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Abstract. We present a user-friendly software for photonic analog quantum computing with a
graphical user interface (GUI) that allows for convenient operation without requiring program-
ming skills. Hamiltonians can be flexibly set by either importing the waveguide position files or
manually plotting the configuration on the interactive board of the GUI. Our software provides a
powerful approach to theoretical studies of two-dimensional quantum walks, quantum stochastic
walks, multiparticle quantum walks, and boson sampling, which may all be feasibly imple-
mented in the physical experimental system on photonic chips, and it will inspire a rich diversity
of applications for photonic quantum computing and quantum simulation. We have improved
algorithms to ensure the efficiency of permanent calculation and provided case studies on
educational uses, which bring users easier access to the studies of photonic quantum simulation.
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1 Introduction

Quantum simulation, which has been a main sector of quantum information sciences since
Feynman raised the concept of quantum computing,1 uses the Hamiltonian of a quantum system
to simulate the Hamiltonian of the target system in various subjects. The mapping does not need
to be strict but only needs to be able to produce some expected features of the target system. Even
some qualitative results instead of full quantitative details are valuable.2,3 In the two major genres
of quantum computing, universal (or digital) and analog, the former is more prone to the in-
fluence of errors and relies more heavily on error corrections. On the other hand, analog quantum
computing has the advantages of the lower resource requirements and a higher tolerance level to
imperfections of the quantum system. Together with the aforementioned wide demand and loose
requirement for simulating target systems, these facts have made analog quantum computing an
important tool for quantum simulation. The analog quantum simulation now has a rich diversity
of applications in condensed-matter physics, high-energy physics, atomic physics, quantum
chemistry, biology, etc.2–5

Among a variety of physical systems for quantum computing, including solid-state devices,
atomic or nuclear spin systems, and superconducting devices, photons have many inherent
advantages due to their fast speed and a lack of interaction with the environment.6,7 In particular,
photonic systems are very suitable for analog quantum computing and quantum simulation8,9

because the integrated photonic lattices enable flexible and precise constructions of the target
Hamiltonians. Some representative examples of photonic analog quantum information include
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quantum walks and boson sampling that evolves continuously in the well-designed photonic
arrays. Quantum walks are regarded as a highly versatile approach for quantum simulation.10,11

A quantum walk with a real two-dimensional evolution space was recently demonstrated
on a photonic chip.10 Boson sampling, a scheme that requires only a passive linear optics
interferometer, single-photon source, and photodetection, may set a key milestone in the
quantum computing field called quantum supremacy12 and has inspired many experimental
explorations.13–18

Similar to the impressive advances of quantum information processing hardware, quantum
software has been rapidly developed in recent years.19–21 A layered software architecture for
quantum computing design tools was proposed in 2006; it defined the four-phase design flow
to connect the front end to the physical quantum devices through quantum intermediate repre-
sentation, quantum assembly language, and quantum physical operations language.22 This lay-
ered structure inspired a series of software in different classical program languages for universal
quantum computing in the past few years, including LjQUiji23 and Q# by Microsoft;24,25 Qiskit
by IBM;26 Forest by Regetti,27,28 a start-up company; ProjectQ by the Swiss Federal Institute of
Technology in Zürich;29 and QjSIi by University of Technology Sydney.30 Meanwhile, a grow-
ing number of quantum clouds31,32 on different quantum physical systems have been launched by
companies such as IBM, Rigetti, and IonQ. These clouds and software make pioneering attempts
with a focus on universal quantum computing.

Software for analog quantum computing and simulation is another major genre of quantum
software. OpenFermion is open-source software for analog quantum simulation developed by
Google,33 with a specialization in simulating fermionic systems and quantum chemistry. In addi-
tion, as open quantum systems are always involved in quantum simulation, the Lindblad master
equation solvers for quantum stochastic walks in open quantum systems have emerged; these
include QuTiP, a Python package;34,35 QSWalk, a Mathematica package useful for Hamiltonian
based on graphs;36 and a few improved Lindblad master equation solvers using Julia,
TensorFlow, or massively parallel computers.37–39 These analog quantum packages do not clearly
correspond to a real quantum physical system. An exception is Strawberry Fields, a software for
simulating photonic quantum computing, but it focuses on continuous-variable quantum
computing.40 Overall, software that provides practical instruction for analog quantum computing
in photonic lattices is lacking.

Therefore, we launch FeynmanPAQS, a software for photonic analog quantum computing
and simulation.41 The name is a salute to Feynman for his pioneering ideas on quantum com-
puters and insightful emphasis on quantum simulation.1 PAQS is an acronym for photonic analog
quantum simulation that suggest two key points of the software: the focus on analog quantum
computing and the corresponding physical platform on the photonic system. FeynmanPAQS is
compatible with various integrated photonic quantum circuits regardless of their fabrication
method, such as silicon-on-insulator,42 silica-on-silicon,43 UV writing,13 and femtosecond laser
writing.44–47 The advantages of this software can be summarized as follows:

• It is easy to operate using the user-friendly graphical user interface (GUI).48–50

• It supports flexible design of the photonic lattice and the corresponding Hamiltonian.
In particular, the interactive board is enabled so that the user can manually locate the wave-
guide in any position just by clicking the mouse.

• It provides a practical way of realizing open quantum systems on the photonic lattices.
It inspires analog quantum simulation for various applications on the photonic lattices.

• It uses optimization algorithms to speed up the calculation for multiparticle quantum walks
and boson sampling. Multiple panels are also provided to view data from different
perspectives.

The structure of this paper is as follows. In Secs. 2–5, we introduce the four modules of this
software, namely, for two-dimensional quantum walks with abitrary Hamiltonian design (QW),
for quantum stochastic walks on the photonic chip (QSW), for multiparticle quantum walks
(MultiParticle), and for boson sampling (BosonSampling), as shown in Fig. 1. In each section,
we set three sections. We begin with a brief overview of the theoretical models that support the
related module in this section. We then introduce the GUI and detailed functions for that module.
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We further discuss the educational uses for that module and give some case studies. For the
module of MultiParticle and BosonSampling, we also compare our performance using the
“Ryser þ gray and Glynnþ gray” mixed algorithm with those using other or no optimization
algorithms. A brief discussion of this software is given in Sec. 6.

2 Module for Two-Dimensional Quantum Walks with Arbitrary
Hamiltonian Design (QW)

2.1 Quantum Walks with Arbitrary Hamiltonian Design

Quantum walks, the quantum analog of classical random walks,51,52 have unique features of
interference and superposition, which bring quantum walks remarkably different behaviors and
normally faster transport performances compared with classical random walks. Therefore,
quantum walks have become a powerful approach to quantum information algorithms,53–55 and
quantum simulation for various systems.5,8,56 To apply quantum walks to real applications, a
two-dimensional evolution space of a large scale and a flexible design of the Hamiltonian for
quantum walks are two preliminary requirements. A few examples of such large-scale two-
dimensional quantum walks have now been experimentally realized on the integrated photonic
chip.10,11 This module of QW provides a platform to allow for more Hamiltonian designs to help
researchers explore a rich diversity of quantum walk applications.

As concerned in this module (QW), single photons are injected into the photonic lattice con-
sisting of straight waveguides to form two-dimensional quantum walks. Photons propagating
through these coupled waveguides are described by the Hamiltonian

EQ-TARGET;temp:intralink-;e001;116;281H ¼
XN
i

βia
†
i ai þ

XN
i≠j

Ci;ja
†
i aj; (1)

where βi is the propagating constant in waveguide i and Ci;j is the coupling strength between
waveguide i and j. Ci;j that mainly depends on waveguide spacing can be experimentally
obtained via a coupled mode approach.45 In the module, we use the empirically fitted relation-
ship between the coupling coefficient C (unit: cm−1) and the waveguide spacing d (unit: μm) as
follows: C ¼ 41.42 × expð−d∕4.616Þ. Hence once the waveguide spacing is set, the coupling
coefficient in the Hamiltonian is obtained (see Fig. 2).

For a quantum walk that evolves along the waveguide, the propagation length z is propor-
tional to the propagation time by z ¼ cwt, where cw is the speed of light in the waveguide, so we
use z instead of t for simplicity. The wavefunction that evolves from an initial wavefunction
satisfies

EQ-TARGET;temp:intralink-;e002;116;108jΨðzÞi ¼ e−iHzjΨð0Þi; (2)

Fig. 1 Framework of FeynmanPAQS. The software contains four modules, namely, the two-
dimensional QW with arbitrary Hamiltonian design, QSW on the photonic chip, multiparticle
quantum walks (MultiParticle), and boson sampling (BosonSampling).
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where jΨðzÞi ¼ P
jajðzÞjji and jajðzÞj2 equals PjðzÞ, the probability of the walker being found

at waveguide j at propagation length z.
In the experiment, we observe such probability distribution by injecting a laser beam or

single-photon source into one waveguide and measuring the evolution patterns using an
intensified charge-coupled device camera. The normalized light intensity of each waveguide
corresponds to the probability at this waveguide. As the facula at each waveguide is normally
in the shape of the two-dimensional Gaussian distribution, we also plot the Gaussian-shaped
facula for presenting the theoretically obtained probability distribution in the software modules.

2.2 GUI and Functions for the Module of QW

The workflow in this module for theoretically calculating quantum walks on a photonic chip
includes the following four steps: generate Hamiltonian, evolve (exponentiate Hamiltonian),
obtain probability distribution, and apply Gaussian facula (See Fig. 2). A GUI of this module
is further given in Fig. 3, which shows a case of a two-dimensional quantum walk with an arbi-
trary Hamiltonian design from the panel “design your own chip pattern.” Users can then define
the propagation distance and input nodes on the GUI. The Hamiltonian matrix corresponding to
the pattern and the calculated probability distribution are displayed and can be exported as image
and data files.

2.3 Educational Use for the Module of QW

The highlight of this module is the flexible setting of Hamiltonian, which is fun and straight-
forwardly shows the possible Hamiltonian manipulation on the photonic lattice. Teachers can
then go deeper by showing that the specifically designed Hamiltonians can indeed be applied to
different quantum simulation tasks. For instance, the Hamiltonians that are required in many
topological photonics models such as the Aubry–Andŕe–Harper model57 and Su–Schrieffer–
Heeger model58 can be implemented on the photonic lattice.

Fig. 2 Theoretical calculation for quantum walks on a photonic chip. The coupling coefficient C as
a function of the center-to-center waveguide spacing and the flowchart for the procedures of
calculating the evolution result for quantum walks on a photonic chip.
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2.3.1 Case study

In a course that we deliver on analog quantum computing,59 we use this module to demonstrate a
case of quantum fast hitting. This is a representative algorithm to show the advantages of quan-
tum walks, originally proposed by Childs et al.,52 and it was recently adapted to a photonic
experiment.11 Students are asked to plot a hexagonal glued tree structure (see Fig. 4, which
is reproduced from Ref. 11) and input light in an entry site, the left-most node as the vertex
of one tree. Students then observe the hitting efficiency, the probability at the exit site, and the

Table 1 Functions of all panels for the module of QW.

Panel ID Button Function

Panel 1 Edit Open the board for manually setting the
waveguide positions

Panel 2 Propagation distance z Input the value of z

Input node (index) Define the initial quantum state

Submit Submit the parameters and compute the result

Reset Reset the parameters by default

Panel 3 Data output Export all data in a json file

Image output Export the waveguide intensity in a png file

Position output Export the positions and intensities of each
waveguide in a csv file

Panel 4 The scroll bar and play Show the dynamic waveguide intensity pattern

Panel 5 N.A. Show the position and intensity of each waveguide

Panel 6 N.A. Show the Hamiltonian matrix

Note: N.A. means that there is no specific button on this panel, so we explain the function of the whole panel.

Fig. 3 The GUI for the module of QW. An array forming the shape of Ψ has been set by manually
plotting the waveguide in the interactive board, and its evolution pattern with Gaussian-shaped
facula for a certain propagation distance and input node is plotted. Different panels on the
GUI are marked in the figure, and the functions of all buttons in these panels are explained in
Table 1.

Tang et al.: FeynmanPAQS: a graphical interface program for photonic. . .

Optical Engineering 081804-5 August 2022 • Vol. 61(8)



right-most node as the vertex of another tree. They see that the probability changes dynamically
over time, which reveals the dynamic nature of quantum walks, and they see that the hitting
efficiency can be very high, usually above 90%. The teacher demonstrates running the hitting
task with classical random walks, which only gets a low hitting efficiency. Through this example,
students see quantum advantages in fast-hitting tasks.52

3 Module for Quantum Stochastic Walks on the Photonic Chip

3.1 Quantum Stochastic Walks on the Photonic Chip

In real systems, environmental noise easily causes some dephasing and decoherence of the
original quantum system. This leads to the issue of an open quantum system,3–5 which can be
addressed with a useful approach named the quantum stochastic walk.60

The Lindblad master equation, the most common formulation of quantum stochastic walks, is
a differential equation that incorporates both quantum and classical walks in the continuous-time
evolution:36,60

EQ-TARGET;temp:intralink-;e003;116;342

dρ

dt
¼ −ð1 − ωÞi½H; ρ� þ ω

X
ij

�
LijρL

†
ij −

1

2
fL†

ijLij; ρg
�
: (3)

The first part right to Eq. (3) represents the quantum walk evolution, where H is the
Hamiltonian operator. The second part, which contains the Lindblad operators Lij, describes
the classical random walk evolution. The parameter ω interpolates the weight of quantum walk
and classical walk, that is, a higher value of ω suggests a larger portion of the classical walk in
the mixture of the quantum stochastic walk.

There are a few solvers for Lindblad equations, such as Qutip34,35 and QSWalk.36 However,
the parameters in the Lindblad equation do not have a clear correspondence to the physical
parameters of the photonic quantum systems. In the photonic chip, a Δβ photonic model was
raised61 instead to achieve a continuous-time quantum stochastic walk

EQ-TARGET;temp:intralink-;e004;116;184i
dψn

dz
¼ ΔβnðzÞψn þ

X
m≠n

Cmnψm; (4)

where ψn is the wave function at waveguide n and ΔβnðzÞ is the change to the propagation
constant βnðzÞ. The βnðzÞs are originally a constant if the photonic chip fabrication parameters
are kept stable, and the photonic array makes pure quantum walks. However, when ΔβnðzÞs are
added along the evolution path, which can be physically realized by randomly tuning certain
fabrication parameters along the waveguide, the noise is introduced into the photonic quantum
system. The strength of the noise is positively related to the amplitude of the random fluctuations

Fig. 4 Quantum fast-hitting on hexagonal graphs. (a) Mapping the hexagonal glued trees onto the
photonic chip. (b) The hitting efficiencies for quantum and classical hitting. Inset of (b) is the exper-
imental pattern with the highest hitting efficiency. The figures are reproduced from Ref. 11.
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by ΔβnðzÞs. While the experimental Δβ approach is not a strict mapping of the Lindblad master
equations, it manages to introduce dephasing terms that make a quantum stochastic walk.

3.2 GUI and Functions for the Module of QSW

The GUI for this module of QSW is shown in Fig. 5. It is similar to that for the module of QW, in
that they both follow the same four-step workflow to get the theoretical result. Still, QSW has its
special panels to facilitate the study of the Δβ approach for quantum stochastic walks. Users can
define how frequently Δβ varies along the waveguide (by filling “z interval”), and the strength
Δβ variation (by filling “noise amplitude Δβ”). In panel 5, users can view the evolution prob-
ability against the evolution length for each specified waveguide [see Fig. 5(b)].

3.3 Educational Use for the Module of QSW

By adding various Δβ detunings into the photonic lattice, users are able to create quantum sto-
chastic walks that meet wider scenarios in quantum simulation. Via this module, users will learn
the rich capabilities of photonic lattice and explore the difference between quantum stochastic
walks and quantum walks.

3.3.1 Case study

Students can try an exercise using quantum stochastic walks to form the Haar measure, as has
been recently conducted in an experiment62 (see Fig. 6, which is reproduced from Ref. 62). By
averaging the evolution probabilities for many quantum stochastic walk patterns, students
observe that the average probabilities converge to a uniform distribution, which meets the criteria
for a Haar measure.62,63 They see that this feasible and scalable experimental approach can make

Fig. 5 The GUI for the module of QSW. (a) Different panels on the GUI are marked in the figure,
and the functions of all buttons in these panels are explained in Table 2. (b) In panel 5, users can
also view the probability of each specified waveguide.
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the Haar randomness useful as it can be applied to many quantum information processing tasks.
Students are then asked to turn the “noise amplitude Δβ” into zero, which reduces the model to
a pure quantum walk, and they see that the average probabilities always change dynamically
and never converge. This exercise shows the difference between quantum walks and quantum
stochastic walks.

Fig. 6 Generating Haar randomness via quantum stochastic walks on photonic chips.
(a) Illustration of generating quantum stochastic walks via Δβ detunings on the photonic lattice.
(b) The average of experimental results converges to uniform distribution as the propagation
length increases. The figures are reproduced from Ref. 62.

Table 2 Functions of all panels for the module of QSW.

Panel ID Button Function

Panel 1 Number of nodes in x , y Input the number of nodes in the x or y
direction of a 2D lattice

Waveguide spacing in x , y (μm) Input the spacing in the x or y direction
of a 2D lattice

Preview structure Preview the lattice with the above parameters

Propagation distance z Input the value of the propagation distance

Input node (index) Define the input quantum state

Noise amplitude (Δβ) Input the scale of Δβ detuning

Z interval Define how frequently we change Δβ

View range Define the range of z to view

Submit Submit the parameters and compute the result

Reset Reset the parameters by default

Panel 2 Data output Export all data in a json file

Panel 3 N.A. Show the waveguide intensity pattern

Panel 4 N.A. Show the list of position and intensity of
each waveguide

Panel 5 Possibility Show the possibility of the selected node with
respect to the propagation distance

Hamiltonian matrix Show the Hamiltonian matrix

Note: N.A. means that there is no specific button on this panel, so we explain the function of the whole panel.
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4 Module for Multiparticle Quantum Walks (MultiParticle)

4.1 Multiparticle Quantum Walks

In the above two modules, QWand QSW, we have focused on a single particle evolving in a two-
dimensional quantum system. It is natural to wonder about the case of injecting more than one
particle into the system, i.e., two or more indistinguishable particles. In this case, two main
features of quantum optics, quantum interference and quantum correlation play central roles.
The genuine quantum interference [also known as Hong–Ou–Mandel (HOM) effect64], which
cannot be classically simulated, gives rise to nonclassical quantum correlations.65 With two par-
ticles populating a two-dimensional lattice, the corresponding state space can be easily extended
to a greater dimension.66 Such high-dimensional graphs demonstrate quantum speedup for the
continuous-time search algorithm.55

Another striking departure of quantum mechanics from classical physics is that particle
statistics, either bosonic or fermionic, can influence the quantum correlation, exhibiting either
bunching or antibunching behaviors. These phenomena can be physically simulated with
bipartite entanglement in the form of

EQ-TARGET;temp:intralink-;e005;116;537jψi ¼ 1ffiffiffi
2

p ða†i b†j þ eiϕa†jb
†
i Þj00i: (5)

Phase ϕ controls the states’ symmetry, thus determining the particle statistics.
With an even greater number of N particles involved in the evolution through a system ofM

waveguides, the process can be regarded as a generalized HOM effect and a photon scattering
model. The outcome also depends on whether the particles are distinguishable or indistinguish-
able and if they are indistinguishable, whether they are bosons or fermions. This distinguish-
ability depends on whether the particles are identical, e.g., whether they have temporal delay or
the same frequency when they enter the waveguide array.

If the particles are indistinguishable bosons, then given a Hamiltonian H and its correspond-

ing unitary evolution U ¼ e−
iHt
ℏ , we can calculate the probabilities of various states occurring. If

we define a configuration Si to be the number of photons injected in waveguide i and Tj to be the
number of photons exiting waveguide j, then the probability of an initial state S ¼ jS1 · · · SMi
evolving into a final state T ¼ jT1 · · · TMi is given as15

EQ-TARGET;temp:intralink-;e006;116;345PðTjSÞ ¼ jPerðUðS;TÞÞj2Q
M
i¼1 Si!

Q
M
j¼1 Tj!

; (6)

where Per is the permanent of a matrix and UðS;TÞ is a submatrix of U that is constructed by
taking Si copies of the i’th column of U and taking Tj copies of the j’th row of U. SinceP

M
i¼1 Si ¼

P
M
j¼1 Tj ¼ N, UðS;TÞ has dimensions N × N. Fermions have a similar equation

EQ-TARGET;temp:intralink-;e007;116;256PðTjSÞ ¼ jDetðUðS;TÞÞj2Q
M
i¼1 Si!

Q
M
j¼1 Tj!

; (7)

where Det is the determinant of a matrix. As for distinguishable particles, they evolve independ-
ently (classically). Hence cross terms can be eliminated by taking a linear combination of the
determinant and permanent

EQ-TARGET;temp:intralink-;e008;116;173PðTjSÞ ¼ 1

2

jPerðUðS;TÞÞj2 þ jDetðUðS;TÞÞj2Q
M
i¼1 Si!

Q
M
j¼1 Tj!

: (8)

With these formulas incorporated into the module of the multiparticle, we are able to use this
software to calculate the multiparticle evolution.
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4.2 GUI and Functions for the Module of MultiParticle

The GUI for multiparticle is shown in Fig. 7. Users can define the “number of nodes” and “inter-
val between nodes” for a one-dimensional array. They then choose input nodes for the “initial
state.” In particular, users can choose the “particle type,” which can be bosons, fermions, or
distinguishable. The above panel shows the breakdown of probability distribution of all states,
and a scroll bar can be used for the very long list. Users can specify an output state and observe
its probability at different evolution lengths. They can also view the evolution dynamics for
inputting only a single particle in a specified input node.

4.3 Educational Use for the Module of MultiParticle

This module can be a good tool for teaching the bunching and antibunching effects of different
types of particles.67,68 This is a key issue in quantum optics and can be very naturally linked to
the up-to-date research in quantum optics and quantum information processing.

4.3.1 Case study

Students are asked to generate any initial input state and then pick an output state, e.g.,
j00002000i, where two photons output from the same waveguide. Students try the three different
particle types and write down the output probability of that output state (e.g., j00002000i) for
each particle type. They see that the probability goes to zero for fermions because of the anti-
bunching effects, while the value for bosons doubles the value for distinguishable particles
because of photon bunching. Students are then impressed to see the same effect in real experi-
ments. In a work of topological protection of two-photon quantum correlation on a photonic
chip,69 the authors show the measured two-photon coincidence count from the output end of

Fig. 7 The GUI for the module of MultiParticle. (a) Different panels on the GUI are marked in the
figure, and the functions of all buttons in these panels are explained in Table 3. (b) The probability
of a specified quantum state at different propagation lengths and (c) the probability of a specified
waveguide at different propagation lengths are also provided in panel 5 of the GUI.
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a waveguide in the photonic lattice. The count has a clear peak that doubles the bottom value
when the delay between the two photons reduces to zero (see Fig. 8, which is reproduced from
Ref. 69). This module of multiparticle can well explain those experimental phenomena.

4.4 Optimization Algorithms for the Permanent Calculation

It is also worth mentioning that we manage to use effective optimization algorithms for the
key part of the theoretical model of this module: the permanent calculation. Computing the

Table 3 Functions of all panels for the module of MultiParticle.

Panel ID Button Function

Panel 1 Number of nodes Input the number of nodes in 1D array

Interval between nodes(μm) Input the interval between nodes

Preview structure Preview the array with the parameters above

Propagation distance Input the propagation length

Particle type Choose a particle type from “bosonic,” “fermionic,”
and “distinguishable”

Initial state Define the initial state

Submit Submit the parameters and compute the result

Reset Reset the parameters by default

Panel 2 Data output Export all data in a json file

Panel 3 N.A. Show the waveguide intensity pattern

Panel 4 N.A. Show the list of the position of each waveguide

Panel 5 Hamiltonian matrix Show the Hamiltonian matrix

Output state Show the probability of a specified quantum state
at different propagation lengths

Single particle evolution Show the probability of a specified waveguide at
different propagation lengths

Note: N.A. means that there is no specific button on this panel, so we explain the function of the whole panel.

Fig. 8 The photon bunching effect in the experiment. (a) A one-dimensional photonic lattice with
photons injected into the boundary waveguide. (b) The two-photon coincidence counts against
different delay lines between two photons, measured from the output end of the boundary wave-
guide. The figures are reproduced from Ref. 69.
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permanent has been proven to be of #P complexity, even harder than NP-complete, and is widely
believed to be classically intractable. The permanent of an n × n matrix per M is defined as

EQ-TARGET;temp:intralink-;e009;116;711PerM ¼
X
σ∈S

Yn
i¼1

Mi;σðiÞ; (9)

where σ is a permutation of the set f1; : : : ; ng and S is the group of all such permutations. If we
try to compute the permanent based on this formula alone, we obtain an algorithm with time
complexity Oðn!nÞ, which is very inefficient.

Two better algorithms have been discovered, the first of which is due to Ryser70

EQ-TARGET;temp:intralink-;e010;116;615PerM ¼ ð−1Þn
X
ϵ∈S

ð−1Þ
P

i
ϵi
Yn
k¼1

Xn
j¼1

ϵjMjk; (10)

where ϵ ¼ ðϵ1; : : : ; ϵnÞ ∈ S ¼ f0; 1gn (i.e., ϵ is a n-dimensional vector in which all elements are
0 or 1, and S is the set of all 2n possible ϵ). The second algorithm is due to Glynn71

EQ-TARGET;temp:intralink-;e011;116;541PerM ¼ 21−n
X
δ∈P

�Yn
i¼1

δi

�Yn
k¼1

Xn
j¼1

δjMjk; (11)

where δ ¼ ð1; δ2; : : : ; ϵnÞ ∈ P ¼ f�1gn and there are 2n−1 possible δ, since we fix δ1 ¼ 1.
These two formulas are both related to polarisation identities of symmetric tensors and in fact

part of a larger family of permanent algorithms.72

These formulas give algorithms of complexityOð2nn2Þ and can be further reduced toOð2nnÞ
using a gray code.73 We explain this using Ryser’s formula, and the same logic applies to
Glynn’s. If we say that λk ¼

P
n
j¼1 ϵjMjk, then if ϵ and ϵ 0 differ by a single ϵm (i.e., the

Hamming distance is 1), then λ 0
m ¼ λm þ ðϵ 0m − ϵmÞMmk, and we only need to calculate one

element of the sum instead of all n elements.
Comparing the two formulas, it seems that Glynn’s formula is faster than Ryser’s by a factor

of 2, as the number of possible δ is half the number of possible ϵ. This is indeed true as n → ∞,
but Ryser’s formula seems to be better optimized for small matrices where N < 6 in our imple-
mentations (see Fig. 9).

Therefore, in this software, we use “Ryser þ gray and Glynnþ gray” mixed algorithm to
calculate the permanent, i.e., “Ryser þ gray” for N < 6 and “Glynnþ gray” for large N.

Fig. 9 Comparison of the calculation time using different permanent algorithms.
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This ensures that we always have an optimized permanent calculation efficiency for different
scenarios of photon counts.

5 Module for Boson Sampling (BosonSampling)

5.1 Boson Sampling

Boson sampling, an analog quantum computing model first raised by Aaronson and Arkhipov,74

has been an emerging field in the quantum research community. Unlike universal quantum com-
putation scheme that usually requires active elements, boson sampling schemes only require a
passive linear optics interferometer, single-photon source, and photodetection (photon number
resolving is not necessary). Results show that these experimentally friendly devices may offer
the first evidence that refutes the extended church-turing (ECT) thesis and set a key milestone in
the quantum computing field called quantum supremacy.12

The boson sampling problem can be modeled as a multiphoton scattering process. We first
prepare an input state consisting of N single photons in an M modes passive linear optics inter-
ferometer. The process is very similar to that in the multiparticle quantum walks in which
N single photons are injected into M waveguides, but a key difference lies in there not being
a unitary matrix in boson sampling schemes that can be effectively described by the Hamiltonian,
similar to U ¼ e−

iHt
ℏ in the case of multiphoton quantum walks. In boson sampling, one normally

defines U, a unitary map on the creation operators, directly. The injected photons in the boson
sampling scheme interfere and scatter in the linear optics interferometers. The interferometer
implements a Haar-random M-mode transformation U on these N indistinguishable bosons:

EQ-TARGET;temp:intralink-;e012;116;451Ua†i U
† ¼

XM
j¼1

Ui;ja
†
j ; (12)

where i and j denote the i’th and j’th modes of the interferometer. After the transformation,
an input configuration, which is denoted as S with

P
M
i¼1 Si ¼ N, becomes an output state,

which is a superposition of different configurations T for the output modes, denoted as
jψouti ¼

P
TγS;T jnT1nT2 · · · nTmi, where nTi is the corresponding photon number n in the

i’th mode.
The hardness of this problem is rooted in evaluating the value of PðTjSÞ, related to the per-

manent of the scattering amplitudes. The calculation can follow the same equation as Eq. (6).

5.2 GUI and Functions for the Module of BosonSampling

In the GUI of BosonSampling, users need to import anM ×M unitary scattering matrix asU and
are informed of an error if the imported matrix does not satisfy the requirement for a unitary
matrix. The users also need to design their interferometers. Generally, there are two types of
decomposition, namely, the Reck’s type75 and the Clements’s type76 (see Fig. 10).

Fig. 10 Schematic diagram of the decomposition. An example of (a) 10modes in the Reck decom-
position and (b) 10 modes in the Clements decomposition.
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After choosing the unitary scattering matrix U and the decomposition style, users need to set
the parameters for beam splitters and phase shifts that accomplish pairwise transformations
between channels by satisfying U ¼ DðQ Tm;nÞ, where D is a diagonal matrix and Tm;n is
the transformation from channel m to n (m ¼ n − 1) through a lossless beam splitter with the
reflectivity cos θ and through a phase shift ϕ at the input m side.76 Tm;nðθ;ϕÞ reads as

EQ-TARGET;temp:intralink-;e013;116;423Tm;nðθ;ϕÞ ¼

0
BBBBBBBBBBBBBBB@

1 0 · · · · · · · · · · · · · · · 0

0 1 . .. ..
.

..

. . .
. . .. ..

.

..

.
eiϕ cos θ − sin θ ..

.

..

.
eiϕ sin θ cos θ ..

.

..

. . .. . .
. ..

.

..

. . .. 1 0

0 · · · · · · · · · · · · · · · 0 1

1
CCCCCCCCCCCCCCCA

: (13)

Users can manually set the parameters for all Tm;ns. They can also ask the software to ran-
domly set the parameters by choosing “reset” for θ and ϕ. A GUI for BosonSampling is shown in
Fig. 11, where the decomposition with the defined type, number of modes, and injected photons
is shown in the interactive board. The interferometer parameters can be shown by placing the
mouse on the corresponding white dot that represents an interferometer. The obtained probability
distribution data can be exported to facilitate further analysis for boson sampling.

5.3 Educational Use for the Module of BosonSampling

Users can get familiar with the framework of boson sampling via this module. When they
increase the injected photon numbers and mode numbers, they experience the increase of com-
plexity of the output states and the computational time on classical computers. This deepens their
understanding of the quantum advantage for boson sampling in real quantum hardware.

5.3.1 Case study

In class, students may try to reproduce previously published works on boson sampling.13–16

In their experiments, they characterize their unitary matrix for their photonic chip. Students are

Fig. 11 The GUI for the module of BosonSampling. Different panels on the GUI are marked in
the figure, and the functions of all buttons in these panels are explained in Table 4.

Tang et al.: FeynmanPAQS: a graphical interface program for photonic. . .

Optical Engineering 081804-14 August 2022 • Vol. 61(8)



asked to input those data and get the theoretical sampling result, which can be compared with the
theoretical and experimental results in their papers.

6 Discussion

Photonic lattices are a promising physical system for analog quantum computing and quantum
simulation. So far, increasing efforts are being made for their experimental demonstration. We
launched FeynmanPAQS with a user-friendly GUI to facilitate education and research on quan-
tum information sciences based on integrated photonic lattices, without heavy prerequisite
knowledge of quantum physics and computer sciences. We have incorporated several versatile
tools of analog quantum computing in FeynmanPAQS, covering two-dimensional quantum
walks, quantum stochastic walks, multiparticle quantum walks, and boson sampling, and all
of these tools can be feasibly implemented on photonic chips in the experiment. FeynmanPAQS
allows for flexible Hamiltonian designs and engineering, as well as various settings of input
photons, particle types, mode number, interferometer parameters, etc., which inspire brainstorm-
ing for potential applications for real problems. The version of the software described in this
paper is FeynmanPAQS 1.0. We will continue to update with additional case studies and func-
tions in the near future.
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Table 4 Functions of all panels for the module of BosonSampling.

Panel ID Button Function

Panel 1 N.A. Choose decomposition type (Reck or Clements)

Panel 2 Number of channels Define the number of modes

Theta and phi:Reset Reset θ and ϕ values randomly

Initial state Define the initial state

Confirm and plot Submit the parameters and compute the result

Reset Reset the parameters by default

Panel 3 Data output Export all data in a json file

Structure output Export the recent structure of the interferometers

Image output Export the recent schematic diagram in panel 4
in a png file

Panel 4 N.A. Show the θ and ϕ values of a particular interferometer
when putting the mouse on it

Panel 5 N.A. Show the probability of each state

Note: N.A. means that there is no specific button on this panel, so we explain the function of the whole panel.
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