component analy-
sis (PCA), regularized linear discriminant analysis and so on.
Supervised metric learning methods, such as Information-
Theoretic Metric Learning'® and Cosine similarity metric
learning,'” utilize objective functions and constraints to opti-
mize the distance measurement. Although these methods
have not been directly applied to the issue of person reiden-
tification, they appear to have some potential in this field.
When we treat the features of person images as high-dimen-
sional points, the learned metric is able to map them into a
new space to improve their intra-class compactness and inter-
class separation.

LMNN has already been introduced to address the issue
of person reidentification, and it was shown that optimizing a
metric space for ranking is more effective than optimizing a
metric space for classification when the sample class size is
small.'> A satisfactory ranking space expects the intra-class
distances of all samples to be smaller than the inter-class dis-
tances. The MLR is based on such an intuitive concept, and
OMRR s an application of MLR to the problem of reiden-
tification. It uses a structural SVM framework to optimize
the metric for ranking, paying heed to the design of the loss
function.

The performance of MLR is more or less determined by
the feature representation and sample class size. Therefore,
the main idea of our proposed CML method is that, before
metric learning, some projective space is optimally searched
for the original feature representation by another metric
learning method. We will show that MCML could provide
a good platform for ranking optimization by MLR. It will
be also shown that these two metric learning methods are
infact different with a degree of complementary abilities,
and their combination could ensure a better performance.
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More concretely, CML consists of the application of MCML
followed by MLR in this paper.

2.1 Metric Learning to Rank

Given a query set Q = {g|q € R} and a corpus set X =
{x,1|x, € R}, let ¢ (x,, q) denote the relative feature rep-
resentation of a corpus sample x,; w.r.t. ¢ and let w denote
the metric we intend to optimize. The desired ranking model
could be g,,(x,) = w'¢,1(x41. q), which scores each x,;. Let
y € )Y be a ranking of X w.r.t the query ¢, and w(q,y, X) €
R be a vector-valued joint feature map as defined in Ref. 15.
Then, optimizing w for the ranking model g,,(x,;) is equiv-
alent to optimizing the following model based on y (g, y, X).

1 C
arg min= ||w|]> + —= ) & (1)
g IR+ 1gr2 %

subject to

why(q,yi. X) 2 why(q.y, X) + A(y;.y) — &,

Vagy#yy £20, Vg,

where y7 is the ground truth ranking of X for a given g € Q,
&, is the slack variable, C is the trade-off parameter, and
A(y;.y) is the loss function to penalize the prediction of y
instead of yy.

For person reidentification, the most widely used evalu-
ation criterion is the cumulative matching characteristic
(CMC) curve. The CMC illustrates how the performance
(recognition/re-acquisition rate) improves as the number of
requested images increases. Nevertheless, the CMC curve
is not a single-trial measurement, and therefore cannot be
directly optimized. Despite this, some other criteria may
potentially coincide with the CMC curve to some extent,
with mean reciprocal rank (MRR) being the closest among
existing candidates. Conceptually, the reciprocal rank of a
query response is the multiplicative inverse of the rank of
the first correct match, and MRR is the average of such recip-
rocal ranks of results over the whole query set.'” To a degree,
it coincides with such a practical performance expectation,
and is thus a good alternative to the CMC curve for perfor-
mance evaluation. Since only the rank of the first correct
match is counted, the ranks of both other correct matches and
any incorrect matches are arbitrary. Thus, there are large
amounts of ranking instantiations of a given ground truth.
In practice, such a choice is quite reasonable, and there
seems to be no significantly better options.

According to Ref. 14, for the ranking model MLR, the
loss function A, (y;.y) based on MRR is an effective
choice, which can be as simple as

Amrr(yz’y) =1 _Smrr<q’y)’ )
in which .
1 1/ry, r,<K;

Smrr<q’ y) = { (3)
Q& 0. r 2K,

where r, is the position of the first relevant item w.r.t. g in the
ranking y, and K is the number of top ranked items to be
considered; for the ground truth yy, Sy,.(¢.y) = 1.
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The optimization of MLR can be solved using a cutting-
plane algorithm.'® After learning, a new metric space with
more ranking capability than the original feature space can
be constructed.

Based on a structural SVM framework, MLR learns a
metric such that data rankings induced by their distances
from a query can be optimized against various ranking mea-
sures. In the MLR framework, it has been shown that opti-
mizing the metric for partial-order features (g, y,, X) is
equivalent to optimizing the metric for ¢, (x,.q)."
¢qi(x4.q) is a kind of feature mapping that characterizes
the relationship between the query sample ¢ and the corpus
sample 1. As |lg— 1|3 = (W,(qg=1)(g=1)T)p, it follows
that ¢,; = —(g — 1)(¢ — I)". It is obvious that ¢, describes
differential information for each sample pair. It contains
information about one sample relative to the other, so ¢,
can also be treated as a kind of “relative feature”, though
in matrix form rather than vector form, different from tradi-
tional features. Naturally, if such a matrix holds pair-wise
information about samples in the same class, we name it the
“intra-class relative feature”, and if it describes pair-wise
information on samples from different classes, we name it
the “inter-class relative feature”. Using these relative fea-
tures, the ranking model optimization can be viewed from a
classification perspective. It is reasonable to demand that the
relative features are of sufficient quality if we hope to pro-
vide a good partial-order feature space for MLR. According
to the definitions of relative features, it is natural to require
that samples of the same class should stay as close to each
other as possible while samples from different classes should
remain far away from one another. Certainly and notably,
such a requirement is sufficient but not necessary for provid-
ing a good partial-order feature space. There are other ways
to make relative features meet the requirement, like feature
design. Because the sample class size is extremely small,
there is only a limited space for each class to statistically
weaken the empirical risk in the process of hand designing
features. Hence, we recommend searching a suitable projec-
tive space w.r.t. the original feature representation. The MLR
itself performs a linear projection on the original data using
a structural SVM framework, which is capable of dealing
with the high-dimension small-sample problem, although
the small sample class size limits its power. Accordingly,
we resort to some other auxiliary projection approaches for
MLR that are beneficial for mapping a new feature space,
though not for directly optimizing the ranking. The newly
mapped space is expected to have the property that samples
in the same class stay close to each other and samples from
different classes are kept far apart. Undoubtedly, MCML"
coincides with such requirements. However, as a metric
learning method, it is difficult to apply MCML for feature
mapping. To overcome this barrier, we simplify the projec-
tion into a linear form and perform some mathematical
derivations, shown in Eq. (4).

Suppose x is the feature point, and that the linear mapping
is expressed by g(x) = xL. The projected relative feature
Pprojected €an then be presented as

¢projecled = _[g(q) - g(l)] [Q(Q) - g(l)]T
=—=(q=DLL"(q=1)"
=—(g-DA(g-1)". @)
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where A is a positive semi-definite (PSD) matrix. This matrix
is considered the Mahalanobis metric to be optimized in
MCML, and can be decomposed as A = L x LT. Optim-
izing A is equivalent to optimizing the feature mapping in
Eq. (4), which could make the projected relative feature
more representative and conducive to partial-order feature
space construction, potentially benefiting MLR.

2.2 Maximally Collapsing Metric Learning

The MCML relies on the geometric intuition that all points
in the same class should be mapped to a single location in
the feature space and all points in other classes should be
mapped to other locations. Basically, MCML obtains a com-
pact low-dimensional feature representation of the original
input space."”

The MCML uses Kullback-Leibler divergence in the
objective function to make intra-class distances as small
as zero and inter-class distances as large as infinite.

Given n labeled samples (x;,y;), where x; € R" and
y; € {1...H}, the distance between any different points
indexed by i and j can be defined as
d(.xi,.Xj|A) = dlA] = (.Xl‘ —.Xj)TA(xi —.Xj), (5)
where A is a PSD matrix.

To learn a metric that approximates the ideal geometric
intuition, for each training point, a conditional distribution
over other points has been introduced. Specifically, for each
x;, a conditional distribution over any other x;, where j # i,
is defined as

—dA —JA
drj e drj
= e
Z e

where j means any sample other than i. The framework of
MCML is as below:

PA(jli) =&

J#F i (©)

arg min »  KL[Po(jl0)][[PA(jli)] )
subject to
A € PSD, ®)

where Z is the normalizing factor, and PA(j|i) takes a pseu-
doprobabilistic form to describe the conditional distribution
over points. Py(j|i) is the ideal bi-level distribution as in
Eq. (9). If all points in the same class were mapped to a sin-
gle point and infinitely far from points in different classes,
we would have the ideal bi-level distribution:

. Loyi=yp
Po(1|l){0 ity ©)
Ly

In the optimizing process, at each iteration, MCML takes
a small step in the direction of the negative gradient of the
objective function, then the MCML metric is projected
back onto the PSD cone by taking the eigen-decomposition
of A and substituting zero for the components with negative
eigenvalues. "

MCML can perform a dimensional reduction by spec-
tral decomposition, and the reduced dimension ¢ can be
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determined a priori. The eigen-decomposition of a metric
A can be written as

A= Zzhvhv;, (10)
h=1

where r is the number of nonnegative eigenvalues, which is
equivalent to the original feature dimension, 4,, are the eigen-
values of A, and v, are the corresponding eigenvectors.
The matrix A that has less than full rank corresponds to
Mahalanobis distance based on the low-dimensional projec-
tion. Hence, we can then select the largest ¢ eigenvalues and
their eigenvectors to obtain the low-rank metric:
A, = diag(VAy, ... V2)[T;.. ;0] (11)
Generally speaking, the low-dimensional space projection
is not guaranteed to be the same as the projection corre-
sponding to minimizing the objective function of MCML,
subject to a rank constraint on the optimal metric, unless
the rank of the optimal metric is less than or equal to ¢.
However, as demonstrated in Ref. 19, for practical problems,
it is often the case that the optimal metric has an eigen-
spectrum which is rapidly decaying, so that many of its
eigenvalues are indeed very small. This suggests the low
rank solution will be close to optimal. So A, can be applied
to map the original space to a new low-dimensional space, in
which intra-class compactness and inter-class separation can
be simultaneously achieved to as great a degree as possible.
Usually, the reduce dimension ¢ can be determined
a-priori. Although ¢ is determined by heuristic, we need to
avoid the case that ¢ is too large or too small. If ¢ is too large,
the new feature space of the reduced dimension will be too
noisy. If ¢ is too small, the new feature space of the reduced
dimension will be too sensitive. Both cases will damage the
effect of intra-class compactness and inter-class separation.
Here, we suggest ¢ to be approximate 80% of the original
feature dimension.

3 Modeling Justification

In the previous sections, we determined that MCML could
construct a linear projective space that is beneficial to MLR.

Specially, this implies that the modeling performance
of CML could outstrip that of MLR. We denote this by
“MCML + MLR >, MLR”. (Here, > means the for-
mer performs better than the latter. Similarly, in the follow-
ing, <perf Means the latter performs better than the former,
=perf Means the former performs almost the same as the lat-
ter, >,,r means the former performs no worse than the latter,
and <.+ means the latter performs no worse than the
former.)

To further highlight the advantages of MCML + MLR, in
this section, we compare it with other modeling choices by
discussing the relationship between MCML and MLR.

3.1 Analysis of CML

It is impossible to give a direct, mathematical proof for the
superiority of MCML + MLR due to the difficulty of unify-
ing MCML and MLR into a single optimized framework.
Alternatively, we will provide evidence of the benefits of
coupling MCML and MLR based on their complementarity,
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which means that MCML contributes toward MLR learning
a more satisfactory space.

The role of MCML in CML can be understood from the
point of view of noise reduction. Low-dimensional space
projection by MCML has the effectiveness of data de-noising
that coincides with MLR’s target.

Traditionally, PCA is widely used to find low-dimen-
sional embedding for de-noising before supervised learning.
Although it has a similar functionality as MCML, PCA does
not have the discriminative ability as that of MCML, and the
space mapping given by it is not guaranteed to improve the
performance of MLR.

The objective of MLR is that the distance between the
samples in the same class should be smaller than that
between the samples from different classes.

In the ideal case, when MCML meets its target perfectly,
MLR’s objective will also be indirectly and perfectly
achieved, because intra-class distances will all be zero and
inter-class distances will all be infinite. Hence, in general,
MCML works in the same direction as MLR.

Although, in the real world, it is impossible to obtain ideal
data for MCML or MLR, it is intuitive that if samples from
the same class become closer together and samples from
different classes become farther away, it will be easier for
MLR to make intra-class distances smaller than inter-class
distances.

Therefore, MCML is able to contribute toward MLR
learning a more satisfactory space, namely “MCML +
MLR > MLR”. If all the contributions from MCML is
redundant to MLR, which is very unlikely to happen, at
least we can get “MCML + MLR =, MLR”. However,
it has never appeared in our experimental results to be
presented later.

3.2 Comparison with Other Modeling Choices

We will compare MCML + MLR with other modeling
choices for CML, including MLR + MLR, MCML +
MCML, and MLR + MCML, where the “+” sign denotes a
strict “left-to-right” order (i.e., MLR maps the original space
to a new linear projective space for further optimization
by MCML).

One simple and direct reason to reject MLR + MLR and
MCML + MCML is that the metric learned by MLR has
a unique solution given certain training samples, and so
does MCML. Therefore, from a performance perspective,
“MLR + MLR =,y MLR” and “MCML + MCML =
pert MCML”.

A more in-depth explanation is required for rejecting
MLR + MCML, or indeed for not simply implementing
MCML.

It is easy to discern the similarity between MCML and
MLR. Obviously, both use a convex optimization framework
to learn a Mahalanobis metric. The key difference is that
MCML forces intra-class distances to be zero and inter-
class distances to be infinite. So the behavior of pulling
samples in the same class close together is conditionally in-
dependent to the behavior of pushing samples from different
classes far away, which could be denoted as “independent
measurement”. Independent measurement indicates there
is not direct relationship between intra-class distance and
inter-class distance. The MCML aims to minimize the sum
of the loss function for both behaviors, described by

Optical Engineering

027203-5

Kullback-Leibler divergence. Therefore, MCML may seek
to balance the compactness of samples in the same class
and the separation between samples from different classes.
Undoubtedly, an optimal combination of intra-class com-
pactness and inter-class separation will be the most benefi-
cial for classification.

On the contrary, MLR concerns the correlative relation-
ship between samples in the same class and samples from
different classes. It forces intra-class distances to be smaller
than inter-class distances for all samples, which could be
denoted as “correlative measurement”. It is different from
the optimal combination of intra-class compactness and
inter-class separation reflected in MCML. Correlative mea-
surement indicates there is a direct correlation between
intra-class and inter-class distances. Optimizing the correla-
tive measurement will be conducive to ranking because it
matches the requirement of a good ranking: given a query,
samples within a corpus from the same class as the query
have smaller distances than samples from different classes.

With an ideal MCML metric, all intra-class distances will
be zero and all inter-class distances will be infinite. Thus, the
inter-class distances will definitely be larger than the intra-
class distances, so the optimization of correlative measure-
ment can also be achieved. Nevertheless, in real cases, the
data distribution is complex due to small between-class but
large within-class variations, especially in the case of an
extremely small sample class size, as discussed in this paper.
There is a possibility that MCML will sacrifice correlative
measurement to attain the minimization of its own objective
function, which is expressed as the sum of the discrepancies
between intra-class distances and zero, and the discrepancies
between inter-class distances and infinite. In other words,
MCML may sacrifice the relationship that ensures intra-
class distance is smaller than inter-class distance to optimize
the accumulation of intra-class compactness and inter-class
separation.

To illustrate this, we give an example of MCML, where
the independent measurement impairs the correlative mea-
surement. An illustration is shown in Fig. 1.

Consider the layout of three points in a two-dimensional
space; the scaling of axes by the metric is simplified in two
orthogonal dimensions, with (u,v) denoting the scaling
parameters. The two points i and j are in the same class,
marked by the same color, and point k is from a different
class, marked by a different color. With i assigned as the
query, we can see that the intra-class distance is initially
smaller than the inter-class distance.

As mentioned in Ref. 19, the objective function of the
optimization framework described by Eq. (7) is convex in
matrix A. Equation (7) can be rewritten as

. - Py(jli
arg HEHZ:PO(]h)IOng((ﬂi;' (12)

In order to seek A to optimize Eq. (12), the constant part
can be ignored and the part containing A should be main-
tained.  Po(jli)log Po(jli)/PA(jli) = Po(jii) (log Poljli) -
log PA(jli)) = Poljli)log Po( 1)~ Po(li)log PA(jli), which
shows that these terms are an additive constant and a posi-
tive multiplicative constant w.r.t. —log P(j|i) and thus can
be ignored. Therefore, minimizing Eq. (12) is equivalent to
minimizing f(A) as below:
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Fig. 1 Exemplar to show independent measurement impairs correlative measurement by MCML. Sample classes are distinguished by color.

Z In PAGl) = > db +Zan (13)

LJ:yi= LJyi=Y;

In each step, the metric scaling parameters will be
adjusted to simulate the decrease of Eq. (13). If the example
appears to be minimizing the sum of independent measure-
ments at the expense of the correlative measurements, the
following system of inequalities will have a nonempty sol-
ution set for u and v.

a® 4+ b2 + a® + b + In(e™ (@) 4 =) 4
In(e@+¥) 4+ ¢ ea™¥1) > (ua)? + (vb)? + (u >2+
(vb)? + In(e~[(wal +(wb)’] 4 p=[(uc-ua)y+(vb)*
In(e-laP+wb?] 4 <uc>2),
a + b* <
a’>+b*<(c—a)+b%
(ua)* + (vb)* > (uc)*;
u>0;
v>0;
v+u>0.
14)

In this system, the first inequality means that in each con-
vergence step, after scaling, the value of the objective func-
tion is smaller than in the previous step. The second and third
inequalities describe the initial distance relationship among
the three points, and the fourth describes the impairment of
the correlative measurement after scaling by the metric. The
fifth, sixth, and seventh inequalities are the constraints of u
and v. u and v cannot be ze