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1 Introduction

Learning about electromagnetic waves and quantum physics is a challenging endeavor for
many college science students. Connecting the class content to their everyday lives and to their
future careers is not completely obvious. Furthermore, when surveyed and asked, “Do you
know what photonics is? If yes, describe it,” 92% of 113 Vanier College students do not know
what photonics is or cannot describe it correctly on the first day of their Waves and Modern
Physics class. This situation needs to be addressed—not only is photonics a central concept that
encompasses much of the course content but it is also ubiquitous in everyday life. Therefore, to
engage the college students with course content, connecting it to their everyday lives and to
promote “photonics awareness,” a group research project on a photonics-based Nobel prize was
developed.

The project is set in a Québec (Canada) college-level Waves and Modern Physics course
taken by all students pursuing studies in the natural sciences (including health science and pure
and applied science).1 This course is equivalent to a freshman-year physics course elsewhere in
North America. A semester is 15 weeks, with 5 h of class time per week—3 h for lecturing and
active learning activities, and 2 h for laboratory experiments, demonstrations, and tutorials.
Typical class sizes range in between 30 and 40 students. All colleges in Québec share the same
general framework for the Waves and Modern Physics course, which dictates the specific course
content. It includes kinematics and dynamics of vibrations; longitudinal and transverse waves;
progressive and stationary waves, resonance; sound waves; geometric and physical optics (which
includes interference and diffraction of light); and elements of modern physics (which can
include special relativity, quantum physics, and/or nuclear physics). Geometric and physical
optics and quantum physics are the content that link to photonics, and hence, are relevant to
a chosen Nobel prize.

Since there is no specific reference to which elements (or topics) of modern physics must be
presented in class, the different college physics departments and their teachers can choose what
elements to present and assess in class. In the context of the project to be described, teachers
can even allow for groups of students to engage with different elements of modern physics,
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thus, for this project, allowing students to choose what elements of quantum physics they wish
to engage with.

The project uses an inquiry-based (IB) approach. That is, students choose the Nobel prize of
interest, the questions to investigate (i.e., the research questions), the elements of the Nobel prize
to present to classmates, and their final presentation style. The project is designed as a five-part
activity, each with a specific scaffold, including individual and group worksheets, and a final
presentation assessment rubric. These scaffolds guide students to regulate their inquiry, stay
organized and on-task, and manage the time constraints (i.e., timeline). The final presentation
assessment rubric supports the students’ capacity to evaluate the quality of their work before
submitting the final product. Teacher feedback, which is also a scaffold for students, is provided
at the end of each step and students are encouraged to seek help and advice when necessary. This
allows the students to engage with, and even go deeper, with electromagnetic waves and quan-
tum physics content that is typically more challenging to teach, and understand, than in a regular
freshman college classroom setting.

IB instruction in the field of optics and/or photonics education have been reported for high
school2 and community college3 laboratory contexts. In each example, a series of standalone IB
activities was developed. The novelty of what we present is how the scaffolding in the inquiry
can foster both individual and group engagement with complex ideas related to electromagnetic
waves and quantum physics in a multiweek project. A background on IB instruction and the use
of scaffolds to help guide the inquiry is provided in Sec. 2. Section 3 presents the group research
project, including the timeline, the student and group tasks, the scaffolds provided, and the deliv-
erables for each part of the project. Last, in Sec. 4, we discuss the quality of the final presenta-
tions and the student learning reflections.

2 Inquiry-Based Instruction and the Use of Scaffolds

2.1 Inquiry-Based Instruction as a Student-Centered Active Learning
Technique

Empirical studies of implementations of student-centered active learning approaches show ben-
efits such as increases in learning and reduced dropout rates.4–6 Research shows that student-
centered active learning approaches encourage students to take on a more meaningful approach
to learning, with implications on strategies used in the process of knowledge construction.7

Typically, this is because such instruction focuses on deep approaches versus surface
approaches.8,9 In addition, active learning approaches positively impact students’ attitudes and
motivation toward learning.10,11 It has been shown to have positive influences on students’ self-
efficacy particularly as it relates to gender differences and minoritized individuals in STEM.12

This said, we caution that this field of study contains conflicting results primarily because of the
differences in the contexts and descriptions of active learning. Our efforts here are to help start
the process of clarifying and identifying what are the key elements in one of the approaches, that
is, IB instruction.

IB instruction is situated within the context of investigating authentic problems.13–18 It pro-
motes the use of high-level cognitive skills—analysis, decision-making, and evaluation—and
scientific thinking, including the importance of rigor, reliability, and use of evidence to justify
claims. IB is distinct from discovery learning in that guidance, also known as scaffolding, is a
critical and essential component of the instructional approach.19 Supporting learners’ manage-
ment of the inquiry and decision-making, scaffolds are strategically built into the lesson
activities.20 Meanwhile, just-in-time scaffolds provided by teachers’ feedback, in situ, regulate,
and keep the learning on track. Like problem-based learning (PBL, e.g., Refs. 21 and 22), IB can
be classified as a type of active learning that is grounded in sociocognitive and sociocultural
theories of learning.23 We elaborate briefly on what this means.

Growing out of the fields of educational psychology, cognitive sciences, and learning
sciences, sociocognitive and sociocultural models describe how knowledge construction and
learning are social processes, these include situated cognition,24–26 distributed cognition,27,28 and
group cognition.29 These paradigms view learning as a process mediated by social interactions
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(e.g., Refs. 25, 26, and 30). Knowledge and knowing are highly dependent on content and
context.24,31 Furthermore, the theory of situated cognition informs us about the process of learn-
ing and highlights the need for learning activities to be contextualized and embedded in authentic
activity—i.e., realistic and/or typical to the domain. For instance, learning physics is more than
mere concepts, it is also learning about the discipline’s practices and the epistemology embedded
in its inscriptions and tools.

The goal of instruction, therefore, should not only be cognitive development, but it should
also be to familiarize students with the language, tools, norms, and standards of a discipline.
In a way, this means students become members of a discipline’s community as they engage in
authentic activity—i.e., their thinking and understanding of the concepts, tools, and traditions is
shaped.32,33

This social paradigm relies heavily on forms of group work that fall into two categories:
collaborative learning34 and cooperative learning.35 While there are differences between these
approaches,36 they both foster the students’ use of disciplinary knowledge. In addition, they both
provide students to work within a setting that has been referred to as a zone of proximal develop-
ment,30 which defines the working limits of a student’s capabilities and knowledge. On one side
of this zone, students are capable of working on their own, within this zone students need support
of an adult or a more knowledgeable other, and beyond this zone students are lost even with help.
Research shows that when students are given the opportunity to work together, with targeted
scaffolding and group organization, their learning outcomes are increased, and the quality of
that learning is richer.35

2.2 Scaffolds

Scaffolding involves supporting the learner to complete a task or achieve a goal they are not yet
capable of doing on their own without assistance. Originally identified as ways the adult or
expert helps children solve complex problems,37 it has come to describe the support of learning
at all levels. Scaffolds reduce the cognitive load of complex tasks, thereby allowing the novices
to concentrate on elements of the task that are within their reach. As such, it is closely associated
with ideas of the zone of proximal development described earlier. Instructional scaffolds aim to
offer types of support that fall into categories, such as focusing the learner, simplifying the task
by reducing the degrees of freedom, managing task frustration, guiding competition by high-
lighting critical problem features, demonstrating or models ideal solutions, etc.37 Originally,
scaffolds referred to human tutors, however, the metaphor now extends to tools, resources, and
even curricula that include strategies that make thinking visible.38 Thus, scaffolds can be such
things as worksheets, templates, and rubrics,39 and as well as the designed technological resour-
ces (i.e., software) embedded into instruction to pace and prompt (i.e., scripts) the learning.40

Because scaffolds are intended to be removed, known as fading, learners should be made aware
explicitly of the role they play and what aspects of the learning they support. As such, the
removal of scaffolds is associated with the development of the learners’ self-regulation skills
as their capacity to take on more responsibility for their knowledge acquisition and task
completion.

3 Project Timeline, Tasks, and Deliverables

What follows is the description of the project based on IB instruction and its use of scaffolds.
[Note that all materials produced by the authors (i.e., the scaffolds, including individual and
group worksheets, and the final presentation assessment rubric) are available for sharing.
The materials can be tailored by other teachers to fit their course content and learning objectives.
Please contact the lead author. However, since students did not sign consent forms, the authors
cannot share any of the student work or final presentations.] The project can be implemented in
different teaching modalities. The first iteration of the project began in a prepandemic, in-person
setting that transitioned into a fully online, asynchronous setting after the mid-term break (winter
2020 semester). The following two iterations of the project were done completely in an online
setting (fall 2020 and winter 2021 semesters). Much of the work was done asynchronously as

Adams and Charles: Inquire and engage: getting college students to learn about electromagnetic waves. . .

Optical Engineering 081805-3 August 2022 • Vol. 61(8)



homework, but some of the work was done synchronously online during class (e.g., weekly
group meetings and Q&Awith the teacher). Students were provided with an online group space
for video conferencing and document sharing. To respect the ponderation and the general frame-
work of the course, some of the synchronous meetings were done during lab periods (eliminating
some lab experiments) and the final presentation replaced two full lab reports.

The project overview, as shown in Fig. 1, is first presented to the class. Students are informed
of the multiple parts, the timeline, the individual and group tasks, and deliverables, and the final
presentation assessment rubric. In their final presentation, groups must be able to describe the
physics of a photonics-based Nobel prize and be able to connect it to course content and to their
everyday lives. Making these connections, refining, and elaborating them are deliverables for
each step of the project as students progress with course content during the semester.

Part 1 consists of an introduction and a short task. Students are introduced to the term “pho-
tonics”; it is defined, applications are presented (e.g., key components in a fiber-based commu-
nication link1), and the teacher presents an overview of his photonics research linked to
telecommunications. The students are then presented with a list of photonics-based Nobel prizes,
from 1964 (Maser-Laser Principle) to the present, like Fig. 2 of Ref. 41. The teacher provides a
worksheet in which each student must choose and rank three Nobel prizes and provide a short
description for each. They begin listing keywords/ideas and connecting them to course content
and to everyday applications. For instance, when choosing the 2014 blue light-emitting diode
(LED)-based Nobel prize, students typically write something similar to, “Blue light means blue
waves and/or photons, and these LEDs are used in graphical displays and for white light gen-
eration.” The teacher then forms groups of three to four students, trying to respect each student’s
Nobel prize preference while minimizing project repetition.

In part 2, as an individual task, students are prompted to propose at least four “primary”
questions they wish to research and answer. These questions are usually broad and more general.
For example, continuing with the blue LED-based Nobel prize, students ask: What is a diode?
How can it emit light? Why are blue LEDs Nobel prize-worthy and not the other LEDs? How are
they used in graphical displays? and so forth. The students provide detailed answers to their
questions, include references, and are to propose new “secondary” questions that are to be
answered later in part 3. These “secondary” questions are usually more specific and refer to

Fig. 1 Five-part, 12-week project overview containing all tasks and deliverables.
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terms foreign to most students, for example, here: semiconductors, p-types, n-types, band gaps,
etc. The students also refine and elaborate their list of connections between keywords/ideas and
course content and to everyday applications. Figure 2 shows the worksheet for part 2 (this page is
repeated three more times). The teacher reviews the questions, answers, and references and pro-
vides written feedback to each student.

For part 3, each group prepares a synthesis of all their individual work from part 2. They
peer review each other’s contributions. They then compile all their questions (primary and
secondary), answers, and references and complete their list of connections between keywords/
ideas and course content and to everyday applications. The worksheet provided for part 3 is
similar to that for part 2. In addition, they must propose a final presentation plan. This includes
the medium—most groups do a narrated slideshow video or a documentary style video. The
target time is between 9 and 12 min for a group of three and 12 and 15 min for a group of four,
and their audience are their classmates. The plan must also include their individual and group
roles for part 4, and they are to indicate if they have more research to conduct. The teacher
reviews the synthesis and final presentation plan and provides written feedback to the groups.

The groups then have several weeks to complete and deliver their final presentation in part 4.
By this stage, it is common for groups to have too much material to present and/or need guidance
to shorten their final presentation. The groups can revise their final presentation plan and are
encouraged to seek teacher feedback if necessary. At the end of this part, the teacher compiles
all presentations and shares them with the class for viewing.

The individual task for part 5, includes completing (1) self and peer assessments based on
their contributions and quality of work during the project and (2) a learning reflection about the
project. The goal with the self and peer assessments is to help students manage the group
dynamic and the division of work. The students are presented with the assessment questions
at the start of the project and hence better understand what the expectations are with regards
to individual and group roles. The learning reflection document has two roles. First, it is an
evidence-based technique that helps students deepen, critique, and document their learning.42,43

It allows students to reflect on how their project helped them to learn physics and to better under-
stand its role in their everyday lives. Second, it provides feedback to the teacher. The questions
associated to both tasks are presented in Fig. 3. Last, each group has one final meeting with the

Propose a research question (RQ) based on your project that you wish to research:

RQ1:

Compile information that you found. This can include text, diagrams, pictures, etc. Include all your references. The 

information you find should prompt new questions. Compile these new questions (they will be researched in part 3 

of the project).

Information:

New question(s):

From the information that you gathered, find connections to….

EM Waves section 

of course

Modern Physics 

section of course

Other physics not

part of course

Use and/or impact 

to our everyday life

Fig. 2 Individual worksheet for part 2 of the project.
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teacher. Students must provide a rationale for their final presentation, i.e., the presentation style
and medium, and how/why they chose specific elements to present, connections to elaborate, etc.
They must also answer questions that relate to course content.

As stated previously, the final presentation assessment rubric (see Fig. 4) acts as a scaffold for
the groups when completing their final presentation. It indicates the criteria that will be assessed
and the level of proficiency expected for each. The common group grade component of the final
presentation is worth 75% and includes the following criteria: (1) general description of the

Always Mostly Sometimes Seldom Never

1: The individual was present for all group meetings

2: When present, the individual participated actively

3: The individual listened and respected the opinion of others

4: The individual took responsibility for the assigned roles

5: The individual completed their roles with rigor and timeliness

Learning Reflection: With regards to this project, take a moment to reflect on your learning (the content, connections to your everyday life, working in 

a team, etc.). Provide 1-2 sentences for each of the following questions.

1) Was a project setting a good one to better learn and understand complex topics associated with EM Waves and Quantum Physics?

2) What part of this project did you find the easiest to understand and explain why? Were you able to help a team member better understand this part?

3) What part of this project did you find the most difficult to understand and explain why? Did members in your team help you to better understand?

4) What part of this project did you find the most interesting and explain why?

5) Early in the semester, I asked a series of questions to you (including: Why do we care about Waves & Modern Physics? What do you think you will 

learn from the class and/or how will it impact you in the future? Do you know what photonics is? What is the physics behind all the tools and devices we 

use to communicate?). Has your opinion changed with respect to this courses content? Would you answer these questions differently today?

6) Any other comments that you would like to share?

(b)

(a)

Fig. 3 (a) Self and peer assessment questions and (b) learning reflection questions.

Fig. 4 Final presentation assessment rubric.
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Nobel prize (10%), (2) physics description of the Nobel prize (20%), (3) ability to connect to
course content (15%), (4) ability to connect to everyday applications (15%), and (5) production
quality of final product (15%). The final 25% individual component for each student in the group
is based on how well they answered their questions during the final group meeting with the
teacher (10%) and on their overall self and peer assessment scores (15%).

4 Project Quality and Learning Reflection Feedback

The final presentation assessment rubric, along with the teacher feedback, allows students to
better evaluate the quality of their work before they submit the final project. Including the three
cohorts (winter 2020, fall 2020, and winter 2021), the overall average project grade was 87%
with a standard deviation of 12%. The projects were of great quality, creative, informative, and
appreciated by classmates. As stated before, narrated slideshow and documentary-style videos
were the most common presentation styles. For these videos, some chose a more traditional
approach, as if they were presenting a slideshow in class. However, some groups chose to give
each other roles in the video—some videos flowed like a classroom setting between a teacher
and students asking questions, and some were interview style, between an expert and the
interviewer.

During the last meeting between the teacher and each group, students had to orally answer
questions that linked their project to course content. The average of this individual grade on a
10-point scale was 7.5, with a standard deviation of 2.5. Unfortunately, no grade comparison was
made between students who engaged in the project to those who did not. A quantitative study
comparing the two sets of students is intended for future implementations of this project.

Regarding the student learning reflection, 93 of the 100 students who completed it agreed
that this project setting was a good one to better learn and understand complex topics associated
with EM Waves and Quantum Physics. Students who elaborated listed reasons that made their
learning experience positive. The most popular reasons were working in a group setting (the
social aspect of group video meetings during pandemic online learning and the peer instruction
involved when explaining their work to groupmates), being engaged in a research setting (i.e.,
being able to research and learn about a topic as opposed to relying on lectures, the textbook, and
rote laboratory experiments), and understanding the course content via their applications in sci-
ence and everyday life. Other reasons for agreeing with the statement include being able to
choose their project topic and research questions and having the ability to work at their own
pace. Clearly, using IB instruction with individual and group work elements played a positive
role in the student’s perception of their learning.

Question 5 of the learning reflection ties in with the survey done at the start of the semester
when too few students were able to correctly describe photonics. By the end of the semester,
everyone was able to identify what photonics was and to make multiple connections between it
and their everyday lives.

5 Conclusion

We have presented a 12-week group project centered on researching and presenting a photonics-
based Nobel prize in a college classroom setting. The project uses IB instruction and is designed
as a five-part activity, each with a specific scaffold helping guide students regulate their inquiry.
By researching a photonics-based Nobel prize, students engage with content that is part of the
Waves and Modern Physics course, especially, electromagnetic waves and quantum physics.
This approach promotes the use of high-level cognitive skills as students tackle complex ideas
associated with electromagnetic waves and quantum physics. As the students individually and
then collectively construct and refine their knowledge about electromagnetic waves and quantum
physics, they also connect the course content, and photonics in general, to their everyday lives.
This approach to teaching and learning, and the materials produced, can be adapted by other
teachers at different levels of education (e.g., upper K-12 and postsecondary) to fit their course
content and learning objectives.
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