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Abstract. Mounting aspheres is often challenging because of the higher sensitivity to decenter and tilt compared
with spherical lenses. This paper first describes aspheric surface decenter and tilt error as per ISO 10110 stan-
dard. Then, the most common lens mounting and alignment method for aspheric lenses are discussed in detail.
Finally, an innovative mounting method that uses surface contact mounting is presented. This autocentering
method uses the optical surfaces as mounting interfaces to provide a high level of centering accuracy for
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1 Introduction
The quality of an optical system strongly depends on the
alignment accuracy of the optical elements composing it.
As a result, the mounting of the optical elements shall be
done to minimize the centering, the tilt, and the axial posi-
tioning errors with respect to the nominal optical layout. A
lens can be considered to be perfectly aligned when its opti-
cal axis is coincident with the optical system reference axis.
The optical axis of a spherical lens corresponds to the line
connecting the two centers of curvature. In the case of a lens
having a planar surface, the optical axis of the lens is the
line perpendicular to the planar surface and passing through
the center of curvature of the spherical surface. Unlike the
spherical surface, which is fully described by its radius
and the position of its center of curvature, the description
of an aspheric surface is not complete without the definition
of its axis of symmetry. As per ISO 10110 standard,1,2

aspheric surface centering tolerances are specified as the
distance between the aspheric surface center point and the
lens reference axis, and by the tilt angle of the aspheric sur-
face axis with respect to the lens reference axis. The aspheric
surface center point is the point where the aspheric surface
axis intersects the aspheric surface as shown in Fig. 1.

In addition to the optical surfaces, lenses are most of the
time also composed of mechanical surfaces that have no opti-
cal function such as outer cylinder surface, flat surface, or
chamfers. These mechanical surfaces can be used as mount-
ing interface, to eliminate sharp and brittle features, or
simply to remove unnecessary material to reduce size
and mass.

Part 6 of ISO 10110 specifies rules to indicate datum axis
and centering tolerances for optical elements. For aspheric
lens, the ISO 10110 drawing indication code 4∕σðLÞ is
used for indicating the tolerable manufacturing error of
the aspheric surface with respect to the datum axis. The sym-
bol σ is the maximum permissible tilt in arc min or arc sec,
and L is the maximum lateral displacement of the center

point from the datum axis in mm. In the example of
Fig. 2(a), the datum axis is perpendicular to plane A and pier-
ces the central point of the right surface. Figure 2(b) shows
the aspheric lens of Fig. 2(a) with exaggerated manufactur-
ing error. The aspheric surface is decentered of 0.2 mm and
tilted of 2 arc min with respect to the lens reference axis
defined by datum A and datum B.

In opposition to spherical lens, the manufacturing error
between the aspheric surface and the second optical surface
of the lens cannot be compensated by further alignment of
the lens. In the example of Fig. 2, the tilt error between the
optical axis of the aspheric surface and the planar optical
surface will remain regardless of the mounting and alignment
methods. Thus, the manufacturing error of the optical
element itself shall be toleranced carefully as it cannot be
completely corrected by alignment.3

2 Aspheric Lens Mounting
As for spherical lenses, common aspheric lens mounting and
alignment methods can be divided in two main categories:
the drop-in assembly and the active alignment. In the
drop-in assembly, the lens is simply dropped into the barrel
and secured with a retainer. Stepped barrel that can accom-
modate different lens diameters and assembly with spacer
between lenses having the same diameter are two similar
implementations of the drop-in. The centering error of a
lens mounted using the drop-in method is most of the
time controlled by the radial clearance between the lens
and the barrel bore diameter. Therefore, the tolerances on
lens diameter, barrel bore diameter, and on the centration
of the lens rim with respect to the lens optical axis all con-
tribute to the lens centering error once mounted in the barrel.
Figure 3 shows the aspheric lens of Fig. 2 mounted in a barrel
using the drop-in technique. The planar optical surface (lens
datum A) is used to mount the lens on the barrel seat. The
centering error of the lens is constrained by the lens rim (lens
datum B). In this example, the centering error of the center
point of the aspheric surface is the sum of the aspheric sur-
face lateral displacement from the lens manufacturing error
and the radial clearance between the lens outside diameter
(OD) and the barrel inside diameter (ID). The tilt is the
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sum of the aspheric optical axis tilt from the lens manufac-
turing, and the tilt of the barrel mounting interface with
respect to the barrel reference axis. Most of the time, meas-
urement of the positioning error of an aspheric surface is
accomplished by measuring the centering error of the para-
xial sphere center of curvature and the tilt of the aspheric
surface optical axis with respect to the barrel reference
axis. In this case, the centering error of the paraxial sphere
center of curvature should include all the centering errors
listed above added to the effect of the aspheric optical
axis tilt.

The drop-in is a method that is quite simple to imple-
ment. However, when the centering accuracy requirements
are more stringent, such as it is often the case for aspheric
lens, tight manufacturing tolerances are needed. As the
tolerance precision increases, the manufacturing cost also
increases. When the centering requirement is too difficult
or too expensive to achieve with the drop-in mounting
method, an active alignment is required. A common method
used for aspheric lens alignment is to align the paraxial
sphere center of curvature on the barrel reference axis.
The measurement of the paraxial sphere shift can be done
as for spherical surface using an autocollimator. In the
example of Fig. 4, the lens is mounted in the barrel on a
precision seat that constraints the axial position of the
lens and the tilt of the planar surface. The lens is then trans-
lated and bonded in the barrel so that the paraxial sphere
center of curvature is centered on the barrel reference
axis. The tilt manufacturing error between the aspheric sur-
face optical axis and the planar optical surface can unfortu-
nately not be compensated, hence the importance of a good
control of the manufacturing error of the aspheric surface.
Depending on the design constraints, the lens can be cen-
tered and glued in a subcell, and then stacked in a main
barrel. In other implementation, the lens can be centered
and glued directly into the main barrel.

If the lens surface in contact with the barrel is spherical
instead of planar, the lens rolls around its spherical surface
center of curvature during the alignment rather than

Fig. 1 Aspheric surface optical axis.

Fig. 2 Aspheric lens tolerancing. (a) Nominal lens and (b) exaggerated lens decenter and tilt manufac-
turing errors.

Fig. 3 Aspheric lens drop-in assembly.
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Fig. 4 Aspheric lens active alignment.

Fig. 5 Aspheric-spherical lens with exaggerated manufacturing error.

Fig. 6 Aspheric-spherical lens active alignment.
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translates. The position of the spherical surface interfacing
with the barrel is constrained by the precision seat on the
barrel, providing a self-centering for the spherical surface.
The alignment is done on the lens aspheric surface that is
opposite to the barrel seat. Because of the inevitable manu-
facturing error of the lens, the spherical surface center of
curvature will be decentered with respect to the aspheric
surface axis as shown in Fig. 5. As a result, the alignment
of the lens in the barrel that is performed on the aspheric
surface paraxial sphere center of curvature will induce
a tilt error on the aspheric axis with respect to the barrel
reference axis as shown in Fig. 6. In the case of an
aspheric surface interfacing with the barrel seat, the lens
rolls around the local radius of curvature at the barrel
seat interface.

3 Aspheric Lens Autocentering
A new lens mounting method that bridges the simplicity
of the drop-in with a centering accuracy close to the active
alignment has been developed recently. This method,
called autocentering, is based on surface-contact lens
mounting. With this mounting method, the lens is clamped
directly on the optical surfaces between the barrel seat and
a special threaded ring. As the autocentering uses surface-
contact mounting, the clamping angle at the lens mounting
interface needs to be large enough to overcome the friction
force to allow the self-centering of the lens.4 The following
description provides an introduction to the autocentering
principle.

To appropriately define a lens centering error with
respect to the barrel reference axis, both lens surfaces

need to be considered. It has been shown that very good
centering accuracy, generally <0.3 arc min, can be expected
for a spherical optical surface mounted directly on a barrel
seat with the drop-in method.5 On the other hand, centering
error as high as 5 arc min has been observed for the second
optical surface centered using surface-contact mounting
with standard threaded ring. In such cases, the centering
error of the lens surface in contact with the threaded ring
depends on the positioning errors of the ring lens seat.6,7

More precisely, the two factors that affect the centering
error of the lens surface in contact with the threaded ring
are the ring centering error and the ring tilt error with
respect to the barrel reference axis.4 The centering error
of the threaded ring comes from the assembly clearance
between the ring and the barrel threads. For its part, the
tilt error of the threaded ring comes from the combination
of the thread angle and the ring decenter from the assembly
clearance in the threads. To have a good understanding on
how the thread angle affects the ring tilt error, we need to be
aware that the ring thread is constrained by its top thread
surface within the barrel thread. In fact, when a ring is
rotated to secure a lens in a barrel, an axial force con-
strained the lens on the barrel seat and a reaction force
pushes the ring on the opposite side so that the ring is
constrained by its top thread surface as shown in Fig. 7.
As a result, the tilt of the threaded ring is a function of
the thread angle and the ring decenter as shown in
Fig. 8. It is interesting to note that, in the case of the
lens of Fig. 8, the ring tilt effect on the lens centering
error is larger than the ring decenter effect as the lens and
the ring are decentered in opposite directions.

To overcome the lens centering error caused by stan-
dard threaded ring for surface-contact lens mounting, it
is possible to adjust the thread angle to meet an autocen-
tering condition for the lens to be assembled. When the
autocentering condition is met, the ring decenter and
the ring tilt have counterbalancing effect on the lens cen-
tering. This means that the ring decenter acts on the lens
centering in one direction and that the ring tilt acts on the
lens centering in the opposite direction in the same mag-
nitude, providing a self-alignment on the lens. Therefore,
the lens is maintained aligned independently of the ring
positioning error. The thread angle to meet the autocenter-
ing condition for a given lens geometry is defined by the
following equation:Fig. 7 Threaded ring constrained by the top thread surface.

Fig. 8 Relationship between the ring decenter and ring tilt.
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EQ-TARGET;temp:intralink-;e001;63;752φthreads ¼ 2 tan−1
�

dring

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − Y2

p
þ 2hþ T

�
; (1)

where dring is the major diameter of the retaining ring, R is
the radius of curvature of the lens surface in contact with
the retaining ring, Y is the half-diameter of the retaining
ring’s clear aperture, h is the distance between (i) the first
point of contact of the barrel threads with the ring threads
next to the optical element and (ii) the point of contact of
the retaining ring with the peripheral region of the second
surface, and T is the distance between (i) the first point of
contact of the barrel threads with the ring threads next to
the optical element and (ii) the last point of contact of the
barrel threads with the ring threads farthest from the opti-
cal element diametrically opposite to the first point of
contact.

The autocentering condition parameters involved in
Eq. (1) are shown in Fig. 9. Figure 10 shows an example
of a lens that is centered using the autocentering principle.
It can be seen that the retaining ring is constrained by the top
thread interface and that the ring is decentered and tilted.
However, even if the ring has a positioning error, the lens
is still centered on the barrel reference axis as the autocen-
tering condition is met.

Experimental measurements have demonstrated that the
autocentering method results in centering errors of the
lens surface in contact with the ring, which are typically
in the order of 0.5 arc min for spherical surface. If we express
this centering error in terms of decenter instead of tilt follow-
ing the relationship decenter = sin (tilt) * radius, this corre-
sponds to centering error generally <5 μm for lens having
diameters ranging from 5 to 50 mm.

For aspheric lens, the same principle can be applied with
the difference that the local radius of curvature at the ring

interface diameter is used in Eq. (1). To compute this
local radius of curvature, we start with the aspheric surface
description given as

EQ-TARGET;temp:intralink-;e002;326;719zðrÞ ¼ r2

R

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ kÞ r2

R2

q � þ
Xn
i¼2

A2ir2i; (2)

where zðrÞ is the sagitta of the aspheric surface at distance r
from the symmetry axis, r is the radial distance from the
optical axis, R is the paraxial surface radius, k is the conic
constant, and A is the aspheric coefficient.

The derivative of the aspheric function gives the slope of
the tangent line to the aspheric surface at the radial distance r
from the axis of symmetry. The local radius of curvature at
the radial distance r from the symmetry axis to be used in
the autocentering thread angle calculation is computed with
Eq. (3)

EQ-TARGET;temp:intralink-;e003;326;550Rr ¼
r

sin
n
tan−1

h
d
dr zðrÞ

io : (3)

The expanded form of the aspheric function [Eq. (2)] for
the first seven aspheric terms is

EQ-TARGET;temp:intralink-;e004;326;481z ¼ r2

R

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ kÞ r2

R2

q � þ A4r4 þ A6r6 þ A8r8

þ A10r10 þ A12r12 þ A14r14 þ A16r16: (4)

Thus, the derivative of the aspheric function used in the
computation of the local radius of curvature in Eq. (3) is
given as

Fig. 9 Autocentering condition parameters.

Fig. 10 Autocentered lens not affected by the ring centering error. (a) Threaded ring decentered on
the right side, (b) threaded ring decentered on the left side.
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�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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R2

q : (5)

Equation (6) is the combination of Eqs. (1) and (3). Using
the derivative of the aspheric function Eq. (5) in Eq. (6), it is
possible to compute the thread angle required to autocenter
an aspheric lens

EQ-TARGET;temp:intralink-;e006;63;598φthreads ¼ 2 tan−1

2
64 dring

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r

sinftan−1½ ddrzðrÞ�g
�
2
− Y2

r
þ 2hþ T

3
75:
(6)

There are two specificities involved in the autocentering
of aspheric lenses. The first, which is negligible in most
cases, is the radius of curvature variation at the ring to
lens interface over the ring decentering range caused by
the thread assembly clearance. The second is the decenter
and tilt manufacturing error of the aspheric surface to be
autocentered with respect to the lens datum axis.

Because of the thread assembly clearance, the actual local
radius of curvature at the ring to lens interface is slightly
different than the nominal ones used to determine the auto-
centering thread angle. Also, the radius of curvature at the
interface between the ring and the lens is different for dia-
metrically opposite point of contact. Figure 11 shows this
concept of the variation of the local radius of curvature
for a decentered ring. Figure 11(a) shows the ring decenter
at its maximum on the top side of the barrel (maximum posi-
tion 1 in the figure). For its part, Fig. 11(b) shows the ring
decenter at its maximum on the bottom side of the barrel
(maximum position 2 in the figure). Because of the optical
surface asphericity, the local radius of curvature at the ring
maximum position 1 is slightly different than the local radius
of curvature at the ring maximum position 2.

It is not straightforward to provide an analytical model to
predict the effect of the variation of the radius of curvature
over the ring decentering range. However, CAD simulations
have been performed for different aspheric surfaces, and the
effect of the variation of the radius of curvature has been
shown to be negligible. In the example of Fig. 11, the
lens diameter is 40 mm and the local radius of curvature
interfacing with the ring is 65 mm. For a centering error
of the threaded ring of 115 μm, which can be considered
to be a typical worst case, the centering error at the center
of curvature of the local radius interfacing with the ring is
0.1 μm. This example can be considered as a sensitive

Fig. 11 Ring decentering caused by the thread clearance. (a) Ring decentered at the maximum position
1, (b) ring decentered at the maximum position 2.

Fig. 12 Biaspheric lens with exaggerated decenter and tilt manufacturing errors.
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case as the ring makes contact with the lens at an inflection
point where the slope variation is strong.

As mentioned previously, active centering of aspheric lens
is generally performed for the surface opposite to the barrel
seat by centering the paraxial sphere center of curvature on
the barrel reference axis. For autocentering of the aspheric
surface, the centering is done at the center of curvature of
the local radius interfacing with the ring, rather than at
the paraxial sphere center of curvature. For both methods,
it is unfortunately impossible to provide a perfect centering
because of the decenter and tilt manufacturing errors
between the aspheric surface and the optical surface in con-
tact with the barrel seat. Figure 12 shows an example of a
lens having two aspheric surfaces. Exaggerated manufactur-
ing errors on decenter and tilt of the aspheric surfaces are
shown in the figure. Each aspheric surface is decentered
and tilted with respect to the lens reference axis. The
point 1 in Fig. 12 corresponds to the aspheric surface 1 center
point. The point 2 is the local radius center of curvature at the
lens surface 1 mounting interface diameter. The point 3 is the
aspheric surface 1 center of curvature of the paraxial sphere.
The point 4 corresponds to the aspheric surface 2 center
point. The point 5 is the local radius center of curvature

at the lens surface 2 mounting interface diameter. Finally,
the point 6 is the aspheric surface 2 center of curvature of
the paraxial sphere.

Figure 13 shows the lens of Fig. 12 mounted in a lens
barrel using the autocentering. The barrel seat constrains
the aspheric surface 2 so that the center of curvature of
the local radius at the barrel seat interface diameter (point
5) is centered on the barrel reference axis. The threaded
ring on the left side of the figure constrains and autocenters
the aspheric surface 1 so that the center of curvature of the
local radius at the threaded ring interface diameter (point 2)
is also centered on the barrel reference axis. The centering
errors of the paraxial spheres of both lens surfaces result
from the lens manufacturing errors on aspheric surface
decenter and tilt with respect to the lens datum axis.

Considering that the centers of curvature of the local radii
at the lens mounting interfaces are self-centered, and taking
into account the lens manufacturing errors, it is possible to
compute the centering error of both paraxial spheres as well
as the tilt of the aspheric axes with respect to the barrel refer-
ence axis. To do so, we first define a coordinate system origin
at the intersection of the lens datum axis and the first optical
surface of the lens as shown in Fig. 14.

Fig. 13 Autocentered biaspheric lens.

Fig. 14 Biaspheric lens coordinate system.
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Then, we need to consider the aspheric lens manufactur-
ing errors. As per ISO 10110 aspheric lens tolerancing, the
aspheric surfaces’ positioning error results from the tilt
manufacturing error σ, and from the lateral displacement
L of the center point with respect to the datum axis. As
shown in Fig. 15, the position of the aspheric surfaces center
points (points 1 and 4), the centers of curvatures of the local
radii at the mounting interfaces (points 2 and 5), and the par-
axial spheres centers of curvature (points 3 and 6) resulting
from the lens manufacturing errors can be defined in terms of
Cartesian coordinates with respect to the origin of the coor-
dinate system. The Eq. (7) through Eq. (18) provides the
position of each center of curvature in the z- and r-axes
of the coordinate system with respect to the origin

EQ-TARGET;temp:intralink-;e007;63;417z1 ¼ 0; (7)

EQ-TARGET;temp:intralink-;e008;63;387r1 ¼ LS1; (8)

EQ-TARGET;temp:intralink-;e009;63;362z2 ¼ −ðR1 þ ΔzS1Þ cosðσ1Þ; (9)

EQ-TARGET;temp:intralink-;e010;63;337r2 ¼ r1 þ ðR1 þ ΔzS1Þ sinðσ1Þ; (10)

EQ-TARGET;temp:intralink-;e011;63;312z3 ¼ −R2 cosðσ1Þ; (11)

EQ-TARGET;temp:intralink-;e012;63;287r3 ¼ r1 þ R2 sinðσ1Þ; (12)

EQ-TARGET;temp:intralink-;e013;63;262z4 ≈ −CT; (13)

EQ-TARGET;temp:intralink-;e014;63;237r4 ¼ LS2; (14)

EQ-TARGET;temp:intralink-;e015;63;212z5 ¼ z4 þ ðR3 þ ΔzS2Þ cosðσ2Þ; (15)

EQ-TARGET;temp:intralink-;e016;63;187r5 ¼ r4 − ðR3 þ ΔzS2Þ sinðσ2Þ; (16)

EQ-TARGET;temp:intralink-;e017;63;162z6 ¼ z4 þ R4 cosðσ2Þ; (17)

EQ-TARGET;temp:intralink-;e018;63;137r6 ¼ r4 − R4 sinðσ2Þ; (18)

where z1 is the position of the aspheric surface 1 center point
(point 1) in the z-axis of the coordinate system, r1 is the posi-
tion of the aspheric surface 1 center point (point 1) in the r-
axis of the coordinate system, z2 is the position of the center

of curvature of the surface 1 local radius interfacing with the
ring (point 2) in the z-axis of the coordinate system, r2 is
the position of the center of curvature of the surface 1 local
radius interfacing with the ring (point 2) in the r-axis of the
coordinate system, z3 is the position of the center of curva-
ture of the surface 1 paraxial sphere (point 3) in the z-axis of
the coordinate system, r3 is the position of the center of
curvature of the surface 1 paraxial sphere (point 3) in the
r-axis of the coordinate system, z4 is the position of the
aspheric surface 2 center point (point 4) in the z-axis of
the coordinate system, r4 is the position of the aspheric sur-
face 2 center point (point 4) in the r-axis of the coordinate
system, z5 is the position of the center of curvature of the
surface 2 local radius interfacing with the barrel (point 5)
in the z-axis of the coordinate system, r5 is the position
of the center of curvature of the surface 2 local radius inter-
facing with the barrel (point 5) in the r-axis of the coordinate
system, z6 is the position of the center of curvature of the
surface 2 paraxial sphere (point 6) in the z-axis of the coor-
dinate system, r6 is the position of the center of curvature of
the surface 2 paraxial sphere (point 6) in the r-axis of the
coordinate system, Ls1 is the lens manufacturing error on
the centering of the aspheric surface 1 with respect to the
lens datum axis, Ls2 is the lens manufacturing error on
the centering of the aspheric surface 2 with respect to the
lens datum axis, σ1 is the lens manufacturing error on the
tilt of the aspheric surface 1 with respect to the lens
datum axis, σ2 is the lens manufacturing error on the tilt
of the aspheric surface 2 with respect to the lens datum
axis, R1 is the surface 1 local radius of curvature at the
ring interface, R2 is the surface 1 paraxial sphere radius
of curvature, R3 is the surface 2 local radius of curvature
at the barrel interface, R4 is the surface 2 paraxial sphere
radius of curvature, CT is the lens center thickness, Δzs1
is the distance between the surface 1 vertex and the ring
interface local radius virtual vertex, and Δzs2 is the distance
between the surface 2 vertex and the ring interface local
radius virtual vertex.

The sign convention used in these equations for the axes
tilt angle is shown in Fig. 16. Negative signs have been added
in some of the previous equations to be consistent with this
sign convention.

Because of radius of the curvature variation in aspheric
surface, the distances Δz between the surface vertex and
the virtual vertex of the mounting interface local radius of
curvature shown in Fig. 17 need to be considered in

Fig. 15 Biaspheric lens coordinate points.
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Eqs. (9), (10), (15), and (16). The distance between the lens
mounting interface and the surface vertex can be computed
using Eq. (4). Also, the distance between the lens mounting
interface and the mounting interface local radius virtual
vertex can be calculated using the following sag equation:

EQ-TARGET;temp:intralink-;e019;63;302Sag ¼ R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −

�
D
2

�
2

;

s
(19)

where Sag (mm) is the distance from the surface vertex,
R (mm) is the mounting interface local radius, and D (mm)
is the diameter of the mounting interface at which the sag is
calculated.

Finally, the distance Δz is the difference between the
distance z from Eq. (4) and the sag from Eq. (19).

The next step is to compute the lens positioning error once
mounted in the autocentering mount. Figure 18 shows the
lens aspheric surfaces positioning errors from the lens manu-
facturing prior mounting. Once assembled in the autocenter-
ing mount, the axis connecting the centers of curvature of the
mounting interfaces radius of curvature (points 2 and 5)
becomes coincident with the barrel reference axis as
shown in Fig. 19, resulting in a rotation of the lens of the
angle θ shown in Fig. 18. Thus, the tilt angles of the aspheric
surfaces are given by the following equations:

EQ-TARGET;temp:intralink-;e020;326;357θ ¼ tan−1
�
r2 − r5
z5 − z2

�
; (20)

EQ-TARGET;temp:intralink-;e021;326;322θ1 ¼ σ1 − θ; (21)

EQ-TARGET;temp:intralink-;e022;326;297θ2 ¼ σ2 − θ; (22)

where θ is the tilt angle of the axis connecting the local center
of curvature of the mounting interface with respect to the
barrel reference axis, θ1 is the tilt angle of the aspheric sur-
face 1 axis with respect to the barrel reference axis, and θ2 is
the tilt angle of the aspheric surface 2 axis with respect to the
barrel reference axis.

Using the tilt of the aspheric axes from Eqs. (21) and (22),
and considering that the centers of curvature of the mounting
interfaces radius of curvature (points 2 and 5) are coincident
with the barrel reference axis, it is finally possible to com-
pute the centering error of the aspheric surfaces paraxial
spheres with respect to the barrel reference axis with
Eqs. (23) and (24)

EQ-TARGET;temp:intralink-;e023;326;123ΔPS1 ¼ −ðR1 þ ΔzS1 − R2Þ sinðθ1Þ; (23)

EQ-TARGET;temp:intralink-;e024;326;93ΔPS2 ¼ ðR3 þ ΔzS2 − R4Þ sinðθ2Þ; (24)

Fig. 16 Aspheric axis tilt sign convention.

Fig. 17 Distance between the surface 1 vertex and the ring interface local radius virtual vertex.
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where Δps1 is the centering error of the surface 1 paraxial
sphere with respect to the barrel reference axis and Δps2
is the centering error of the surface 2 paraxial sphere with
respect to the barrel reference axis.

In the above equations, the radii of convex surfaces are
positive, and those of concave surfaces negative.

These equations have been developed for biaspheric
lenses. In the case of an aspheric lens having a spherical sur-
face, the same equations are used with the particularity that
the same value is used for the local radius of curvature inter-
facing with the mount, and for the paraxial sphere radius of
curvature. For planar surface, these two radii of curvature
have an infinite value.

4 Aspheric Lens Autocentering Tests

4.1 Selected Test Lenses

Tests have been performed to verify the centering accuracy
that can be expected for aspheric lens mounted using the
autocentering method.8 For these tests, two different types
of plano-aspheric lenses were considered. Their relevant

specifications are summarized in Tables 1 and 2. The first
lens type (AHL25-20) has a high asphericity with a maxi-
mum deviation from the best-fit-sphere (BFS) of 44 μm.
However, the second lens type (ALL25-50) has just
a small deviation to the best fit sphere and consequently,
a slight change of the local radius of curvature. Both types
of lenses have a manufacturing tolerance on the centering
error of 5 arc min.

Figure 20 shows the lenses AHL25-20 and ALL25-50 in
their respective mounts used for the autocentering tests.

4.2 Expected Centering Error of Selected Test
Lenses

The effect of the decenter and tilt manufacturing error of the
aspheric surface on the autocentering accuracy has been
computed for typical manufacturing tolerances of aspheric
lenses. For standard precision grade aspheric lens, the tilt
between the aspheric surface with respect to the second sur-
face is typically <2.5 arc min, and the lateral displacement of
the aspheric surface with respect to the second surface is
typically below 30 μm. Using these manufacturing errors,

Fig. 19 Tilt angle of aspheric surfaces for an autocentered biaspheric lens.

Fig. 18 Biaspheric lens tilt angle parameters.

Table 1 Lens Specifications of chosen test lenses.

Lens
designation

Diameter
[mm]

Effective focal
length [mm]

Radius of
curvature [mm]

Clear aperture
[mm]

Max. deviation
to BFS [μm]

Centering error
tolerance [arc min]

AHL25-20 25.0 20.0 15.54 22.5 44.0 5.0

ALL25-50 25.0 50.0 25.56 22.5 8.0 5.0
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it is possible to compute the paraxial sphere decenter and the
tilt of the aspheric axis. This is done considering the fact that
the local radius of curvature of the aspheric surface at the
interface with the ring is autocentered on the barrel reference
axis as explained previously in the context of Fig. 13. As the
second optical surface of the lens is planar, the tilt of the
aspheric axis once mounted in the barrel only depends on
the tilt manufacturing error between the two optical surfaces,
and on the tilt of the barrel seat with respect to the barrel
reference axis, which is very small if machined in the
same setup as the barrel reference axis. Also, there is no
centering error possible between the two optical surfaces
because of the planar optical surface of the plano-aspheric
lens. Thus, only the tilt error between the two optical surfa-
ces has an influence on the centering of the plano-aspheric
lens once mounted in the barrel using the autocentering
method. The following table presents the expected contribu-
tion of the aspheric surface manufacturing errors on the auto-
centering accuracy. These values have been computed using
Eqs. (7) to (24), which consider the lens geometry and the
lens manufacturing errors.

The aspheric surface positioning error values shown in
Table 3 are from the aspheric behavior contribution only.
Thus, the total aspheric surface centering error is the

statistical sum of these values added to the other autocenter-
ing contributors that result in a typical centering error of
0.5 arc min for spherical surface. The other autocentering
contributors refer to manufacturing tolerance on all the
parameters involved in the autocentering condition defined
by Eq. (1) as well as geometric manufacturing errors on
the threaded ring and barrel. For both lenses, the paraxial
sphere centering error once mounted in the autocentering
barrel is expected to be around 5 μm with respect to the
barrel reference axis.

4.3 Measurement Method

To begin with the investigation, the production-related devi-
ations of the lenses were measured. For this, the surface form
deviation is measured interferometrically and the centering
error is measured with a coordinate or form-measuring
machine, which will be introduced in more detail now.

To determine the location of the aspheric axis correctly,
the surface form deviation is measured as a full surface meas-
urement. This could be done either interferometrically or as a
pointwise measurement. To keep measuring time as short as
possible, the version discussed below involves an optical dis-
tance sensor and a rotational stage with a chuck to hold
the lens.9

To measure the full surface, the distance sensor is posi-
tioned above surface. By rotating the lens, the sensor mea-
sures several points on the surface successively. If the sensor
keeps its position during the rotation, a circular profile of the
surface is detected. To obtain the full surface, the sensor has
to detect several circular profiles on different lateral posi-
tions. It is also possible to move the sensor continuously
along the lateral axis while the lens is rotating. The result
then is a spiral profile of the surface. The overall sum of
the circular profiles or the spiral profile makes up a point
cloud of the measured aspheric surface. Now software can
fit the nominal aspheric form into the data by shifting and
tilting to reach the lowest surface form deviation value in
terms of RMSi defined as the root-mean-square difference
between the optical surface under test and the approximating
spherical surface. By subtracting the nominal aspheric geom-
etry in its best fitting position to the data, the difference pro-
file reveals the surface form deviation of the manufactured
surface. This deviation can be separated into the specific
parts of the surface form deviation like power and irregular-
ity that are defined in the DIN ISO 10110-5:2015. Notice,
that in this case the surface form deviation does not influence
the measurement in a nondeterministic way but is the key
clue to determine the aspheric axis correctly. Fitting the
nominal aspheric shape to the point cloud data of the mea-
sured surface is the most accurate method to determine the
position of the surface. The high number of measurement

Table 2 Test lenses aspheric coefficients.

AHL25-20 ALL25-50

R ¼ 15.54 R ¼ 25.56

k ¼ −1.35 k ¼ −1.01

A4 ¼ 2.3618134 × 10−05 A4 ¼ 3.2703958 × 10−06

A6 ¼ −1.1303079 × 10−08 A6 ¼ 7.7205335 × 10−10

A8 ¼ −1.1113906 × 10−11 A8 ¼ 1.6304727 × 10−13

A10 ¼ −2.3981714 × 10−14

A12 ¼ 3.0357910 × 10−17

A14 ¼ 1.3660815 × 10−19

A16 ¼ −1.8881587 × 10−22

Fig. 20 Mounted aspheric lenses. (a) asphericon lens AHL25-20,
(b) asphericon lens ALL25-50.

Table 3 Aspheric surface positioning error caused by the lens manu-
facturing error for autocentering lens mounting.

Lens designation
Paraxial sphere
decenter [μm]

Tilt of the aspheric
surface [arc min]

AHL25-20 2.4 2.5

ALL25-50 1.1 2.5
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points included and accounting for the surface form
deviation by reaching the lowest RMSi possible provides
the best setup in measuring the centering error. Furthermore,
both measured errors, i.e., the aspheric surface position and
the surface form deviation, have the same origin of coordi-
nates. The determined location of the surface consists of the
Cartesian point of the vertex and the direction vector of the
axis of symmetry. Both values together are describing prop-
erly the definition of the asphere axis. In the next step the
relevant geometry parts for the reference, such as lens or
mechanical mount datum, have to be measured without los-
ing the origin of coordinates from the surface measurement
of the aspheric surface. This allows to get the decenter and
the tilt error of the aspheric surface with respect to the refer-
ence axis. Thus, now we have come full circle, a coordinate-
or form-measuring machine is needed to measure the refer-
ences within the same coordinate system. Additionally, to
see the effect of surface form quality on the centration mea-
surements, each lens type is tested with three different levels
of surface form quality including standard quality (SQ), high
quality (HQ), and high-end quality, corresponding, respec-
tively, to RMSi tolerance values of 0.30, 0.16, and 0.03 μm.

4.4 Aspheric Lenses Manufacturing Errors
Measurements

All relevant measurement results of surface form and center-
ing error are shown in Tables 4 and 5. The reference axis for
this measurement is defined by the plano-optical surface and
the outer rim of the lens. Please notice that the second lens
type (ALL25-50) is considered with respect to its best fit
sphere due to the small asphericity. As a consequence, the
measured aperture is reduced to a small area near the vertex
of the surface that can be approximated by the paraxial
sphere. Thus, the decenter reported for the lens AHL25-
20 corresponds to the centering error of the aspheric surface
center point as shown in Fig. 1 as the full aspheric surface
can be measured. In the case of the lens ALL25-50, the

decenter corresponds to the centering error at the paraxial
sphere center of curvature, also shown in Fig. 1, as the
asphericity is too small to have accurate measurement of
the full aspheric surface.

4.5 Aspheric Lens Autocentering Measurements

Due to their different shapes, there is one lens mount design
for each lens type. Lenses of all three quality levels were
inserted into the mount and secured using a threaded ring.
The reference axis for measurement is defined as shown
in Fig. 21.

4.5.1 Autocentering mount repeatability
measurements

An important issue is always the repeatability of measure-
ments. For the test in mind the same operator took a meas-
urement series with one measurement object (aspheric lens)
in a short period of time. The expectation of such experiment
is that the variation of the result data has to be in an accept-
able relation to the given tolerance value of the measurement
object. During the measurement, all relevant initial condi-
tions between the measurements were reset. Thus, the lens
was removed from the chuck of the measurement system
and the measurement axes were reset. The results are shown
in Table 6.

Another interesting point that should be taken into
account is the repeatability of the mounting concept. For
this, the same measuring procedure was carried out as for
the repeatability of the measuring device but additionally,
the lens was taken out of the mount after every single

Table 4 AHL25-20 measurement results for surface form deviation
and centering error.

Lens #
RMSi
[nm]

RMSΔS
[μrad]

Decenter
[μm]

Tilt
[arc min]

6894 (SQ) 457 321 2.7 1.57

6896 (HQ) 70 90 2.09 0.35

6311 (High-
end)

37 45 1.67 2.3

Table 5 ALL25-50 measurement results for surface form deviation
and centering error (with respect to best fit sphere).

Lens # RMSi [nm] RMSΔS [μrad] Decenter [μm]

1373 (SQ) 279 236 18.13

1832 (HQ) 114 107 3.35

1306 (High-end) 20 34 9.04

Fig. 21 Definition of reference axis for tilt and decenter measurement.

Table 6 Results of repeatability measurements of measuring device.

Tilt [arc min] Decenter [μm]

Measurement #1 5.54 1.38

Measurement #2 5.68 1.42

Measurement #3 5.58 1.37

Mean 5.60 1.39
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measurement and was remounted. The lens AHL25-20
#6896 was used for this test and the results are presented
in Table 7.

The measurement results of the repeatability measuring
device show very small variations: 0.14 arc min of tilt
and 0.05 μm of decenter. The variation of the repeatability
of the mounting concept is about 0.60 arc min for tilt and
5.03 μm for decenter. The small values for the repeatability
of the measuring device confirm that a suitable method was
chosen for this investigation, which is perfectly able to detect
the state of the mounted lenses.

4.5.2 Centering error measurements of mounted
aspheric lenses

After determining the repeatability of the measuring device
and the mounting concept, both lens mounts were investi-
gated. For this test, one and the same lens was measured
in three different mounts for each lens type. Both chosen
lenses have the same level of surface quality (standard qual-
ity). The results of these measurements are summarized in
Table 8. Please notice that the second lens type ALL25-
50 was measured with respect to its best-fit-sphere due to
its small asphericity. Thus, only the decenter value is listed.

It can be seen from the table that several mounts in
combination with one and the same lens result in different
centration errors for both lens types. The decenter and tilt
variation for the lens AHL25-20 as well as for the lens
ALL25-50 are larger than the measuring accuracy of the
measuring device and smaller than the repeatability of the
mounting concept. So, there is effectively no difference

between the three investigated mounts for each lens type
and subsequently, a constant centration error of the mounted
lenses can be assumed. Thus, for the mounted AHL25-20
a resulting tilt mean of 1.44 arc min and a resulting decen-
tration mean of 7.27 μm were achieved, whereas for the
mounted ALL25-50 a resulting decentration mean of
3.73 μm was obtained.

Comparing the centration status of the lenses itself
(Tables 4 and 5) and in combination with the lens mount
in more detail, some differences in behavior of the two
lens types can be obtained. The decentration of the second
lens type (ALL25-50), which is treated as a sphere due to
small asphericity, is reduced by a factor of 5, which is a con-
siderable improvement. However, it should be mentioned
that the centration error measurement of the asphere itself
in Table 5 was done with respect to the outer rim. As the
outer rim of the lens has no function when mounted using
the autocentering, this decenter value of 18.13 μm does
not affect the autocentering performance. This shows that
for aspheric lens autocentering, the manufacturing tolerance
on the centration of the outer rim of the lens with respect to
the aspheric surface axis does not influence the centering of
the lens once mounted. This contrasts with the standard drop-
in method, where the lens rim is used to center the lens in
the mount.

Having a closer look at the measuring results of the lens
AHL25-20, we can notice that the mean tilt of the mounted
lens (1.44 arc min) is very close to the tilt of the aspheric
surface with respect to the lens planar surface (1.57 arc
min). This is explained by the fact that, for plano-aspheric
lenses, the tilt of the aspheric axis once mounted in the barrel
only depends on the tilt manufacturing error between the two
optical surfaces, and on the tilt of the barrel seat with respect
to the barrel reference axis, which is very small if machined
in the same setup as the barrel reference axis. As mentioned
previously, the decenter reported for the lens AHL25-20 cor-
responds to the centering error of the aspheric surface center
point. As discussed in Sec. 3 and as shown in Fig. 22, the
autocentering is performed by centering the local radius
center of curvature at the ring interface on the mount refer-
ence axis. Because of the distance between this local radius
center of curvature and the aspheric surface center point, and
because of the tilt error of the aspheric axis with respect to
the planar optical surface, the centering error at the aspheric

Table 7 Results of repeatability measurements of the autocentering
mount.

Tilt [arc min] Decenter [μm]

Measurement #1 0.41 1.86

Measurement #2 0.21 3.66

Measurement #3 0.65 6.05

Measurement #4 0.81 6.89

Measurement #5 0.35 3.27

Mean 0.49 4.35

Table 8 Results of decentration measurements comprising the
measurement of one lens in three different mounts for each lens
type (SQ lens).

Lens mount #

AHL25-20 ALL25-50 (BFS)

Tilt [arc min] Decenter [μm] Decenter [μm]

1 1.34 6.74 5.65

2 1.57 8.01 2.98

3 1.42 7.04 2.55

Mean value 1.44 7.27 3.73 Fig. 22 Aspheric lens decenter at paraxial sphere center of curvature
vs aspheric surface center point.
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surface center point is amplified compared with the centering
error of the paraxial sphere center of curvature. Therefore,
the decenter measurements results presented in Table 8
are function of the tilt of the aspheric axis and the local radius
of curvature at the threaded ring interface as per: decenter =
sin (tilt) * local radius of curvature. For lens AHL25-20, the
local radius at the ring interface is 18.39 mm. Considering
the measured mean tilt from Table 8, the aspheric surface tilt
effect on the centering of the point of rotational symmetry is
sin (1.44 arc min) * 18.39 mm ¼ 7.7 μm, which is very
close to the mean decenter measured of 7.27 μm.

For comparison purposes, Table 9 shows the decenter
error of the paraxial sphere for the lens AHL25-20. As
aspheric lenses are most of the time centered by aligning
the paraxial sphere center of curvature on the barrel reference
axis, the measurement results of Table 9 are more relevant
for a comparison purpose between active alignment and the
autocentering method.

A further investigation deals with the effect of the differ-
ent surface quality levels on the minimum achievable centra-
tion error of the mounted lenses. Lenses of three different
levels of surface form quality (SQ, HQ, and high-end qual-
ity) were inserted into one lens mount and measured (again
for each lens type). The results are summarized in Table 10.
Once again, please notice that the second lens type ALL25-
50 was measured with respect to its best-fit-sphere due to its
small asphericity. Thus, only the decenter value is listed.

Having a look at the results of the mounted AHL25-20
first, it can be seen that the tilt errors of the mounted lenses
are very close to the tilt errors between the two optical sur-
faces of each lens as shown in Table 4, which is exactly what
was expected. The decenter, which is the decenter at the

point of rotational symetry, is a function of the tilt and
also includes variation from the repeatablility of the mount-
ing concept. For the high-quality lens, significant lower val-
ues for decenter were measured. This is because of the small
tilt error between the two optical surfaces (0.35 arc min).
Because of the repeatability of the mount, there is no corre-
lation that can be done between the surface quality of the lens
and the measured centration errors. Thus, the surface quality
effect on the lens autocentering precision can be considered
to be negligible compared with the repeatability.

The decenter values for lens ALL25-50 are considered
with respect to their centering errors when they were
unmounted (Table 5). As mentioned previously, the lens rim
centering error does not affect the position of the lens once
mounted in the barrel as the autocentering uses surface con-
tact mounting. Therefore, there is no relationship between
the centering error of Tables 5 and 10, but significant center-
ing improvement can be observed for SQ and high-end
lens that have a larger centering error between the aspheric
surface and the lens rim. The measurement results of the
mounted ALL25-50 show differences between the consecu-
tive quality levels smaller than the repeatability of the mount-
ing concept. Although the centering error of the high-end
quality lens is 3.45 μm smaller than the SQ lens, it is difficult
to conclude that the surface quality has a significant influ-
ence on the centering error because of the repeatability of
the mount.

4.5.3 Centering error measurements summary

The previous sections present measurement results on
unmounted lenses, repeatability of the centering error meas-
urement method, repeatability of the autocentering method,
the centering variability from one mount to the other, and the
centering variability for different lens surface form quality.
Table 11 summarizes these measurements by giving the
mean and the SD from all the measurements performed.

5 Conclusion
This paper discussed the specificities of aspheric lens for
mounting and alignment. It described how the lens manufac-
turing error affects the positioning error of an aspheric lens
once mounted in a barrel. Typical mounting and alignment
methods for aspheric lens were also presented. Finally,
a novel method to mount and align aspheric lenses using
the autocentering principle has been discussed. Centering
measurement results for different aspheric lenses mounted
using the autocentering were presented. The results of the
study performed in this paper show that this new lens mount-
ing method for aspheres provides a simple and an accurate

Table 9 Results of decentration measurements of the paraxial
sphere of lens AHL25-20 comprising the measurement of one lens
in three different mounts (SQ lens).

Lens mount #

AHL25-20 (BFS)

Decenter [μm]

1 1.71

2 1.99

3 1.69

Mean value 1.80

Table 10 Results of decentration measurements of a lens with three
levels of surface form quality in one and the same lens mount for each
lens type.

AHL25-20
lens
quality

Lens mount #1 Lens mount #1

Tilt
[arc min]

Decenter
[μm]

ALL25-50
lens quality

Decenter
[μm]

SQ 1.34 6.74 SQ 5.65

HQ 0.41 1.86 HQ 4.48

High-end 2.11 8.57 High-end 2.20

Table 11 Summary of the centering error measurements of aspheric
lenses mounted using autocentering.

Lens
mount
#

AHL25-20 ALL25-50 (BFS)

Tilt
[arc min]

Decenter [μm]
(center point)

Decenter [μm]
(paraxial sphere)

Decenter [μm]
(paraxial sphere)

Mean 1.40 6.63 1.80 3.82

SD 0.37 1.96 0.73 2.04
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mounting method that bridges the advantages of the standard
drop-in and the active alignment.
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