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Abstract. Modeling the imaging chain has become a critical design tool to understand the relationship between
design trades and image quality in camera systems. The mathematical models for the fundamental components
of an imaging chain are well understood and have been validated using working camera systems. However,
the complexity of camera designs continues to grow as the technology advances to drive higher performance
using different approaches. The fundamental imaging chain models do not always meet the needs of the new
imaging system designs, thus requiring the models to advance in complexity as well. Of particular interest to
the optical designers is the development of mathematical models that enable more complex modeling of the
wavefront errors for the optical transfer functions (OTF) in the image chain models. A tutorial on the imaging
chain is given followed by an innovative approach using an ηmatrix for modeling the OTF in the imaging chain.
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1 Introduction
Most photographs captured today are acquired with cameras
that produce digital images, i.e., an image that is composed
of an array of numbers that represent the brightness of each
picture element, called a pixel (Fig. 1). But how are these
numbers created and what influenced their values? What
drives the pixel values away from the ideal values that
would give us the best image quality? Camera designers
struggle with these questions every day as they balance
the desired image quality with design constraints, most
notably size, weight, power, and cost.

The relationship between the final image quality and the
camera design factors, such as detector size and optical qual-
ity, needs to be well characterized and understood in order to
relate system requirements to the image quality required by
the image user. This relationship needs to be characterized
early in the design phase to prevent costly redesigns later
in the development phase, especially when new technologies
are being considered. Ideally, we would like to study the
design options by conducting image evaluations using
images captured from camera prototypes that cover every
design option, but this is typically prohibited by the time
and cost involved in building all the necessary hardware,
so we need other design tools at our disposal.

A historical approach to creating simulated image exam-
ples was to create an optical lens that closely matched the
predicted system-level image quality effects of the proposed
camera. Images were captured using this lens and then used
in image quality studies to predict the proposed camera’s
performance. This approach greatly restricted the ability
to perform design trades of the optical design because a
representative lens would need to be created for each modi-
fication in the optical design trade. The other difficulty was

determining how close the lens performance needed to match
the predicted camera imaging performance such that the
evaluation results would be valid, i.e., how good is good
enough? For camera systems that will drive important deci-
sions, it is critical that the image simulations do not differ in
quality from the operational images that will drive those
decisions.

With the advent of digital imaging and faster computers,
processing techniques were advancing enough to allow
accurate digital image simulations using mathematical mod-
els that encompass every step of the imaging process, i.e., the
imaging chain.1,2 Each element of the imaging chain could
be mathematically modeled and linked together to capture
the interactions between the links. Ultimately, very accurate
image simulations could be produced using the imaging
chain models that were indistinguishable from the opera-
tional images captured when the camera was built from
the same design. Image chain models have become invalu-
able at displaying image quality differences between camera
designs that have the same top-level design parameters, e.g.,
the same camera optics size and sensor size, but subtle
differences at the component-level designs that cannot be
easily translated into the predicted image quality differences,
e.g., optical quality and detector sensitivity. Figure 2 shows
image simulations of two design options for a panchromatic
remote sensing camera that has the same optics aperture
size, focal length, and detector size but has different optical
aberrations and detector sensitivities. Modeling the imaging
chain has become a critical design tool to assess camera
designs before hardware is built and prevent unwanted
surprises after the camera is built and the first images are
acquired.

2 Simple Imaging Chain Model
The fundamental links of the imaging chain for a camera
system are radiometry, image formation, image sensing,
processing, display, and interpretation, as shown in Fig. 3.
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Fig. 1 Camera designers need to understand the imaging process that creates the final digital counts in
a digital image to properly assess the image quality.

Fig. 2 Simulations from imaging chain models allow us to see image quality differences from two camera
designs that have the same top-level requirements but subtle differences in the component designs.
The image on the left was created from a design option that explored lowering the manufacturing
cost, but this process increased optical aberrations and used a sensor with lower sensitivity, resulting
in a noticeable image quality degradation in the image simulations.

Fig. 3 The fundamental links of the imaging chain.
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At first glance, the imaging chain seems fairly simple, but as
we dig deeper to develop mathematical models for each of
these links, we can quickly get overwhelmed with the subtle
complexities involved. It is very important to understand not
only the role that each link plays in producing the final image
quality, but also how the interaction between the links affects
the image quality as well. Let us first look at the most basic
imaging chain models for a simple digital camera system
before focusing on a more detailed method for modeling
the optical wavefronts in the imaging chain.

2.1 Radiometry

The imaging chain starts with modeling the radiometry, i.e.,
the electromagnetic energy that is the essence of creating
the image. Imaging is fundamentally the act of detecting
and measuring electromagnetic radiation in an attempt to
understand a remote object or collections of objects. The
electromagnetic spectrum ranges from gamma rays with a
wavelength λ in the picometers to radio waves with wave-
lengths of hundreds of kilometers. The shorter wavelength
electromagnetic spectrum is detected via photonic inter-
actions with matter and is often visualized as packets of
energy called photons, where the longer wavelengths are
detected with the aid of antennas and are often visualized
as waves. In this paper, we are concerned with the range
of the electromagnetic spectrum that includes the visible
spectrum (λ ¼ 400 to 800 nm) that can be redirected with
refractive or reflective optics and detected with bandgap
semiconductors. The visible spectrum is a subset of the opti-
cal spectrum, which involves frequencies from ultraviolet
up to the long-wave infrared (about λ ¼ 10 nm to 1 mm).

We are most interested in modeling the spectral radiance
from the object of interest, Lobjectðx; y; λÞ, but this is only
one of the contributions to the spectral radiance of the
entire scene, Lsceneðx; y; λÞ, that enters the camera aperture.3

Modeling the spectral radiance for the scene is very challeng-
ing given the complex variations and sources of the light
energy that will arrive at the camera (Fig. 4). For example,
the spectrum of the light changes dramatically in the imaging
chain if the camera moves from sunlight illumination to
indoor incandescent light. To further complicate the model
for outdoor lighting, the radiometry is heavily dependent
on the atmospheric conditions that the light travels though,

which is constantly changing. The radiometry from indoor
light is also complicated by the variety of light sources
and the illumination condition from the light reflecting off
walls and other objects. Probably, the best example of vary-
ing radiometric conditions for indoor lighting occurs when
an image is captured with or without a camera flash (Fig. 5).

Various software programs have been created to assist
modeling the complex scene spectral radiance. Atmospheric
models, such as moderate resolution atmospheric transmis-
sion (MODTRAN), produced by Spectral Sciences Inc.,
Burlington, Massachusetts and the U.S. Air Force, are usu-
ally employed to model the atmospheric propagation of the
electromagnetic radiation. The scene can be modeled using a
physics-based radiometric scene generation tool that builds
up an object from smaller facets, with each facet comprising
its own material properties. An example of a radiometric
scene generating tool is the digital imaging and remote sens-
ing image generation (DIRSIG) model developed at the
Rochester Institute of Technology.

2.2 Image Formation

The image formation element of the imaging chain starts
with the spectral radiance from the scene, Lsceneðx; y; λÞ,
entering the aperture of the camera. As the light waves
propagate through the imaging elements to form the
image on the sensor, we must consider the modifications
to the spatial distribution of the light energy before we
can calculate the resulting photons that strike each detector.
If we assume that the optical system behaves as a linear
shift-invariant system, then we can model the spatial mod-
ifications by understanding the effects on a single point of
light, resulting in a point spread function (PSF).4–6 The
resulting spatial modification to the spectral radiance in
the imaging plane, Limageðx; y; λÞ, can then be modeled by
simply convolving the PSF for the system, PSFsystem, with
scene spectral radiance, i.e.,

Limageðx; y; λÞ ¼
Z

∞

−∞

Z
∞

−∞
Lsceneðα; β; λÞPSFsystem

× ðx − α; y − β; λÞdα dβ (1)

¼ Lsceneðx; y; λÞ � PSFsystemðx; y; λÞ; (2)

where the symbol “*” denotes the convolution operation.
The system PSF is obtained by convolving together the indi-
vidual PSFs from each element of the imaging chain, i.e.,

PSFsystemðx; y; λÞ ¼ PSF1ðx; y; λÞ � PSF2ðx; y; λÞ
� PSF3ðx; y; λÞ: : : : (3)

It is also very helpful to understand how the imaging sys-
tem is modifying the contrast of the spatial frequencies in
the scene by calculating the Fourier transform of the system
PSF to give us the system transfer function. In Fourier space,
the convolution operation becomes a multiplication opera-
tion, so the transfer function for the entire camera system,
Hsystem, is obtained by simply multiplying together the indi-
vidual transfer functions from each element in the imaging
chain that contribute to the system transfer function, i.e.,

Fig. 4 Modeling the spectral radiance that enters the camera is more
complicated than simply modeling the spectral radiance from the
object of interest.
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Hsystemðξx;ξy;λÞ ¼H1ðξx;ξy;λÞH2ðξx;ξy;λÞH3ðξx;ξy;λÞ: : : ;
(4)

where ξx and ξy are the corresponding spatial frequencies for
x and y. It is useful to separate the modulation transfer
function (MTF) and the phase transfer function (PTF) com-
ponents of the transfer function, i.e.,

Hðξx; ξy; λÞ ¼ MTFðξx; ξy; λÞeiPTFðξx;ξy;λÞ: (5)

The MTF shows us how the transfer function modifies
the contrast of each spatial frequency and the PTF shows
us how the transfer function modifies the phase of each
spatial frequency.

A broader PSF translates into a transfer function that
drops off more rapidly in the higher spatial frequencies,
resulting in a blurrier image (Fig. 6). Thus, the PSF and
its corresponding transfer function have a direct impact on
the image quality, so it is very important to understand
the elements in the imaging chain that contribute to them.
For most camera systems, the biggest contributor to the sys-
tem PSF is the optical PSF and its corresponding optical
transfer function (OTF).

2.2.1 Optical PSF and coherence

To visualize the image formation process of the optical PSF
in the imaging chain, let us start with a broadband point
source in object space. This point source could be radiating

Fig. 5 The radiometry of the illumination source can dramatically change the appearance of the image,
such as incandescent lighting (a) versus a camera flash (b).

Fig. 6 An imaging system with a lower transfer function will produce an image with more blurring.
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on its own or scattering light, but either way the point source
is radiating spherical waves. A small solid angle patch of
these spherical waves enters the entrance aperture of our im-
aging system. At this moment, if we were to stop time and
investigate the field that exists at the entrance aperture from
the point source, we would notice that the field is spatially
correlated across the entrance aperture. This spatial correla-
tion is required for the system to make a diffraction-limited
PSF. If there is a loss of spatial correlation across the
entrance aperture, then the PSF becomes wider, resulting
in a blurry image. Propagation through the atmosphere or
aberrations in the optics could cause this loss of spatial cor-
relation. If we now look along the axis of propagation,
we would notice a very short correlation length; this direc-
tion is often thought of as the temporal correlation length.
This lack of temporal correlation is a direct result of the
broadband nature of the point source. However, one can
imagine that each wavelength creates a colocated PSF in
the image plane whose width is determined by the wave-
length. These colocated PSF’s then add as intensities,
because of the temporal averaging of the detector to form
one broad band PSF.

To understand the difference between coherent and inco-
herent imaging, we must bring in another point source.
If both point sources are broadband, then they both have
short correlation times. The measured intensity is the time
average of the modulus squared of the field and all cross-
terms from the two point sources average to zero because
there is no correlation between the two point sources,
resulting in the image of the two point sources adding as
intensities. This type of imaging is, therefore, linear in inten-
sity, i.e., the modulus squared of the field. If both of the point
sources are monochromatic with the same wavelength, then
the two point sources differ by no more than a relative phase.
This time the interference pattern set up by the two fields is
stationary, resulting in a distribution of bright and dark
regions. In other words, the cross-terms do not average to
zero. This type of imaging is, therefore, linear in field. In
both cases, coherent and incoherent, it is possible to add
the fields, perform a modulus square, and then do a time
average to get the measured intensity. It just so happens
that in the incoherent case, all the cross-terms average to
zero, allowing one to just add the intensities.

A full image can be thought of as a collection of closely
spaced point sources. If these point sources are uncorrelated,
which is the case with solar illumination of an outdoor scene,
then we will have incoherent imaging. If, however, there is
a phase relationship between the point sources, which is the
case when a scene is illuminated with a laser, then we have
coherent imaging. It is important to remember that in both
cases, the field from one point source is spatially coherent
across the entrance aperture. The previous discussion of
coherent and incoherent imaging has only scratched the sur-
face of this rich and complex field; the interested reader is
directed to Refs. 5, 7, and 8.

2.2.2 Optical diffraction PSF and OTF

Let us go back to the entrance aperture and follow the spa-
tially coherent section of a spherical field to the focal plane.
Depending on the distance to the point source and, to a lesser
extent, the size of the entrance aperture, the field at the
entrance aperture may appear to be a plane wave, a parabolic

wave, or a spherical wave. The optical system is designed to
take the diverging wavefront at the entrance aperture and turn
it into a converging spherical wave at the exit pupil. This
converging spherical wave is called the Gaussian reference
sphere. The center of the Gaussian reference sphere is on the
focal plane and is called the Gaussian reference point. If the
point sources in the object space are mapped to their corre-
sponding Gaussian reference points, then we have what is
called the Gaussian reference image. The Gaussian reference
image is an imaginary perfect unaberrated image that does
not have the blurring effect of the PSF and is the starting
point for modeling the optical wavefronts in the imaging
chain. Each point in the focal plane can be thought of as
the center of a set of converging waves on a Gaussian
reference sphere from an exit pupil, but each point may
be the result of different views of the exit pupil. This effect
can manifest itself in two ways, first as a warping of the
Gaussian reference image and second as a spatially varying
PSF. If the spatially varying PSF is small enough to be
ignored, then the system is said to be a linear shift-invariant
system. Another term that is often used is isoplanatic patch,
which refers to the region of the image plan for which the
spatial variability of the PSF is small enough to be consid-
ered constant.

If we calculate the Fresnel number to determine what
fidelity of the diffraction theory is required to propagate
the field at the exit pupil to the image plane, we would
find that the Fresnel number is not much less than one,
which is required in order to use the Fraunhofer diffraction
theory. The diffraction calculation for a camera requires
Fresnel diffraction but because the optical system has created
a wavefront that is converging to a point in the image plane,
the parabolic phase term in Fresnel diffraction is canceled
with the parabolic phase of the converging wavefront.
This, fortunately, leaves us with the mathematics of the
Fraunhofer diffraction theory. It should be pointed out
that our visualization is for converging spherical waterfronts,
but our mathematics is for converging parabolic waves,
which is a result of the paraxial approximation, i.e., consid-
ering the rays that are near the optical axis.

The converging field at the exit pupil has an amplitude
that depends on the intensity of the point source in object
space and on the complexities of the propagation from the
source to the imaging system. Normally, the concept of
radiometry is separated from the magnitude of the PSF.
The field at the exit pupil is taken to be one such that the
PSF from all point sources have the same magnitude. The
radiometry of the scene is then applied by scaling the values
of the Gaussian reference image. The converging field at the
exit pupil also has phase aberrations relative to the perfect
Gaussian reference sphere. These phase aberrations are
called wavefront error (WFE).

As an example of the Fraunhofer diffraction PSF, let us
look at a clear circular aperture of diameter D with no WFE.
The Fruanhofer diffraction pattern for light at wavelength λ
with incident electric field Eo imaged with a lens of focal
length f will be

PSFdiff-circðr; λÞ ¼
�
EoπD2

2λf

�
2
"
2J1

�
πDr
λf

�
πDr
λf

#
2

; (6)
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where J1 is the first-order Bessel function and r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. This shape is often called an Airy pattern and

consists of a pattern of concentric rings as shown in
Fig. 7. The first ring of zeros occurs at

r ≈ 1.22

�
λf
D

�
¼ 1.22ðλf∕#Þ; (7)

where

f∕# ¼
f
D
: (8)

The Fourier transform of the diffraction PSF gives the
same result as autocorrelating of the aperture pattern to
give us the diffraction OTF.

Hdiff-circðρ;λÞ¼
8<
:

2
π

h
cos−1ð ρρcÞ−

ρ
ρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ð ρρcÞ2

q i
for ρ

ρc
≤ 1

0 for ρ
ρc
> 1

;

(9)

where

ρc ¼
D
λf

¼ 1

λf∕#
; (10)

and ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2x þ ξ2y

q
. Note that the diffraction OTF, as shown

in Fig. 8, has a cutoff frequency ρc, where the contrast of
the higher spatial frequencies are zero; thus, the diffraction
from the aperture imposes a limit to the resolution of the
optical system that improves with increasing aperture size.
The optical cutoff frequency, therefore, imposes a fundamen-
tal resolution limit on the entire camera system because
the system transfer function will be zero for all spatial

Fig. 7 The left column shows shape of the exit aperture and the right column shows the shape of
the point spread function (PSF) on the focal plane, often called an Airy pattern. The top row is a cross-
section of the functions and the bottom row shows an intensity plot of the functions. The first zero of
the PSF occurs when 1.22ðλf∕DÞ.

c 0 c

0.2

0.4

0.6

0.8

1.0

Fig. 8 The optical transfer function for an optical system that is linear
in intensity and has an exit pupil as shown in Fig. 7. A system that is
linear in intensity is often called an incoherent system. The optical
transfer function (OTF) has a cut-off at ρc ¼ D∕ðλf Þ.
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frequencies higher than ρc, even when all of the individual
transfer functions are multiplied together.

2.2.3 WFE and OTF

Although many simple imaging chain models only consider
the aperture diffraction effects on the OTF, there are many
other factors that will alter the functional form of the OTF.
As discussed earlier, aberrations in the imaging elements
will cause departures from the ideal spherical wavefronts
in the optical system. Accurately modeling the WFE caused
by these aberrations can be very complicated, but is essential
in order to properly model the image quality of the camera.
We will return to this point as the focus of Sec. 3.

The addition of the aberrations will result in a MTF that is
equal to or lower than the diffraction MTF, i.e.,

MTFaberratedðξx; ξyÞ ≤ MTFdiffðξx; ξyÞ: (11)

TheWFE caused by aberrations will, therefore, reduce the
OTF and degrade the image quality with additional blurring
(Fig. 9). It is common to characterize the WFE of an optical
system by the root-mean-square (RMS) WFE,WFERMS, i.e.,
the statistical variance of the optical path difference over the
entire wavefront. When the aberrations are not known, such
as early in the design phase of an optical system, a random
phase error can be used to model a nominal WFE produced
by the aberrations and the optics manufacturing process. The
optics degradation is modeled as an optical quality factor
(OQF) transfer function that is multiplied with the diffraction
transfer function to get the OTF. Hufnagel modeled the OQF
transfer function for aberrations and high-frequency surface
roughness as9

HOQF-HufnagelðρÞ ¼ e
−4π2WFE2

RMS

�
1−e

−4ρ
2

l2

�
; (12)

where l is the spatial frequency of the correlation length but
can be used as a tuning parameter to fit measured optical data
if they are available. It should be pointed out that some of the
original work on what is now called the Hufnagel model was
done by O’Neill10 and developed further by Barakat.11 One
key idea that is often overlooked is that the term e−4ðρ2∕l2Þ
represents a correlation function that may not be a Gaussian.

Although there is a correlation between WFERMS and
the reduction of the OTF, different aberrations at the same
WFERMS can have different effects on the resulting image
quality, so it is very important to model the WFE from
the actual aberrations if they are known. As an example,
let us look at aberrations that cause a low spatial frequency
WFE compared to aberrations that cause a high spatial fre-
quency WFE. Figure 10 shows the distinct differences of the
low-frequency and high-frequency aberration optics PTF and
PSF even though they both have WFERMS ¼ 0.2λ. It is also
important to note that different weightings between the types
of optical aberrations, e.g., spherical aberration and astigma-
tism, can occur, which will result in the same RMSWFE but
result in different optics MTFs and PSFs. This variability as
well as the accuracy of the Hufnagel approximation is tighter
for a high spatial frequency WFE than it is for a low spatial
frequency WFE, as illustrated in Fig. 11. Figure 12 shows
the different effects that the aberrations have on image
quality even though they have the same WFERMS. It should

be noted that these image examples did not have noise added
or any image restoration processes applied to them.

2.3 Motion

The next consideration in the imaging chain is the relative
motion between the camera and the scene that will cause
additional blurring to the image. General motion transfer
functions can be derived from

Hmotionð~ξÞ ¼
1

texp

Z
texp

0

e−2πi~xoðtÞ·~ξdt; (13)

where ~xoðtÞ is the two-dimensional (2-D) path of the motion
during the integration time, texp, and ~ξ is the corresponding
2-D spatial frequency. The two most common motion blur-
ring effects are smear and jitter, shown in Fig. 13.

Smear is directional blurring caused by a constant linear
motion, such as snapping a long exposure image from the
window of a fast-moving car. If we let ~xoðtÞ ¼ vt, where
v is the relative velocity, and evaluate Eq. (13), then we
find the transfer function to be

HsmearðξÞ ¼
sinðπdsmearξÞ
πdsmearξ

e−πidsmearξ

¼ sincðdsmearξÞe−πidsmearξ; (14)

where

dsmear ¼ vtexp: (15)

The phase term e−πidsmearξ shifts the centroid of the image
by half the smear distance. This phase term is normally
ignored because it only represents the shift in the image pix-
els and does not affect image quality; hence, usually only
the smear MTF as a sinc function is used in the modeling.
If the smear direction is not along an axis, then a more
general smear transfer function can be created by replacing
dsmearξwith ~dsmear · ~ξ. The smear PSF along the x-direction is
modeled as

PSFsmearðx; yÞ ¼ rect

�
x

dsmear

�
δðyÞ; (16)

where

rect

�
x
w

�
¼

8<
:

1 for jxj < w
2

1
2

for jxj ¼ w
2

0 for jxj > w
2
:

(17)

Note that convolving the smear PSF with the scene per-
forms a uniform integration of the scene radiance over the
local distance dsmearξ.

Jitter is the result of very high-frequency vibrations
[fjitter ≫ ð1∕texpÞ] of the camera system. Jitter can be derived
by visualizing the integration time being broken up into
many very short subintegration times δt such that the camera
motion during the time δt can be assumed stationary. These
individual points and subintegration times can be placed into
Eq. (13), which will return the transfer function that is the
average of all of the spatial shifts. However, if the probability
distribution is known or assumed for the spatial location of
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Fig. 9 The top left plot shows a contour plot of an example wavefront error on a circular aperture optic.
The wavefront error is made up of a random set of aberrations with a high spatial frequency (HSF)
wavefront error with a correlation length about a tenth the radius of the optic. The plot in the top
right shows the resulting modulation transfer function (MTF) when the wavefront error is scaled to
0.05, 0.1, and 0.2 root-mean-square (RMS) wavefront error (WFE) at 670 nm. The dashed line is for
zero wavefront error.
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Fig. 10 The left column shows WFE, phase transfer function (PTF), and the PSF for low spatial
frequency (LSF) WFE. The right column shows the same plots for high spatial WFE. Both have the
same RMS WFE of 0.2λ at 670 nm. A key observation is that low spatial WFE disrupts the core of
the PSF, but the high spatial WFE preserves the PSF core but creates a very broad base. The numbering
of the PSFs relates to the PSFs illustrated in Fig. 11
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Fig. 11 These MTFs and PSFs are all different even though they all have WFERMS ¼ 0.2λ. Note that
the variation in possible transfer functions with the same RMS WFE is larger for LSF WFE than for HSF
WFE. Note also that the Hufnagel approximation is a reasonable fit to the average of the range of MTFs
for both the LSF and the HSF case when the spatial frequency of the correlation length l is modified for
each case.
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the points, then one can find the expected value of the aver-
age of the transfer function. Because of the form of Eq. (13),
the expected value of the average of the transfer function is
the Fourier transform of the probability distribution. This
allows us to visualize the probability distribution as the PSF
for jitter. Often jitter is modeled as a Gaussian probability
distribution given by

PSFjitterðx;yÞ

¼ 1

2πσxσy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2xy

q e
− 1

2ð1−ρ2xyÞ

��
x
σx

�
2þ
�

y
σy

�
2
−2ρxy

�
xy

σxσy

�	
;

(18)

with a transfer function given by
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Fig. 12 The top plots show the MTFs for three instates of low and high spatial WFE at two different RMS
WFE values. In both cases, the MTF’s for the high spatial WFE drop quickly. The low spatial WFE has
more variability between instances with the same RMS WFE. The top row of image simulations is for
the high spatial WFE and the bottom row of image simulations is for the low spatial WFE. Notice the
middle row of images look hazy, while the bottom row looks blurrier as one would expect by looking
at the PSF’s shown in Fig. 10.
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Hjitterðξx; ξyÞ ¼ e−2π
2ðξ2xσ2xþξ2yσ

2
yþ2ρxyξxξyσxσyÞ; (19)

where σx and σy are the standard deviations of the jitter
motion in the x and y directions, respectively, and ρxy is
the correlation between the two directions.

2.4 Image Sensing

Modeling the sensor requires us to understand the impact
that the sensor has on the spatial properties of the image
as well as the electromagnetic energy reaching the detector.
Let us first consider how a digital sensor alters the spatial
properties of the image. The predominant effect in most sen-
sors is the integration of the incident light across the aperture
shape of each detector. For a sensor with rectangular detec-
tors of size dx by dy, this integration will cause a blurring
modeled as

PSFdet-apðx;yÞ¼ rect

�
x
dx

;
y
dy

�
¼ rect

�
x
dx

�
rect

�
y
dy

�
; (20)

with the transfer function given as

Hdet-apðξÞ¼ sincðdxξx;dyξyÞ¼
sinðπdxξxÞ
πdxξx

sinðπdyξyÞ
πdyξy

: (21)

Other blurring effects need to be incorporated into the
sensor model, such as carrier diffusion, but these will depend
on the specific sensor design and architecture and will not be
considered here for our simple imaging chain model.

The other predominant effect that needs to be modeled for
a digital sensor is the sampling. The simplest sensor model
can be given by the blurring of the optical image by the
detector PSF, PSFdetðx; yÞ, followed by a sampling at each
detector location (Fig. 14). For an M × N detector array
with each detector a distance px and py from the next,
we can model the detector blur and sampling on the incident
radiance Lðx; yÞ as

gdetectorðx; yÞ ¼
XM
m¼1

XN
n¼1

½Lðx; yÞ � PSFdetectorðx; yÞ�δðx

−mpxÞδðy − npyÞ: (22)

Mathematically, gdetectorðx; yÞ is a distribution function
because of the Dirac delta distribution in its definition.
The operation of sampling is where our visualization transi-
tions from continuous to discrete. An alternative representa-
tion of gdetectorðx; yÞ can be purely discrete, i.e.,

gdetectorðm; nÞ ¼ Lðx; yÞ � PSFdetectorðx; yÞ



x ¼ mpx

y ¼ npy

: (23)

The distances px and py are called the sampling pitch of
the detector and can have a profound effect on the image
quality. All spatial frequencies higher than the Nyquist fre-
quency, defined by

Fig. 13 Smear and jitter are the most common motion blurs encountered with cameras.

Fig. 14 A simple model for an imaging sensor is a blur operation followed by a sampling operation.
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ξN ≡
1

2p
; (24)

for either direction will appear in the image as a lower alias
spatial frequency. This effect is easily seen when the spacing
between lines in the scene are scaled down in the image to
a spacing smaller than twice the detector sampling pitch
(Fig. 15). The sampling pitch of the detector, therefore,
imposes a fundamental limitation on the image resolution
by limiting the spacing between objects that can be resolved.

Let us now consider the light energy that reaches each
detector. For a detector with a spectral bandpass of λmin to
λmax, the radiant flux (watts) on the detector is given by

Φdetectorðx;yÞ¼
AdetectorAaperture

f2ðmþ1Þ2
Z

λmax

λmin

τopticsðλÞLimageðx;y;λÞdλ;

(25)

where Adetector is the area of the detector, Aaperture is the area of
the aperture, m is the magnification, and τopticsðλÞ is the opti-
cal transmittance. If the focal length is much smaller than the
distance between the camera and the object being imaged,
then ðmþ 1Þ ≈ 1, and for a clear circular aperture with diam-
eter D, the radiant flux on a square detector of width d is

Φdetectorðx; yÞ ¼
πd2

4f2∕#

Z
λmax

λmin

τopticsðλÞLimageðx; y; λÞdλ: (26)

The digital imaging sensor model converts the spatially
distributed light energy of the image into the digital counts
that record the image. The most common digital sensors are
composed of individual detectors that generate electrons
from the incident light through the photoelectric effect; thus,
the average number of photoelectrons generated at the detec-
tor during the exposure time texp is given by

sdetectorðx;yÞ ¼
πd2texp
4f2∕#

Z
λmax

λmin

λ

hc
ηðλÞτopticsðλÞLimageðx;y;λÞdλ;

(27)

where ηðλÞ is the quantum efficiency of converting photons
to electrons in the detector, h is Planck’s constant, and c is
the speed of light in a vacuum. The electrons create a voltage
potential that is then converted to integer digital count values
correlated to the brightness of the light on each detector,
given by

countsðx; yÞ ¼
�
sdetectorðx; yÞ

NDR

Nwell

�
; (28)

where the operation bzc returns the integer value of z,Nwell is
the total number of electrons that the detector will hold
before saturating (known as the well depth or full well capac-
ity), and NDR is the dynamic range of the digital counts, e.g.,
28 ¼ 256 counts for an 8-bit dynamic range.

Unfortunately, the digital count value of the image does
not have a one-to-one relationship with the scene radiance,
Lsceneðx; y; λÞ, due to the blurring caused by the PSF, the
sampling, and the noise that is introduced. The noise intro-
duces an undesired randomness to the brightness of the
digital count value for each pixel with the primary noise
contributors in most digital cameras coming from the pho-
tons’ noise, dark noise, and quantization noise. The photons
arriving at the sensor do not arrive in a steady stream but in
random fluctuations that follow a Poisson distribution, giv-
ing rise to the photon noise that increases with the square
root of the signal intensity. The dark noise appears as fluc-
tuations in the digital counts even when no signal is present.
There are many causes for the dark noise, such as error in
the analog-to-digital converter that creates the digital count
value, so this value in the imaging chain model is captured
from measured data for the sensor being modeled. Finally,

Fig. 15 High frequency line patterns appear as lower frequency patterns as the sampling distance
between detectors increases.
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we have quantization noise that arises from quantizing the
signal electrons into integer digital count values, creating a
randomness that follows a uniform distribution. Putting these
noise sources together gives us the root-sum-square noise for
the sensor electrons as

σnoiseðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2photonðx; yÞ þ σ2quantizationðx; yÞ þ σ2darkðx; yÞ

q
(29)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sdetectorðx; yÞ þ

1

12

�
Nwell

NDR

�
2

ðx; yÞ þ σ2darkðx; yÞ
s

: (30)

An interesting detail regarding the photon noise is that the
arriving photons arrive following a Poisson distribution but
then drive a binomial probability distribution that has a prob-
ability of success given by the quantum efficiency. It just so
happens that when a Poisson process drives a binomial proc-
ess, the result is also a Poisson process, so it is, therefore, still
valid to use a Poisson distribution for the photoelectrons.

2.5 Additional Considerations When Putting
the Imaging Chain Elements Together

Figure 16 illustrates the fundamental steps of putting
together all of the elements of a simple imaging chain
model to simulate the image capture portion of the imaging

chain. Image processing, such as calibration, is generally
applied to the output of the image capture portion of the im-
aging chain to generate the final image produced by the cam-
era. The image simulations can then be processed to enhance
the image quality, displayed, and evaluated by image users to
complete the imaging chain for assessing the image quality
of the camera design.

It is easy for many developers to oversimplify the imaging
chain models, but these simplifications can lead to mis-
leading results when the evaluations are conducted using
the image simulations. For example, many simple image
chain models will only consider the PSF of the Airy pattern,
shown in Fig. 7, in their system. Although it is the optics
diffraction that sets the fundamental resolution limit of the
system PSF, using the Airy pattern as the system PSF over-
looks the blurring effects caused by the other elements of
the imaging chain that can significantly impact the resulting
image quality. Also, the Airy pattern is the circular aperture
diffraction PSF for a single wavelength of light and ignores
the integration of the PSF of the spectral bandpass of the im-
aging system. If the camera integrates the light over the spec-
tral range λmin to λmax, then the radiant flux, ϕimageðx; yÞ,
reaching the image plane is a function of Lsceneðx; y; λÞ by

ϕimageðx; yÞ ∝
Z

λmax

λmin

Lsceneðx; y; λÞ � PSFsystemðx; y; λÞdλ;

(31)

Fig. 16 The fundamental steps of the imaging chain model.
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where the spectral response of the system is captured
in PSFsystemðx; y; λÞ.

As an illustration, let us consider a gray world where the
spectral radiance of the scene, Lsceneðx; y; λÞ, is flat across
the spectral range λmin to λmax and the spectral response of
the system is flat across the spectrum as well. In this special
case, the integration over the spectral bandpass will simply
average the spatial scaling of the PSF over the range λmin to
λmax. Even if we only look at the diffraction PSF and
corresponding OTF for a circular aperture over the visible
spectral bandpass λmin ¼ 0.4 μm and λmax ¼ 0.8 μm, as
shown in Fig. 17, we see differences from the single wave-
length model. Note that the side rings of the Airy pattern
smooth out after the PSF is integrated over the spectral
bandpass.

When building an imaging chain model for a digital im-
aging system, particular attention also needs to be paid to
the relationship between the optics and the digital sensor.
We saw earlier that each imposes a fundamental limit on
the detail that can be imaged with a digital camera and
the image quality is dependent on the relationship between
these limiting factors. The diffraction from the optical aper-
ture imposes a limit on the highest spatial frequency that can
be captured [Eq. (10)] and likewise the detector sampling
imposes a limit from the Nyquist frequency [Eq. (24)].
The ratio of the sampling frequency and the optical cutoff
frequency is a design parameter Q defined as12

Q ≡
1
p
1

λf∕#

¼ 2ξN
ρc

¼ λf∕#
p

: (32)

Historically, Q has been defined as the ratio of the sam-
pling frequency to the optical cutoff frequency rather than
the Nyquist frequency to the optical cutoff frequency, so the
detector and optics resolution limits are equal when ξN ¼ ρc
and Q ¼ 2. The resolutions of digital cameras that are
designed withQ > 2 are fundamentally limited by the optics
diffraction, whereas digital cameras designed with Q < 2 are
fundamentally limited by the detector sampling.

It may seem intuitive that digital cameras should all be
designed with Q ¼ 2, but other factors, such as signal-to-
noise ratio and motion blurring, will influence the final
image quality and Q ¼ 2 may not be the best design when
all image quality factors are considered (Fig. 18). Most
digital cameras will produce brighter, sharper images when
Q < 2, with Q typically in the range 0.5 < Q < 1.5. It is
important to note that Q only compares the resolution limits

between the optics and the detector sampling and does not
take into consideration the system transfer function. The
impact of the OTF is a significant factor in the system trans-
fer function when Q ≳ 0.1 (Fig. 19), so for most imaging
systems, we must understand the effect of the optical WFE
on the system transfer function, which will influence the
image quality.

3 Wavefront Error and Optical Transfer Function
Generation

3.1 Problem Motivation

In the previous section, we only considered a very simple
form of the OTF that included the diffraction from a clear
circular aperture with a generalized WFE that can be
modeled as an OQF, although the importance of properly
modeling the WFE was illustrated. If we simply extend
the aperture model to include a circular central obscuration
of diameter Dobs, as we would see in a Cassegrain telescope,
then the aperture diffraction PSF will now have the form

PSFobsðr;λÞ¼
�
EoπD2

4λf
1

ð1−ϵ2Þ
�
2
"
2J1

�
πDr
λf

�
�
πDr
λf

� −
2ϵ2J1

�
ϵπDr

λf

�
�
ϵπDr

λf

�
#
2

;

(33)

where

ϵ ¼ Dobs

D
: (34)

The diffraction OTF for a circular aperture with a central
obscuration is given by

Hdiff-circ-obsðρ; λÞ ¼
2

π

Aþ Bþ C
1 − ϵ2

; (35)

where

A ¼ cos−1
�
ρ

ρc

�
−

ρ

ρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ

ρc

�
2

s
; (36)

B ¼
8<
: ϵ2

�
cos−1



ρ
ϵρc

�
− ρ

ϵρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −



ρ
ϵρc

�
2

r �
for 0 ≤ ρ

ρc
≤ ϵ

0 for ρ
ρc
> ϵ

;

(37)

C ¼

8>>>><
>>>>:

−πϵ2 for 0 ≤ ρ
ρc
≤ 1−ϵ

2

−πϵ2 þ ϵ sinðϕÞ þ ϕ
2
ð1þ ϵ2Þ − ð1 − ϵ2Þtan−1

h
1þϵ
1−ϵ tan



ϕ
2

�i
for 1−ϵ

2
≤ ρ

ρc
≤ 1þϵ

2

0 for ρ
ρc
> 1þϵ

2

; (38)

ϕ ¼ cos−1

2
641þ ϵ2 − 4



ρ
ρc

�
2

2ϵ

3
75: (39)

Note that adding the central obscuration to the clear cir-
cular aperture has the effect of moving the concentric rings
in the PSF closer toward the center while more energy is
moved from the central peak to the outer rings (Fig. 20).
Also note that the contrast of the mid-spatial frequencies
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in the diffraction OTF is reduced as the central obscuration
increases in size, but the cutoff frequency remains the same.

Although these models for the diffraction OTF are useful
for simple imaging chain models, they are still inadequate for
more complex optical designs, especially when we need to
consider all of the potential sources for WFEs.

The primary driver for the shape of the PSF is the shape of
the exit pupil. Historically and in many elementary texts on
optics, the shape of the exit pupil is an unobstructed circle.
However, in reality, the exit pupil has obstructions and in
more complex systems, like segmented arrays and multitele-
scope systems, the overall shape of the exit pupil is very
complex. A secondary effect on the shape of the PSF is
that of the WFE. WFE is the spatial variation about the opti-
mal optical path length over the exit pupil. Again, histori-
cally and in many elementary texts on optics, WFE would
be modeled with a linear combination of Zernike polyno-
mials, which are an infinite set of orthogonal functions
over the unit disk. Obviously, this orthogonality is lost on

exit pupils with complex shapes. One option is to find a
new set of orthogonal functions for the new shapes.13 This
works well for a small yet common set of shapes. Another
option is to accept the loss of orthogonality and develop
a method that allows the usage of any collection of basis
functions, including the influence functions of adaptive
optics on an arbitrary exit pupil geometry.

The method presented below is a generalized method for
tracking WFE in a consistent manner that is applicable to
arbitrary pupil geometries. WFE will be visualized as
a vector in an infinite-dimensional vector space; however,
calculations will be done in a finite-dimensional vector
space. This vector space visualization will conveniently
allow for the separation of WFE into multiple subspaces
that can be aligned with the specifications for a future sys-
tem. Calculations for RMS WFE, line-of-sight (LOS), and

Fig. 18 The value ofQ will influence the final system image quality andmust be optimized for each digital
camera design.

Fig. 19 Comparing the diffraction-limited optics MTF with the detector
aperture MTF shows that the detector aperture MTF dominates for
Q ≲ 0.1, but the OTF is a significant factor when Q ≳ 0.1.
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Fig. 17 Both plots show the different wavelengths as dashed lines
and the spectral averaged as the solid line. The left plot shows the
PSF and the right shows the OTF. The inset on the left is a zoomed
scale of the PSF that appears in the gray region on the main plot.
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other macroscopic parameters are reduced to fast matrix
calculations.

3.2 OTF Generation

The impulse response function hð~xÞ, which is a precursor to
the PSF, can be calculated by evaluating the Fraunhofer
diffraction integral.

hð~xÞ ¼
Z
D
Pð~uÞe−2π

λfið~u·~xÞd2~u; (40)

where Pð~uÞ is the field at the Gaussian reference sphere, f is
the effective focal length of the system, which is the distance
from the exit pupil to the focal plane, λ is the wavelength of
light, and D is the domain of the exit pupil, which represents
the shape of the exit pupil. The PSF is the modules squared
of the impulse response function.

PSFð~xÞ ¼ jhð~xÞj2: (41)

Before we go much farther, it is important that we become
explicitly clear about our choice of sign conventions. In gen-
eral, sign conventions and handedness of axes are completely
arbitrary, but we must be consistent and when obtaining
data from an external source, one must take great care to
understand the hidden assumptions with sign conventions.

We start off with the definition of the optical axis that runs
along the center line of the optical system in the direction of
propagation. This will be the z axis of our coordinate system.
In other words, the z axis points from the exit pupil to the
focal plane. We will use a right-handed coordinate system,
which will dictate the order of the x and y axes in the focal
plane, as shown in Fig. 21. The labels u and v have been used
for the axes in the exit pupil. The polar angle θ will be pos-
itive when measured from the x axis in the direction the
fingers of the right hand point when the thumb of the right
hand is pointing in the positive z direction. This is the normal
convention for the polar angle θ.

The complex scalar field at the Gaussian reference sphere
at the exit pupil is called the pupil function, Pð~uÞ, and is
used in Eq. (40) to calculate the impulse response function.
The pupil function can be broken into two real functions:
the aperture function, 0 ≤ Að~uÞ ≤ 1, and the WFE function,
ϕð~uÞ ∈ R. The aperture function, which is often a binary
function but, in principle, can take on values between
0 and 1, represents the relative spatial distribution of the
transmission of the exit pupil. The WFE function repre-
sents deviations in the wavefront from the ideal Gaussian
wavefront.

In this documentation, we have picked ϕð~uÞ > 0 to be in
the direction along positive z. This choice forces us to place a
minus sign in the exponent of Eq. (40). This choice supports
the visualization that the normal vector of the tip-tilt WFE
shown in Fig. 21 points toward the center of the PSF.
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Fig. 20 (a) The PSF for a system with different obscuration sizes and (b) the OTF. The inset in (a) is a
zoomed-in section of what is shown is a zoomed-in section of what is shown in the gray region. The online
version is color and accompanied with an animation (Video 1, MOV, 6.4 MB) [URL: http://dx.doi.org/10
.1117/1.OE.53.8.083103.1].

Fig. 21 A right-handed coordinate system is used with the z axis run-
ning in the direction of the propagation of light. The diagram shows
the location of the PSF in the focal plane as the top of the wavefront
tips toward the focal plane. Positive WFE ϕ > 0 is colored bluish and
is defined as moving in the direction of the z axis.
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The Fraunhofer diffraction integral of Eq. (40) has the
same form as a Fourier transform integral, provided that
we define the forwarded transform as

FðνÞ ¼
Z

∞

−∞
fðxÞe−2πixνdx: (42)

In practice, one will be creating sampled images of the
exit pupil and then using a discrete Fourier transform
(DFT) algorithm to calculate the PSF and OTF with the
DFT implemented using a fast Fourier transform (FFT).

To avoid aliasing, one must sample the pupil function
with sufficient zero padding. For this discussion, we will
assume that a square grid is used and we will only talk
about the linear scaling along one side. Let w be the physical
width of the sampling grid and Rin be the enclosing radius of
the pupil function. For a simple round optic, the enclosing
radius is the radius of the optic, but for a complex multiseg-
mented system, it is the radius of the smallest circle that can
contain the full system. The enclosing radius must satisfy
the following constraint:

Rin ≤
w
4
: (43)

If the square grid is sampled with an n × n array, the sam-
ple spacing is w∕n. The left most axis on Fig. 22 shows
the sampling of one side of this grid. The pupil function,
PðxiÞ ¼ Pi, has been sampled at

xi ¼ −
w
2
þ i

w
n
; where i ∈ ð0;1; 2; : : : ; n − 1Þ: (44)

An arbitrary choice has been made regarding the sampling
that is done from −ðw∕2Þ to ðw∕2Þ − ðw∕nÞ. We could have
easily sampled from −ðw∕2Þ þ ðw∕nÞ to w∕2, which would
give us consistent results. The current choice is driven by
using a computer programming language that references
arrays with a zero-based index system. In other words,
A½0� is the first element of the array and A½n − 1� is the

last. For an array with an even number of points and length
n, the center value of the function is at array index A½n∕2�.

Another requirement for sampling the pupil function is
that the smallest structure of the pupil function is adequately
sampled. This includes the physical structure in the aperture
function and the variations in the WFE function. If the size of
the resulting grid gets too large for the computing resources
of the day, one can use the techniques of Eikenberry et al. or
Ransom et al.14,15

Let FFTðPiÞ ¼ hj represent the action of a DFT on the
Pi data to create the hj data. One should keep in mind that
every data value hj is a function of all the input data values
Pi. The PSF data can be calculated from the sampled pupil
function, Pi, as follows:

PSFj ¼ jFFTðPiÞj2; (45)

where the PSF data are sampled at

xj ¼ −
nλf
2w

þ j
λf
w

; where j ∈ ð0;1; 2; : : : ; n − 1Þ;
(46)

where λ is the wavelength of light and f is the effective focal
length of the system. This sampling is shown graphically on
the third axis in Fig. 22. These PSF data can now be com-
bined with an image gj via a convolution to produce the first
step in simulating an optical system. Normally, this convo-
lution is performed via the convolution theorem.

FFTðĝjÞ ¼ FFTðPSFjÞ × FFTðgjÞ ¼ OTFk × Gk; (47)

where OTFk ¼ FFTðPSFjÞ and is called the OTF and
Gk ¼ FFTðgjÞ. The times symbol × is just an element-
by-element multiplication of the data. The real object of
interest is the simulated image, ĝj, and can be written as

ĝj ¼ FFT−1½OTFk × FFTðgjÞ�; (48)

where FFT−1 represents the operation of an inverse FFT.
OTF is sampled as shown on the right most axis in
Fig. 22 and below.

Fig. 22 The left axis is the sampling of the pupil function. The second axis shows the scaling resulting
from converting the Fraunhofer diffraction integral into a Fourier transform. The next axis shows the
width and sampling of the PSF on the focal plane. The last axis shows the sampling of the OTF in
the frequency domain.
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νk ¼ −
w
2λf

þ k
w
nλf

; where k ∈ ð0;1; 2; : : : ; n − 1Þ:
(49)

When modeling OTFk, it is often convenient to consider
the MTF and PTF, which are related as

OTFk ¼ MTFkeiPTFk : (50)

The magnitude of the OTF, is the MTF which is scaled
such that the zero frequency is equal to one, MTFn∕2 ¼ 1.
The PSF and OTF are a Fourier Transform pair,

OTFk ¼ FFTðPSFjÞ; (51)

and the PSF is the inverse Fourier transform of the OTF.

PSFj ¼ FFT−1ðOTFkÞ: (52)

For a simple round optic of radius R with WFE, one can
expand the phase of the pupil function out into a set of
orthogonal functions. A common choice for these orthogonal
functions are Zernike polynomials.

ϕð~uÞ ¼ ϕðr; θÞ ¼ ϕðρR; θÞ ¼
X∞
j¼0

ajZj

�
r
R
; θ

�
: (53)

Two key benefits of using a set of orthogonal functions to
describe WFE are that it is easy to describe the key aberra-
tions with just a few terms and the orthogonality relationship
of the basis functions makes it easy to calculate macroscopic
parameters with just the coefficients of the basis functions.
The orthogonality relationship is as follows:Z

2π

0

Z
1

0

Zjðρ; θÞZj 0 ðρ; θÞρdρ dθ ¼ πδj;j 0 : (54)

The coefficients that describe a given WFE, ϕð~uÞ, can
be calculated by taking advantage of the orthogonality
relationship.

ai ¼ 1

π

Z
2π

0

Z
1

0

Ziðρ; θÞϕðρR; θÞρdρ dθ: (55)

Once the coefficients ða0; a1; a2; ; anÞ have been calcu-
lated, we can easily calculate the following integral:

hϕ2i ¼
Z

2π

0

Z
R

0

ϕðr; θÞ2rdr dθ; (56)

by substituting in Eq. (53) and taking advantage of the ortho-
gonality relationship. Finally, we arrive at

hϕ2i ¼
X∞
j¼0

a2j: (57)

Therefore, if we know the coefficients ða0; a1; a2; ; anÞ,
calculating the value for hϕ2i is as simple as summing the
square of the coefficients. Another very important way of
looking at this is if we think of the WFE as a vector
made up of the coefficients

~ϕ ¼ ha0; a1; a2; ; aniT; (58)

then the integral that provides the value of hϕ2i can be
thought of as the dot product of ~ϕ with itself.

hϕ2i ¼ ~ϕ · ~ϕ: (59)

The rest of this work describes how to do these types of
integrals when the optic is arbitrarily complex and the ortho-
gonality relationship is no longer valid. This is done by
careful book keeping of the WFE vector spaces and the
calculation of a metric we will call the eta matrix, η. This
matrix will allow us to keep the visualization that WFE is
a vector in a vector space and will be used to calculate
the new dot product in this vector space.

4 Exit Pupil Modeling for Arbitrarily Complex
Systems

We are going to consider a general hierarchy of nested aper-
tures that make up the exit pupil. Each aperture can have
a WFE that will affect the total system WFE. Also, each
aperture can have child apertures, which are completely
contained within the domain of the parent aperture. This
hierarchy can be thought of as a simple tool to model a com-
plex set of system specs, or as a method of producing a spa-
tially correlated WFE over a large multisegmented aperture
array, or even for modeling a multitelescope system. An
example of an arbitrary nested aperture system is shown
in Fig. 23. In Sec. 4.7, we will present a full numerical exam-
ple for a nonrealistic multisegmented, multitelescope. This
example will contain the elements needed to demonstrate
many of the applications of the η matrix method.

4.1 Aperture Nesting Rules

In general, each aperture has an enclosing disk or other
enclosing shape that contains the unobscured domain of
the basis functions. For this discussion, we will assume
that the enclosing shape is a disk with radius of R~q,
where ~q is the vector-index designator for the given aperture.
The enclosing disk is the domain over which the WFE basis
functions are defined. If one is using Zernike polynomials,
then the basis functions are also orthogonal over the domain
of the disk. However, if the domain of the basis functions is
not the shape of a disk, then one can think of the radius R~q as
a scale parameter of the enclosing shape. For example, if the
basis functions are square image files, then the enclosing
shape is a square and the scaling parameter R~q can be the
distance from the center to one of the corners.

The domain over which the ~q’th aperture is defined will
be referred to as D~q. This region is shown in Fig. 23 as the
gray regions within the supporting circles. The gray regions
get darker as there are more nested apertures. The ~q vector
indexing method helps visualize the tree structure of the
nested apertures. Figure 24 shows the nesting hierarchy
for the general hierarchy of nested apertures shown in
Fig. 23. The ~q vector is as long as the deepest trail on the
graph from the root to the leaf. Each level corresponds to
a dimension in the ~q vector. The ~q vector is the trail from
the root to the node in question with zero padding. The
union of the domains of the leafs of the aperture tree corre-
sponds to the final pupil mask as shown in the inset of
Fig. 23.
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Apertures can be combined into a hierarchal arrangement
to aid in modeling a complex system. Any aperture can have
children apertures, which can be used to build up a complex
hierarchy. The following rules apply to hierarchical aperture
arrangements:

• The domain of child apertures is completely contained
within the domain of their parent aperture.

• No other overlapping of apertures is allowed.
• WFE of the exit pupil is the sum of the WFE on all of

the apertures at a given point in the exit pupil. One
must work with the optical designer to map the
WFE to the exit pupil.

• The exit pupil mask is the union of all of the domains
of the leaf nodes of the aperture tree. An aperture tree is
shown in Fig. 24.

4.2 Calculation of the η Matrix

The goal of the η matrix is to replace time-consuming
numerical integrations of the product of two functions
defined over the domain of the pupil with a quick matrix
multiplication.

Z
D
ϕð~rÞψð~rÞdA ¼ ~ϕ⊤η~ψ : (60)

This matrix multiplication can be thought of as the dot
product between the two vectors ~ϕ and ~ψ in a nonorthogonal
space described by the metric η, where the elements of ~ϕ and
~ψ are the expansion coefficients of the functions ϕð~rÞ and
ψð~rÞ. If we first look at a simple single aperture system
where the WFE is expanded on the following basis functions,
Bið~xÞ, then Eq. (60) can be rewritten asZ
D
ϕð~rÞψð~rÞdA¼

Z
D

�X∞
i¼1

aiBið~rÞ
��X∞

j¼1

bjBjð~rÞ
�
dA:

(61)

It is now possible to switch the order of the integration
and summations to arrive atZ

D
ϕð~rÞψð~rÞdA ¼

X∞
i¼1

X∞
j¼1

aibj

Z
D
Bið~rÞBjð~rÞdA: (62)

This seemingly trivial algebraic operation has profound
computational effects. The integral in Eq. (62) can be calcu-
lated for all combinations of i and j with just the knowledge
of the geometry of the aperture, D. This will become the η
matrix. The instance of the WFE is contained in the expan-
sion coefficients ai and bj, which become the WFE vectors
~ϕ and ~ψ . Basically, we have separated the geometry of the
aperture from the instance of the wavefront error.

In the most general case, the ηmatrix is the overlap matrix
between every combination of two basis functions for every
combination of two apertures over the domain these two
apertures make in the exit pupil. The η matrix is calculated
by evaluating the following integral for each matrix element:

η~qa;~qb∶i;j ¼
Z
Dchildren

B~qa∶i

�
~r
R~qa

�
B~qb∶j

�
~r
R~qb

�
dA; (63)

where the domain of integration is the union of all the leafs of
the pupil tree that are common to both ~qa and ~qb. The fol-
lowing examples refer to the aperture tree in Fig. 24.

• For ~qa ¼ h1;0; 0i and ~qb ¼ h1;0; 0i, the domain of
integration is all of the gray boxes in Fig. 24.

• For ~qa ¼ h1;0; 0i and ~qb ¼ h1;1; 0i, the domain of
integration is all of the gray boxes with
~q ¼ h1;1; ni, where n ∈ ð1;2; 3Þ, in Fig. 24.

• For ~qa ¼ h1;1; 0i and ~qb ¼ h1;2; 0i, the domain of
integration is the empty set because these two ~q’s
have no common terminating branches.

B~qa∶ið~r∕R~qaÞ in Eq. (63) is the i’th basis function on
the ~qa’th aperture that is used to describe the WFE of the
optical system.

As a result of there being no restrictions on the basis func-
tions used and the fact that the same type of basis functions
can be used on parent apertures along with children aper-
tures, the η matrix will not have full rank and there will
be redundancy in how a given WFE can be represented
on the basis functions. However, along the diagonal, there
are blocks that have full rank.

Fig. 23 The generalized aperture shown here corresponds to the tree
structure shown in Fig. 24. The inset is the system pupil mask.

Fig. 24 The tree structure shown here is for the aperture system
shown in Fig. 23. The union of the domain of the gray boxes; the
leaf nodes make up the pupil mask, which is the inset in Fig. 23.
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4.3 Derivation of Support Matrices

We need to derive some supporting matrices to assist in the
calculation of the system RMS WFE, global pointing plane
(GPP), and LOS. To do this, one needs to calculate vector
representations for the simple functions 1, x, and y.

As a result of using multiple complete sets of basis func-
tions over the same region of space, there is some freedom in
how one can expand any given function on the basis func-
tions. When modeling a system, one has the freedom to pick
appropriate basis functions. If the basis functions are poly-
nomial, then the lowest-order basis functions are most likely
of the form c0, c1x, and c2y, or some linear combination
thereof, where ci are constants. In this situation, the vector
expressions for the functions 1, x, and y will evaluate to a
finite number of nonzero terms. If the basis functions are
not polynomial, then the expansion of the functions 1, x,
and y may not terminate. Due to this condition, it is sug-
gested that at least three basis functions are polynomial
and of the form c0, c1x, and c2y. The remainder of the
basis functions can be anything else that best matches the
needs of the modeling the WFE of the system.

There is no loss in generality by requiring three basis
functions for each leaf node to be the first three Zernike pol-
ynomials. If one chooses to use a different set for the first
three basis functions, one is required to derive the final
expressions shown in this section.

An arbitrary function fð~rÞ can be written in terms of
a linear combination of basis functions B~qa∶ið~rÞ over the
domain of the ~qa’th aperture as

fð~rÞ ¼
X∞
i¼0

b~qa∶iB~qa∶i

�
~r − ~x~qa
R~qa

�
: (64)

When solving for the expansion coefficients b~qa∶i by
multiplying by the j’th basis function, one can integrate
over the full domain, not just the domain as masked by
the ~qa aperture. This, of course, assumes that the function
fð~rÞ is known outside of the pupil domain and everywhere
within the domain of the basis functions.

If Zernike polynomials are used for the basis functions,
the expansion coefficients can be calculated with

b~qa∶i ¼ 1

π

Z
2π

0

Z
1

0

fð~x~qa þ R~qa ~ρÞZ~qa∶iðρ; θÞρdρ dθ; (65)

where the vector notion is short hand showing the needed
scaling and transformation. Using this expression, the fol-
lowing vectors can be derived:

1~qa ¼ h1;0; 0;0; ; 0iT; (66)

X~qa ¼
�
x~qa ; 0;

R~qa

2
; 0; ; 0

�
T

; (67)

Y ~qa ¼
�
y~qa ;

R~qa

2
; 0;0; ; 0

�
T

: (68)

The point ðx~qa ; y~qaÞ is the center of the ~qa’th aperture and
R~qa is the radius of the disk that encloses the aperture.
Because the η matrix of Eq. (63) contains the information
for all the apertures and basis functions, the 1~qa , X~qa , and

Y ~qa vectors are combined to form full system vectors, for
example,

X ¼ hXT
~q1
;XT

~q2
; : : : ;XT

~qQ
iT; (69)

where Q is the total number of apertures. Later, we will be
discussing how to combine the WFE and apertures into
groups called subspaces. In that section, one of our goals will
be to minimize the size of the η matrix, which is done by
eliminating any common WFE, aperture combinations that
are identical for different subspaces. This often results in
a more complex ordering than that shown in Eq. (69).

4.4 Projecting Out the Mean and the GPP

Given an arbitrary WFE function ϕð~rÞ defined over the union
of all of the domains of the leafs of the pupil mask tree, the
mean of the WFE can be found by integrating ϕð~rÞ over the
valid domain and then dividing by the area of the domain,
giving

hϕð~rÞi ¼
R
D∪a~qa

ϕð~rÞdAR
D∪a ~qa

dA
: (70)

Our goal is to find a matrix operation that accomplishes
this task. By using Eq. (60) and the vector 1, we can write
down the integration as a matrix operation.

hϕð~rÞi ¼ 1Tη~ϕ
1Tη1

¼ Kμ
~ϕ: (71)

This leads us to two matrices, one that calculates the
mean, Kμ, and one that projects the mean out of the original
WFE vector, Pμ.

Kμ ¼
�

1

1Tη1

�
1Tη; (72)

Pμ ¼ I − 1Kμ: (73)

In addition to projecting out the mean, another common
operation is calculating and projecting out the best-fit plane
to the WFE. This best-fit plane is called the GPP. A normal
vector to the GPP that intersects the optical axis points to the
location of the maximum of the PSF in the image plane. This
location will be called the LOS. GPP is the global piston, tip,
tilt (PTT) of a system.

We first start with a least-squares fit cost function for
the GPP.

Sðα; β; γÞ ¼
XQ
q¼1

Z
Dq

½ϕqðx; yÞ − αx − βy − γ�2dA: (74)

We proceed in the normal fashion by setting the partial
derivatives to zero and then solving for α, β, and γ.
During the mathematical manipulation, one will come across
terms of the following form, which can be rewritten in
a matrix form.

XQ
q¼1

Z
Dq

xϕqðx; yÞdA ¼
XQ
q¼1

~XT
qηq ~ϕq ¼ ~XTη~ϕ; (75)
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XQ
q¼1

Z
Dq

xydA ¼
XQ
q¼1

~XT
qηq ~Yq ¼ ~XTη~Y; (76)

where the vectors without the subscripts are the appropriately
ordered vectors for the full system of Q apertures, which
allows us to write the following matrix equation:

0
B@XTη

YTη
1Tη

1
CA~ϕ ¼

0
B@XTηX XTηY XTη1

XTηY YTηY YTη1
XTη1 YTη1 1Tη1

1
CA
0
B@ α

β
γ

1
CA: (77)

It is now possible to write down the matrices for calcu-
lating GPP and projecting out the GPP.

KΓ ¼ M−1

0
B@XTη

YTη
1Tη

1
CA; (78)

where M is the 3 × 3 matrix of Eq. (77). The KΓ matrix is
a 3 × n matrix that will return α, β, and γ of the GPP when
it acts on a WFE vector.

Finally, the PΓ matrix, which is used to project out the
GPP, can be calculated with

PΓ ¼ I − LKΓ ¼ I − ðX...Y...1ÞKΓ; (79)

where I is the identity matrix and L ¼ ðX...Y...1Þ is the matrix
composed of three column vectors next to one another to
form an n × 3 matrix. The dimensions of PΓ are n × n.

The coefficients for the GPP can be calculated by apply-
ing the KΓ matrix on the WFE vector, ~ϕ.

~Γ ¼
0
@ α

β
γ

1
A ¼ KΓ ~ϕ: (80)

The WFE about the GPP is obtained by subtracting
the GPP from the full WFE function, or in matrix terms,
the WFE vector can have the GPP projected out, where
we let ~ϕΓ be the WFE vector with the GPP projected
out, i.e.,

~ϕΓ ¼ PΓ ~ϕ: (81)

4.5 Generalized Projection Operators

In general, one can project one subspace into another
provided that there is some overlap between the subspaces.
An excellent example is the case of adaptive optics, where a
set of influence functions are used to back out a measured
WFE. Let ~̂ϕ1 of length n be the measured WFE, which is
expanded out on the basis functions B1ð~xÞ. This subspace
will be called S1. Let ~̂ϕ2 of length m be the induced
WFE from the influence functions B2ð~xÞ in subspace S2.
The hat above the vectors is used to denote that these vectors
are not the full length that corresponds to the dimensions of
the η matrix. The influence functions are just another set of
basis functions. The full WFE vectors are

~ϕ1 ¼

0
B@ ~̂ϕ1

: : :
~02

1
CA and ~ϕ2 ¼

0
B@ ~01

: : :
~̂ϕ2

1
CA; (82)

and the η matrix of dimension ðnþmÞ × ðnþmÞ has the
following block form:

η ¼
�
η̂1;1 η̂1;2
η̂2;1 η̂2;2

�
: (83)

It should be pointed out that in this example, the two sub-
spaces S1 and S2 make up the whole η matrix, but this idea
can easily be extended without modifying the mathematics
when there is an additional subspace S3, which holds every-
thing else. One just needs to be careful indexing into the η
matrix and the WFE vectors.

The derivation of the projection operator that will project
~̂ϕ1 into subspace S2 is easily derivable by looking at the
functional form of the WFE. We need to find the best coef-
ficients for ~̂ϕ2 that can be used to describe ~̂ϕ1.

Xn
j¼1

~̂ϕ1ðjÞB1ðjÞð~xÞ ≈
Xm
i¼1

~̂ϕ2ðiÞB2ðiÞð~xÞ; (84)

Xn
j¼1

~̂ϕ1ðjÞ

Z
D
B1ðjÞð~xÞB2ðkÞð~xÞd~x2

≈
Xm
i¼1

~̂ϕ2ðiÞ

Z
D
B2ðiÞð~xÞB2ðkÞð~xÞd~x2; (85)

η2;1 ~̂ϕ1 ≈ η2;2 ~̂ϕ2; (86)

~̂ϕ
0
2 ¼ η−12;2η2;1 ~̂ϕ1 ¼ P̂1→2

~̂ϕ1; (87)

where ~̂ϕ
0
2 are the best possible, in a least-squares sense,

coefficients that can describe ~̂ϕ1 and P̂1→2 is the projection
operator that will project a vector from S1 into S2. The
dimensions of this matrix are m × n, which is not the full
size of the η matrix. A full projection matrix can be created
by placing the elements of P̂1→2 into the corresponding loca-
tions that make up a full-size matrix. In this example, the full
projection matrix would have the form

P1→2 ¼
�
0 P̂1→2

0 I

�
: (88)

This can be done, in general, where there are many sub-
spaces. One just has to keep track of where the elements of
P̂1→2 are mapped into the larger matrix. I is required to pre-
serve the components in S2 and ensure that P1→2 behaves
like a projection operator.

Back to the adaptive optics example, if we can find
the best instance of the influence functions that can cancel
the input measured WFE, we will have optimality de-
creased the total system WFE. Therefore, using what
was just derived above, the optimal setting for the influence
functions is
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~̂ϕ
0
2 ¼ −η−12;2η2;1 ~̂ϕ1 ¼ −P̂1→2

~̂ϕ1: (89)

Notice the minus sign, which is needed to ensure that
the influence functions cancel the incoming WFE and do not
amplify it. In Sec. 4.7.2, we will look at an example and point
out some options available while modeling a system.

4.6 System Parameters

Once the η matrix and the supporting projection matrices
have been calculated, one can start calculating system-
level parameters with fast matrix operations.

4.6.1 RMS WFE

One of the most popular metrics calculated for an optical
system is the RMS WFE. For a simple round unobscured
optic, where the WFE is represented by Zernike polyno-
mials, the RMS WFE can be calculated by taking the square
root of the sum of the squares of the Zernike polynomial
coefficients. However, for a more complex system with
obscured optics and when other basis functions are used,
this calculation involves performing a numerical integration
over the WFE function over the domain of the aperture. If
one needs to do Monte Carlo simulations over many wave-
front configurations, this numerical integration can become
a limiting calculation hurdle.

By using the projection matrices derived in Sec. 4.3, one
may write down matrix expressions for RMSWFE relative to
mean wavefront and GPP.

1. RMS: This is the normal RMS that is often used for a
monolith system. This is the RMS of the WFE after the
mean has been removed. In a monolith system, any
residual tip-tilt is simply thought of as an LOS offset
and is not expected to change with time. The tip-tilt
that does change with time is called image motion and
is often modeled as smear and/or jitter.

RMSð~ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½ϕð~rÞ − hϕð~rÞi�2i

q
(90)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ2ð~rÞi − hϕð~rÞi2

q
(91)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ϕTPT

μηPμ
~ϕ

1Tη1

s
: (92)

2. RMS GPP: This is the RMS WFE with the best-fit
plane removed. This RMS is rarely used in monolith
systems, but becomes very important in multitelescope
and segmented systems. In an actively controlled mul-
titelescope or segmented system, the random motion
of the segments can cause an effective image motion
that is separate from the bus motion.

RMSGPPð~ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕð~rÞ − αx − βy − γi

q
(93)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ϕTPT

ΓηPΓ ~ϕ

1Tη1

s
; (94)

where the parameters, α, β, and γ are picked to min-
imize the RMSGPPð~ϕÞ, which was done in the deriva-
tion of PΓ.

For faster computations, both RMS calculations can
be done with fewer operations by noting that A ¼ 1Tη1,
where A is the area of the full aperture, and a transformed
η can be precalculated, ηΓ ¼ PT

ΓηPΓ, resulting is the follow-
ing expression for RMS WFE relative to GPP.

RMSGPPð~ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~ϕT

ηΓ ~ϕ
A

s
: (95)

4.6.2 LOS

The LOS is defined as the location of the maximum of the
PSF. This is also the intersection of a normal originating
from the GPP at the optical axis with the focal plane. The
LOS can be thought of as a 2-D vector.

~L ¼ λ

2π

�
f 0 0

0 f 0

�
~Γ (96)

¼ λ

2π

�
f 0 0

0 f 0

�
KΓ ~ϕ; (97)

where λ is the wavelength of light and f is the effective focal
length of the system. The LOS is not a function of wave-
length for a reflective system, but because the WFE vector
is measured in waves, one must multiply by the wavelength
to indicate that the WFE was measured in to recover a physi-
cal distance.

4.6.3 Correlated WFE vector

There are times when you know the coefficients for GPP, ~Γ,
and would like to know the correlated WFE vector that
would produce the given GPP without adding any RMS
WFE. This is called correlated because the PTT of all of
the leaf node apertures move in unison to create the desired
GPP. The correlated WFE vector is

~ϕGPP ¼ L~Γ: (98)

The subscript GPP is used to distinguish this WFE vector
from the WFE vector ~ϕΓ, which is the WFE relative to GPP.
The WFE relative to the GPP can be thought of as a n uncor-
related WFE.

4.7 Extreme Example

The example shown in this section is an unrealistic multite-
lescope system with each subtelescope consisting of three
hexagonal segments. This system has been picked such that
it is possible to show many of the features of the η matrix
methods. This example, shown in Fig. 25(a), contains 13
apertures, 4 parent apertures, which are outlined with dashed
circles, and 9 child apertures, which are the 9 hexagonal ele-
ments. The dots on the hexagonal elements are the locations
of simple Gaussian influence functions.

If the system in Fig. 25(a) is only in the initial concept
stage there will be many unknown system parameters, how-
ever this will not stop the questions of image quality and
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overall performance. To precede one must make resalable
assumptions. This process will inform the community and
help with the creation of system requirements. For this inves-
tigation, each of the hexagonal segments will have PTT con-
trol and random PTT noise. Each group of three hexagonal
segments make up one telescope that is combined with the
other two. This can result in the PTT of each multitelescope
subsystem. The final combiner optic, which is modeled via
the largest enclosing parent aperture, will have aberrations
and, in this case, also contain the influence functions. It is
obvious that the real complexities of this system are quite
involved, but from an initial image science point of view,
each image point is made from a converging wavefront
that can be represented as coming from an imaginary exit
pupil, which is an effective focal length away. Therefore,
provided it is possible to make reasonable assumptions on
the form and statistical nature of the WFE, it is possible
to bound the possible performance and help set requirements
for the system concept.

The first thing that needs to be done is to calculate the η
matrix, which can be done by evaluating Eq. (63) for all of
the basis functions and apertures in the given problem. It is
not required, but it is convenient to create the smallest
possible dimensional η matrix. For example, in a situation
where you are given some specifications that require a
limit of a given RMS WFE on the following basis functions,
ðf1; f2; : : : ; fnÞ, and a subset of these basis functions along
with other basis functions are also required to model some
external effects, like atmospheric turbulence, the η matrix
that is created should only have one row-column that corre-
sponds to the basis functions that are common to both sub-
spaces. The process for finding the lowest-dimensional η
matrix can be as simple as generating a list of all possible
basis function/aperture combinations required and then
eliminating the duplicates and keeping track of the index
mappings back into all of the subspaces. Another way to
think about subspaces is that subspaces are the links between
a set of basis functions and a group of apertures, like an n to
m link table in a database.

In this example, 14 groups of basis functions are used. The
basis function groups include sets of Zernike polynomials,
like j∈ ð0;1;2Þ, j∈ ð3;4;5Þ, and j∈ ð6;11;17;24;18;13;9Þ,
Gaussian influence functions at all the locations which are
shown as dots in Fig. 25, and nine instances of a power spec-
trum density wavefront, one for each hexagonal aperture.
When these groups of basis functions are combined with
the different combinations of apertures, it results in 17 sub-
spaces that can be used to model the dynamic PTT of the
segments of the system, low spatial frequency variations of
the apertures or the adaptive optics along with other effects.
Anyone of these subspaces could have a temporal depend-
ence, for example, the low spatial frequency could have a
time dependence resulting from temperature fluctuations.

The η matrix for this example is shown in the right part of
Fig. 25, where the white cells represent a value greater than
zero, the black cells are less than zero, and the gray cells are
identically zero.

4.7.1 Dynamic PTT WFE

If the physical structure of the system will result in high-fre-
quency vibrations of the piston, and tip and tilt of the nine
hexagonal mirror segments, one must be able to simulate the
possible effects. When real PTT test data or simulated data
from a structural engineer are provided for the system, one
must be able to separate out the dynamical parts that drive the
WFE from the dynamical parts that drive image motion or
jitter. Otherwise, the image scientist must generate reason-
able PTT data based on RMS WFE and image motion
requirements. However, either way, a time-dependent PTT
WFE vector is created, which has a form similar to

~ΦPTTðtiÞ ¼ h0;0; : : : ;ϕT
1 ðtiÞ;ϕT

2 ðtiÞ; : : : ;ϕT
9 ðtiÞ; : : : ; 0iT;

(99)

where ϕT
qðtiÞ is a three-element time-dependent PTT vector

for the q’th mirror segment. These three-element vectors are
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Fig. 25 Part (a) shows how apertures can be nested to an arbitrary depth. Nesting apertures can re-
present a modeling method of adding spatially correlated WFE over a set of segments or a combiner
of a multitelescope system. The clear area of the pupil only exists over the intersection of all the over-
laying apertures. The insert is the view of the pupil mask for this system. Part (b) shows the η matrix for
the system shown in (a) using the basis functions described in the text. White cells represent a value
greater than zero, the black cells are less than zero, and the gray cells are identically zero.
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placed in the correct locations to line up with the ordering
that was chosen when creating the η matrix.

The time dependence of ~ΦPTTðtiÞ can be broken into
two components: the correlated component, ~ΦC-PTTðtiÞ,
and the uncorrelated component, ~ΦU-PTTðtiÞ. The correlated
component represents the motion of the GPP, which is the
average direction of the wavefront that determines the loca-
tion of the PSF in the imaging plane. The uncorrelated com-
ponent is the deviation from this average wavefront that
determines the variation in shape of the PSF that is not driven
by the geometry of the aperture. During an integration time
with random PTT motion, one can imagine the maximum of
the PSF randomly moving around on the image plane. This
motion should be considered image motion or jitter. If you
were to ride along with the maximum of the PSF, you would

see the PSF changing shape as a function of time. This
dynamic shape change should be considered to be resulting
from WFE.

The two components of ~ΦPTTðtiÞ can be calculated with

~ΦU-PTTðtiÞ ¼ PΓ ~ΦPTTðtiÞ; (100)

~ΦC-PTTðtiÞ ¼ LKΓ ~ΦPTTðtiÞ: (101)

The operation of applying KΓ returns the ~ΓðtiÞ vector as
shown in Eq. (80), which is three parameters for the GPP as a
function of time. The application of L takes the GPP vector
and creates a full WFE vector. The correlated component,
~ΦC-PTTðtiÞ, produces all of the LOS variation and the uncor-
related component produces all of the RMS WFE. A frame

Fig. 26 The columns show two time instances from Video 2 (MOV, 9.5 MB) [URL: http://dx.doi.org/10
.1117/1.OE.53.8.083103.2]. The top row is the WFE on the exit pupil. The middle row shows the line-of-
sight during the integration time. The bottom row shows the RMSWFE as a function of time. The dots on
the line plots correspond to the time instance shown in the top row.
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out of an animation is shown in Fig. 26, which shows the
RMS WFE, the LOS, and the wavefront on the aperture.

If one is given a specification for RMS WFE, RMSPTT
for dynamical PTT, and one for image motion possibly
in the form of jitter, σ, then one can generate Monte
Carlo data that match these specifications in the following
manner:

1. Generate random time series for ~ΦPTTðtiÞ and ~ΓðtiÞ
from whatever method matches your physical situation.

2. Create the uncorrelated vector, ~ΦU-PTTðtiÞ, and scale
to the required RMS WFE.

~ΦU-PTTðtiÞ ¼ sUPΓ ~ΦPTTðtiÞ; (102)

Fig. 27 Each image shows a random instance of the WFE on the aperture for the different subspaces
with the exception of the bottom right plot of the influence functions. All of the influence functions are
shown with a unitary coefficient to show the location and width of the functions. The online figure uses
a rainbow of colors with blue being positive and red being negative.
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where sU is the required scaling derived from

RMSPTT ¼ sU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

~ΦT
PTTðtiÞPT

ΓηPΓ ~ΦPTTðtiÞ
1Tη1

vuut :

(103)

3. Create the LOS profile by scaling the correlated
~ΦC-PTTðtiÞ vector.
~ΦC-PTTðtiÞ ¼ sCL~ΓðtiÞ; (104)

where sC is the required scaling derived from

σ ¼ sCJ
�
λ

2π

�
f 0 0

0 f 0

�
~ΓðtiÞ

�
; (105)

where the function J ½~xi� will map a path into an
image motion metric.

The time to do this type of analysis and Monte Carlo
simulation is significantly reduced by using the η matrix
to preform these operations. Without the η matrix, each
term in the RMS time series above would require fitting
a plane to the WFE and a numerical integration over the
domain for the aperture. With the η matrix, all possible
elementary numerical integration combinations have already

Fig. 28 The top left plot shows the sum of WFE from the top four subspaces shown in Fig. 27. For this
plot, it was assumed that this WFE could be measured in full and the calculated influence functions
were applied with no error. The online color version shows positive WFE as blue and negative WFE
as red. The next row shows the resulting MTF. The dashed line is the MTF in the x -direction and
the solid line is the MTF in the y -direction. The bottom row shows the PTF.
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been done and all one needs to do is fast matrix
multiplications.

4.7.2 Moving wavefront error between subspaces

As was pointed out in Sec. 4.2, the η matrix most likely will
not be of full rank. Because this wavefront vector space is
overcomplete, it is possible to move the expression of the
wavefront from one subspace to another. A common exam-
ple of this is in adaptive optics, where a measured wavefront
is reduced by applying a matching but negative wavefront.
We are not going to talk about how one would model a wave-
front sensing system or model the error in the application of
the adaptive optics basis functions. However, we will show
how the η matrix methodology can help in separating ideas
and the calculation of macroscopic parameters.

The following example will be for a time instance; one
can easily add temporal dynamics by using similar methods
as shown in the previous section. The total wavefront of
a system is the simple vector sum of all of the wavefront
subspaces.

~Φ ¼ ~ϕ1 þ ~ϕ2 þ : : : þ ~ϕn: (106)

These subspaces could represent any WFE source that is
included in your modeling of the system. Let the sum of
a subset of these vector spaces be ~ϕm, which represents
the wavefront that is measured using a wavefront sensing
method. If the wavefront sensing method is blind to the

GPP, then one needs to break ~ϕm into the correlated and
uncorrelated pieces.

~ϕm ¼ PΓ ~ϕm þ LKΓ ~ϕm: (107)

The measurement of PΓ ~ϕm will have some residual error,
~ϵ, such that the final measured wavefront is

~̃ϕm ¼ PΓ ~ϕm − ~ϵ: (108)

Using the projection operator derived in Sec. 4.5,
it is possible to map ~̃ϕm into another vector space that con-
tains the basis functions for the adaptive optics influence
functions.

~ϕao ¼ −Pm→ao
~̃ϕm: (109)

If one wants to assume that the application of the influ-
ence functions does not affect the GPP, then one could
project out the GPP by applying the PΓ projection operator
to ~ϕao. One can also add the noise associated with the appli-
cation of the influence functions by creating an error vector
~ϵao. The final wavefront vector for the system is as follows:

~Φao ¼ ~ϕ1 þ ~ϕ2 þ : : : þ ~ϕn þ ~ϕao þ ~ϵao; (110)

which hopefully produces less RMS WFE than was present
in the original wavefront, ~Φ.

Fig. 29 The top row shows the PSF for the system in Fig. 28 before and after the application of the
influence functions. The bottom row shows a simple image simulation that only includes the effects
of the aperture geometry and WFE.
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As a final visual example, the top four subspaces shown in
Fig. 27 have been applied to the system and assumed to
be measured with no error. This measured WFE is then
mapped into the influence function basis space using the
methods previously discussed. The influence functions are
then used to cancel the measured WFE. The system with the
original WFE and the reduced WFE are shown in Fig. 28
along with cross-section plots of the MTF and density
plots of the PTF. Because of the sparse nature of the geom-
etry of the aperture, the MTF drops much faster than the
filled aperture as shown in the top right of Fig. 9. The appli-
cation of the influence functions improves the MTF but has
a considerable effect on the PTF shown in the last row of
Fig. 28. The PSF of the system before and after the applica-
tion of the influence functions is shown in Fig. 29 along with
a simple image simulation.

5 Summary
Modeling the imaging chain has proven to be an invaluable
tool for optical designers to assess design trades and their
impact on the final image quality. A tutorial for modeling
the imaging chain of a digital camera system was provided
to give an overview of the concept and the mathematics asso-
ciated with a simple model for digital cameras. Accurately
modeling the OTF in the imaging chain is critical for under-
standing the relationship between the WFE and the final
image quality. Unfortunately, modeling the pupil function
for the OTF calculation of an optical system can prove to
be the most challenging step in the imaging chain model
for dynamically changing complex optical systems, such as
segmented or sparse aperture systems. Modeling the OTF
over the range of dynamic wavefront instances to ascertain
RMS WFE, LOS, and GPP can prove challenging and
laborious. We introduced a novel approach that simplifies
modeling the pupil function WFE in the imaging chain
model. With the calculation of an η matrix, the resulting
WFE, LOS, and GPP calculations are greatly simplified
with fast matrix calculations. No longer is it necessary to per-
form costly numerical integrations every time the instance of
WFE changes. We demonstrate the application of the η
matrix to provide the dynamical changing WFE for a seg-
mented sparse aperture.
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