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ABSTRACT

A novel mathematical model of light scattering by pathological and deformed erythrocytes is presented. An
erythrocyte is modeled as a homogeneous triaxial dielectric ellipsoid of complex index of refraction. Both its
position and orientation in a given cartesian coordinate system are considered arbitrary. The analysis is based
on the Lippman–Schwinger integral equation for the electric field. The corresponding (singular) integral
equation for the scattering is transformed into an integral equation for the Fourier transform of the electric
field inside the scatterer. The latter equation has a nonsingular kernel. It is solved by reducing it by quadra-
ture into a linear set of equations. The resulting solutions are used to calculate the scattering amplitude.
Several tests ensuring the validity of the approach along with sample calculations are presented. © 1997 Society
of Photo-Optical Instrumentation Engineers. [S1083-3668(97)00703-X]
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1 INTRODUCTION

Light scattering by cells has proved to be a power-
ful diagnostic tool in various biomedical applica-
tions. In laser flow cytometry, it provides informa-
tion on the size, the shape, and the biochemical
composition of cells.1 In ectacytometry, it is used to
determine both the deformability2 and the stress-
induced rigidification of erythrocytes,3 whereas in
syllectometry, it is employed to quantify their ten-
dency for aggregation.4 It has been established that
both the deformability and the tendency for aggre-
gation of eryrthrocytes play an important role in
micro- and macrocirculation.5

This paper focuses on the study of the morpho-
logical and mechanical characteristics of red blood
cells (RBCs) by optical methods. We noticed that
certain shapes of pathological6 and deformed RBCs
may be considered special cases of a general triaxial
ellipsoid. For example, both an artificially sphered
RBC (as it is sometimes used in flow cytometry)
and a spherocyte have a nearly spherical shape
(three equal semiaxes). An oblate spheroid may
model an RBC when it constitutes part of an RBC
rouleau.7 A triaxial prolate ellipsoid is the exact
shape of a mechanically deformed RBC when
it is subjected to high shear stress (e.g., in
ectacytometry).8 It is also practically the shape of a
pathological elliptocyte. Furthermore, other shapes
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of erythrocytes might be approached, although less
satisfactorily, by the shape of a general triaxial el-
lipsoid. Examples include the approximation of a
normal RBC at rest by an oblate spheroid (the exact
shape of an RBC at rest is a biconcave disk, how-
ever), the approximation of a drepanocyte by a pro-
late triaxial ellipsoid (drepanocytes are rather sickle
shaped), and the approximation of a leptocyte by
an oblate spheroid (leptocytes are thin, flat, bicon-
cave cells).6

Various existing theoretical treatments are appli-
cable to certain special cases of interest. As indica-
tive examples, we mention the Mie theory appli-
cable to spherical RBCs,9 the modal series
expansion of electromagnetic field in terms of pro-
late spheroidal vector functions applicable to pro-
late spheroidal RBCs,10 and the approximate van de
Hulst anomalous diffraction theory11 applicable to
triaxial ellipsoidal RBCs.8 Nevertheless, there is no
efficient, non-a priori approximate treatment for the
scattering of light by triaxial ellipsoidal erythro-
cytes.

In this paper a non-a priori approximate math-
ematical analysis of light scattering by a triaxial di-
electric ellipsoid of complex index of refraction is
developed. The analysis is based on the theory of
Fredholm integral equations and is referred to as
the Fredholm integral equation model or FIEM. The
integral equation approach to solving complex elec-
tromagnetic boundary value problems has been
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well established and verified. Both the position and
the orientation of the scatterer in a given cartesian
coordinate system are considered arbitrary. The
case of a large scatterer can obviously be dealt with.
FIEM is applied to the case of pathological and de-
formed erythrocytes with the intention of gaining
insight into the light scattering phenomena encoun-
tered in various optical diagnostic techniques in he-
matology. Thus, a novel theoretical tool is provided
for the recently emerged areas of flow cytometry
and hemorheology that is useful for the optical de-
termination of the geometrical and the mechanical
characteristics of erythrocytes.

The present work has its origins in Refs. 12 and
13, where scattering of electromagnetic radiation by
resonance-size ellipsoids placed at the origin of a
cartesian coordinate system was considered. The
numerical applications performed in those works,
however, concerned scatterers with small size pa-
rameters (e.g., k0a50.4). In the present paper, size
parameters are rather high (e.g., k0a537). This
leads to high computing time demands. Conse-
quently, new computational problems have to be
tackled.

The main steps of the analysis are as follows. (1)
The Lippman–Schwingwer integral equation for the
electric field is formulated. (2) The scattering ampli-
tude equation is deduced by using the limit of the
previous equation, while the distance between the
point of observation and the center of the scatterer
system tends to infinity. (3) The (singular)
Lippman–Schwinger equation for the electric field
is transformed into an integral equation for the an-
gular Fourier transform of the electric field inside
the scatterer. The transformed equation has a non-
singular kernel. (4) The latter equation is reduced
by quadrature into a matrix equation. (5) The re-
sulting solutions are used to calculate the scattering
amplitude.

2 THEORY

2.1 THE MODEL

An RBC is modeled (in the general case) as a tri-
axial homogeneous dielectric ellipsoid with semi-
axes a1 , b1 , c1 . For a15b1 and c1,a1 , the shape
of an oblate spheroid is obtained, whereas for
a15b1 and c1.a1 the shape of a prolate spheroid is
produced. The index of refraction n0 relative to the
suspending medium and consequently the relative
dielectric constant e5n0

2 of the RBC for a given
wavelength are considered complex. The index of
refraction of the suspending medium (which may
be either plasma or any other optically equivalent
and isotonic liquid) is considered real, given that
plasma has a very low optical absorption in the vis-
ible range of the spectrum. Most diagnostic instru-
ments operate in this range.

Dyadic notation is used throughout the analysis.
The following two cartesian systems are used: the
‘‘absolute’’ system, xyz and the local one, x1 y1 z1
with its origin at the center of the ellipsoid V1 (Fig-
ure 1). The ellipsoid V1 is defined in the local coor-
dinate system x1 y1 z1 by the equation

x1
2

a1
2 1

y1
2

b1
2 1

z1
2

c1
2 51. (1)

The following symbol conventions are used
throughout the analysis. X denotes a scalar quan-
tity (generally a complex number). XI , X= denote

vectors (generally of complex elements). X̂ , XÎ , X=̂

denote unit vectors (of real elements). XĪ denotes a
matrix or a dyadic (generally of complex elements).
A product sign at the beginning of an equation con-
tinuation line stands for a scalar product.

A plane electromagnetic wave of wave vector
kI i5k0k̂ i and polarization ê i is incident on the ellip-
soid. The time dependence is taken as exp(2ivt)
and is suppressed throughout the analysis. The
electric field (dyadic) at any point rI in the xyz co-
ordinate system is given by Ref. 14

EĪ ~rI !5JI
¯

i exp~ ikI irI !1E
V1

drI 1gGĪ ~rI ,rI 1!•EĪ ~rI 1!, (2)

where

g5
k0

2

4p
~e21 !, (3)

k0 is the suspending medium propagation constant,

1Ī is the unit dyadic, and for any subscript l

JI
¯

l51Ī2 k̂lk̂l , (4)

k̂l is a unit vector along kI l ,

GĪ ~rI ,rI 1!5~1Ī1k0
22¹¹!G~rI ,rI 1! (5)

Fig. 1 The cartesian coordinate systems used in the analysis.
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and

G~rI ,rI 1!5
exp~ ik0urI2rI 1u!

urI2rI 1u
. (6)

In order to obtain the plane plus scattered wave
for an incident wave ê iE0 exp(ikIi•rI), both sides of
(2) should be multiplied by ê iE0 . If the vector jI 1 is
expressed in the local coordinate system x1y1z1 ,
the following relations hold

rI 15dI 11AĪ 1•jI 1 (7)

where AĪ 1 is an appropriate rotation matrix given
below and
312 JOURNAL OF BIOMEDICAL OPTICS d JULY 1997 d VOL. 2 NO. 3
drI 15djI 1 . (8)

The xyz coordinate system may be considered as
originating from the x1y1z1 local coordinate system
by rotation and translation as follows. The x1y1z1
system is rotated about its original z1 axis by the
c1 angle (0<c1<2p); the transformed system is
rotated about its new y1 axis by the u1 angle
(2p/2<q1<p/2); and the latter system is rotated
about its new x1 axis by the v1 angle
(0<v1<2p). The emerged system is translated by
the vector 2dI 1 so that the xyz coordinate system is
obtained. Then the AĪ 1 matrix is given by Ref. 15
AĪ 15F cos~c1!cos~u1! sin~c1!cos~q1! 2sin~q1!

@2sin~c1!cos~v1!1cos~c1!sin~u1!sin~v1!# @cos~c1!cos~v1!1sin~c1!sin~q1!sin~v1!# cos~q1!sin~v1!

@sin~c1!sin~v1!1cos~c1!sin~q1!cos~v1!# @2cos~c1!sin~v1!1sin~c1!sin~q1!cos~v1!# cos~q1!cos~v1!
G . (9)
The dyadic scattering amplitude fI
¯(kI s ,kI i) for scat-

tering in the direction of kI s5k0k̂ s is defined by

EĪ ~rI ! ——→
r→`

JI
¯

i exp~ ikI i•rI !1
exp~ ik0r !

r
fI
¯
~kI s ,kI i!

10S 1
r2D , (10)

where r5urI u.
Considering the asymptotic form of (2) as r→`

gives

lim
r→`

EĪ ~rI !5JI
¯

i exp~ ikI i•rI !1
exp~ ik0r !

r
JĪsE

V1

g

3exp~2ikI s•rI 1!EĪ ~rI 1!drI 1 . (11)

Therefore the dyadic scattering amplitude is ex-
pressed as

fI
¯
~kI s ,kI i!5JI

¯
s•E

V1

g exp~2ikI s•rI 1!EĪ ~rI 1!drI 1 (12)

and the vector scattering amplitude for incident
wave polarization ê i is given by

fI~kI s ,kI i , ê i!5fI
¯
~kI s ,kI i!• ê i . (13)

2.2 METHOD OF SOLUTION

The field equation (2) is an integral equation with a
singular kernel. In what follows, a method is ap-
plied that deals with the singularity analytically,
leaving an integral equation with nonsingular
kernel.16 Multiplying (2) by (g/k0

2)exp(2ikI1•rI),
where kI 15k1k̂1 is at present an arbitrary vector (ex-
pressed in the xyz system,) and integrating
throughout the volume of the scatterer V1 gives

1
k0

2 E
V1

g exp~2ikI 1•rI !EĪ ~rI !drI

5JI
¯

i
1
k0

2 E
V1

g exp@~kI i2kI 1!•rI #drI

1
1
k0

2 E
V1

drIg exp~2ikI 1•rI !E
V1

drI 1g

3GĪ ~rI ,rI 1!•EĪ ~rI 1!. (14)

The electric field inside the scatterer V1 is ex-
pressed as the angular Fourier transform (in the
xyz coordinate system)

EĪ ~rI 1!5E dkI 2CĪ 1~kI 2!exp~ ikI 2•rI 1!, (15)

where

kI 25k2k̂2 . (16)

Substituting (15) into (14) gives

E dkI 2KĪ ~kI 1 ,kI 2!•CĪ 1~kI 2!5JI
¯

iUV1
~kI 1 ,kI i! for any kI 1 ,

(17)

where



LIGHT SCATTERING BY DEFORMED ERYTHROCYTES
UV1
~kI 1 ,kI 2!5

1
k0

2 E
V1

g exp@2i~kI 12kI 2!•rI 1#drI 1

for any kI 1 ,kI 2 (18)

and

KĪ ~kI 1 ,kI 2!51ĪUV1
~kI 1 ,kI 2!2

1
k0

2 E
V1

dr81E
V1

drI 1g

3exp~2ikI 1•r81!GĪ ~r81 ,rI 1!g exp~ ikI 2•rI 1!.

(19)

Performing mathematical manipulations similar
to those presented in Ref. 17 for the calculation of

the matrix element KĪ aa(kI 1 ,kI 2), the following ex-

pression for KĪ (kI 1 ,kI 2) is obtained.

KĪ ~kI 1 ,kI 2!5exp@2i~kI 12kI 2!•dI 1#F 1Īe~e21 !

3a1b1c1
j1~ uK= 112K= 21uc!

uK= 112K= 21uc
2

~e21 !2

2p2

3~a1b1c1!2pik0E
0

1
dxpE

0

2p

dwp~1Ī2 p̂ p̂ !

3 (
n50

n1m5

`

(
m50
even

`

~2n13 !~2m13 !

3
jn11~ uK= 11uc!

uK= 11uc

jm11~ uK= 21uc!

uK= 21uc

3
jm.11~k0Y !hm,11~k0Y !

Y2

3Tn
1~P=̂ 1•K=̂ 11!Tm

1 ~P=̂ 1•K=̂ 21!G , (20)

where the following symbols have been used (in-
cluding those of some intermediate steps): jn(z) is
the complex spherical Bessel function of order n .

The symbol u uc is defined by the relation

uAI 2BI uc5AA21B222AI •BI , (21)

where

AI 5AÂ , (22)

BI 5BB̂ . (23)

(A , B are generally complex numbers.) The symbol
Az5@r exp(iw)#1/2 denotes the complex square root
r1/2 exp(i (w/2)),

m.5max$m ,n%, m,5min$m ,n% (24)
hn~z !5S p

2z D 1/2

Hn11/2
~1 ! ~z !

~spherical Hankel function!,
(25)

xa5cos~qa! for any subscript a , (26)

PI 15p~A12xp
2 cos wp ,A12xp

2 sin wp ,xp!•AĪ 1

[p~Zx ,Zy ,Zz!, (27)

P=̂ 15
1
Y

~a1Zx ,b1Zy ,c1Zz!, (28)

Y5@a1
2Zx

21b1
2Zy

21c1
2Zz

2#1/2, (29)

KI 115k1~A12xk1

2 cos fk1
,A12xk1

2 sin wk1
,xk1

!•AĪ 1

[k1~Hx ,Hy ,Hz!, (30)

(k1 can take complex values)

K= 115k1~a1Hx ,b1Hy ,c1Hz!, (31)

uK= 11uc5n0k0~a1
2Hx

21b1
2Hy

21c1
2Hz

2!1/2, (32)

K=̂ 115
1

~a1
2Hx

21b1
2Hy

21c1
2Hz

2!1/2 ~a1Hx ,b1Hy ,c1Hz!,

(33)

KI 215k2~A12xk2

2 cos wk2
,A12xk2

2 sin wk2
, xk2

!•AĪ 1

[k2~Lx ,Ly ,Lz!, (34)

K= 215k2~a1Lx ,b1Ly ,c1Lz!, (35)

(k2 can take complex values). For homogeneous
scatterers k15k25k0n0 .

uK= 21uc5n0k0Aa1
2Lx

21b1
2Ly

21c1
2Lz

2 (36)

and

K=̂ 215
1

~a1
2Lx

21b1
2Ly

21c1
2Lz

2!1/2 ~a1Lx ,b1Ly ,c1Lz!.

(37)

Tn
1(x) is the Gegenbauer function. Note that the

KI 11 ,KI 21 , and PI 1 vectors are expressed in the local
coordinate system x1 y1 z1 .

The dyadic 1Ī2 p̂ p̂ has the representation
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1Ī2 p̂ p̂5F 12y2 cos2 wp 2y2 cos wp sin wp 2xy cos wp

2y2 cos wp sin wp 12y2 sin2 wp 2xy sin wp

2xy cos wp 2xy sin wp y2
G , (38)
where x5cos qp and y2512x2,
The right part of Eq. (17) becomes

JI
¯

iUV1
~kI 1 ,kI i!5~1Ī2 k̂ ik̂ i!exp@2i~kI 12kI i!•dI 1#a1b1c1

3~e21 !
j1~ uK= 112K= i1uc!

uK= 112K= i1uc
, (39)

where

KI i15k0~A12xki

2 cos wki
,A12xki

2 sin wki
, xki

!•AĪ 1

[k0~Sx ,Sy ,Sz! (40)

and

K= i15k0~a1Sx ,b1Sy ,c1Sz!. (41)

Substituting (15) into (12) gives

fI
¯
~kI s ,kI i!5k0

2 JI
¯

s•E UV1
~kI s ,kI 2!CĪ 1~kI 2!dkI 2 . (42)

The integral Eq. (17) is reduced by quadrature into
a set of linear equations (a matrix equation). If we
choose the kI 2 pivots and weights to be the set

S5$kI j ,wjuj51, . . . n8%, (43)

the arbitrary kI 1 is restricted to a maximum of n8
arbitrary values. We choose these to be those of set
S . Then (17) and (42) reduce to the equations

(
l51

n8

wlKĪ ~kI j ,kI l!•CĪ 1~kI l!5JI
¯

iUV1
~kI j ,kI i! j

51,2, . . . ,n8 (44)

and

fI
¯
~kI s ,kI i!5k0

2 JI
¯

s•(
l51

n8

wlCĪ 1~kI l!UV1
~kI s ,kI l!. (45)

The matrix equation (44) is solved by applying
the lower-upper matrix (LU) decomposition algo-

rithm. Then the values of CĪ 1(kI l) are substituted
into (45) and the scattering amplitude is obtained.

3 COMPUTATION AND CONVERGENCE

3.1 COMPUTATION

Irradiation of a spheroidal RBC by a plane wave of
l 5 0.6328 mm (He:Ne laser beam in vacuum) was
considered in all runs. We chose a spheroidal in-
stead of a triaxial ellipsoidal (with three different
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semiaxes) RBC for ease of prospective comparison
with theoretical treatments pertaining to axisym-
metric scatterers. This selection does not necessarily
affect the computational demands of the program.
The index of refraction of the suspending medium
was taken as np51.33, whereas the complex index
of refraction of an RBC relative to the suspending
medium was taken as n05Ae51.041i 1024.18 The
mean RBC volume was taken as 90 mm3.6 Therefore
the mean value of the equivolumetric radius of an
RBC was a'2.780 mm and the size parameter
k0a'36.7.

In order to implement the previous theoretical
analysis, serial and parallel Fortran 77 codes were
developed and run on the following shared-
memory parallel systems: Silicon Graphics Interna-
tional Inc. (SGI) Power Series 4D/480S (8 3 R3000
processors, 70 Mflops), SGI Challenge XL (16
3 R4400 processors, 320 Mflops) and SGI Power
Challenge XL (14 3 R8000 processors, 4200 Mflops).
Double-precision arithmetic was used throughout
the computation. It was observed that approxi-
mately 99% of the total computing time was spent
on the calculation of the final matrix elements. Fur-
thermore, the calculation of every matrix element
could be performed independently of the calcula-
tion of any other matrix element. Thus, resorting to
parallel processing for the final matrix elements led
to a dramatic decrease in the computing time
needed. The speedup depended on both the num-
ber of processors used and the overall load of the
system during the calculation.

It is pointed out that scattering in the forward
direction and in the near-forward angular region is
of particular importance to many applications (e.g.,
ektacytometry, flow cytometry, quantification of
sedimentation kinetics). It has also been experimen-
tally proved that light scattered by RBCs is sharply
forward peaked.19 Therefore, we restricted our cal-
culations to the forward and near-forward angular
region (up to 625 deg about the direction of inci-
dence), reducing in this way the computing cost of
the analysis. Typical elapsed times for reliable re-
sults in this region ranged between 15 min and 6 h
in the SG Power Challenge XL system, when six
processors were used and the overall load of the
machine was medium.

3.2 CONVERGENCE

In order to obtain the scattering diagram [the rela-
tive scattered intensity I5ufI(wks

5const., qks
, wki

,
qki

, wei
, qei

)u2 versus the scattering angle qks
]
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Fig. 2 (a) Irradiation geometry of an oblate spheroidal erythrocyte
with semiaxes ratio c/a50.335 and volume V590 mm3. (b)
Convergence test. Solid line, case A (six pivot vectors were used);
dashed line, case B (seven pivot vectors were used along with
larger values for the rest of the discretization parameters).
in the near-forward angular interval, the following
numerical approximations were employed. For the

calculation of the matrix elements KĪ (kI 1 ,kI 2), the in-
finite summations in (20) were truncated at a value
n5m5nmax. The number of pivot vectors, the
number of terms n max in the summations, and the
number of integration subintervals in the dxp and
dwp integrations of (20) were increased until con-
vergence was obtained. Furthermore, the position
of pivot vectors was changed until convergence
was achieved with the lowest possible computing
cost. It was found that pivot vectors forming angles
greater than 5 deg with the direction of incidence
were of very little significance to the near-forward
scattering diagram. Besides, increasing their num-
ber led to a sharp increase in the computing time
demands of the model. Hence, care was taken to
restrict the number of pivot vectors to the smallest
possible value without losing significant accuracy
in the region of interest. The values of the above-
mentioned discretization parameters generally var-
ied from case to case. We give only an indicative list
of their values for the case shown in Figure 2. For
curve A (solid line) six pivot vectors were used: one
in the forward direction, four equally spaced
around the direction of incidence, forming an angle
of 0.5 deg with it, and one in the backward direc-
tion. *0

1dxp integration: 10 equal subintervals were
used. A 16-point Gauss integration was performed
on each one of them. *0

2pdwp integration: 20 equal
subintervals were used as above. For both integra-
tions, a variable step-length routine,20 which uses a
Clenshaw–Curtis quadrature and has a built-in es-
timate of the absolute error obtained by comparing
Newton-Cotes and Romberg estimates, was alterna-
tively used. nmax 5 60. For curve B (dashed line),
seven pivot vectors were used: one in the forward
direction, five equally spaced around the direction
of incidence, forming an angle of 0.5 deg with it,
and one in the backward direction. *0

1dxp integra-
tion: 15 equal subintervals were used. *0

2pdwp inte-
gration: 20 equal subintervals were used. As an al-
ternative, the Clenshaw–Curtis quadrature routine
was again used. nmax 5 90.

3.3 COMPARISON WITH MIE THEORY

A test of the computer program was performed by
considering the case of plane electromagnetic wave
scattering from a single spherical RBC. The scatter-
ing amplitude was calculated by applying both the
exact Mie theory9 and FIEM. The scattering dia-
grams for values of qks

between 0 and 180 deg are
given in Ref. 21. Six pivot vectors were used in
FIEM (one in the forward direction or direction of
incidence, four equally spaced around the forward
direction and forming an angle of 0.5 deg with it,
and one in the backward direction). It has been ob-
served that FIEM compares favorably with Mie
theory in the angular interval of up to 625 deg
around the direction of incidence.

3.4 EKTACYTOMETRY

A further check of the program was provided by
producing the diffraction pattern of an oriented
monodisperse system of prolate spheroids [Figure
3(b)]. Under certain conditions, such a sytem ad-
equately models erythrocytes suspended in shear
flow inside a laser ektacytometer, when used to de-
termine red blood cell deformability. The scattering
amplitude fI(kI s ,kI i) for a prolate spheroid and for a
finite number of scattering angles is calculated us-
ing the previously described method. The scatter-
ing amplitude is calculated for the angular region
wks

P@350 deg, 360 deg#ø@0 deg, 10 deg# and qks

P @80 deg, 100 deg# . The corresponding solid angle
is discretized in such a way that the values of both
wks

and qks
are multiples of 1 deg [see Figure 3(a)

for the definition of qks
and wks

].
A Monte Carlo simulation program for the irra-

diation geometry of Figure 3(b) was developed in
315JOURNAL OF BIOMEDICAL OPTICS d JULY 1997 d VOL. 2 NO. 3
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Fig. 3 (a) Irradiation geometry of a prolate spheroidal erythrocyte
with volume V590 mm3 and semiaxes ratio b/a54. (b) Irradia-
tion geometry of an oriented monodisperse system of prolate sphe-
roidal erythrocytes (Monte Carlo simulation). (c) Diffraction pattern
of the system depicted in (b).
which the position of each erythrocyte in the stream
was random. A total of 2000 erythrocytes, irradi-
ated by the laser beam at the same time, proved to
be sufficient for the reproduction of the expected
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diffraction pattern. This number of simultaneously
irradiated red blood cells is also typical in actual
devices.22 A more detailed description of the simu-
lation will appear in a separate paper.

In agreement with what has been experimentally
observed and theoretically proved by the Van de
Hulst anomalous diffraction theory,8 the diffraction
pattern produced by this model [Figure 3(c)] has
the following two characteristics. First, the ratio of
the major to the minor axis of the first elliptical ex-
tinction ring and that of the illuminated cross sec-
tion of the erythrocyte are equal. Second, the major
axis of the diffraction pattern is perpendicular to
the streamlines of the shear flow, parallel to which
the suspended cells are stretched.

4 NUMERICAL RESULTS

As examples of the potential uses of the model pre-
sented, the effects of both the size and the semiaxes
ratio of a spheroidal erythrocyte to its scattering
diagram are demonstrated. The near-forward scat-
tering diagrams for three different RBC volume val-
ues (V580, 90, and 100 mm3) and for two different
angles of incidence are shown in Figures 4 and 5.

Fig. 4 (a) Irradiation geometry of an oblate spheroidal erythrocyte
with semiaxes ratio c/a50.335. (b) Effect of its volume (V) on the
near-forward scattering diagram; thin solid line, V580 mm3;
dashed line, V590 mm3; thick solid line, V5100 mm3. Six pivot
vectors were used.
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Fig. 5 (a) Irradiation geometry of an oblate spheroidal erythrocyte
with semiaxes ratio c/a50.335. (b) Effect of its volume (V) on the
near-forward scattering diagram; thin solid line, V580 mm3;
dashed line, V590 mm3; thick solid line, V5100 mm3; six pivot
vectors were used.
The following characteristics of the scattering dia-
gram for all angles of incidence considered (includ-
ing the incidence angle of qki

590 deg for which the
results are not shown in this paper) may be easily
noticed. The forward scattered intensity increases
with increasing scatterer size, in accordance with
Mie theory for large scatterers.9 The number of
lobes in the near-forward scattering diagram also
increases with increasing scatterer size.

Furthermore, the near-forward scattering dia-
grams for three different semiaxes ratios
(c/a50.2, 0.335, 4) and for two different angles of
incidence are shown in Figures 6 and 7. It appears
that the cases considered can be well differentiated
(e.g., in flow cytometry) in terms of both the inten-
sity profile of scattered light and the number of
lobes in the near-forward scattering diagram.

5 CONCLUSIONS AND FUTURE WORK

A Fredholm integral formalism of light scattering
by a triaxial dielectric ellipsoid of complex index of
refraction has been developed. Both the position
and orientation of the scatterer in a given cartesian
coordinate system are considered arbitrary. The
analysis has been numerically applied to the case of
an ellipsoid with the optical properties of an RBC. It
has been observed that adequate selection of the
three semiaxes of the ellipsoid can lead to a satis-
factory simulation of certain shapes of abnormal
and deformed erythrocytes.

Serial and parallel computer programs have been
developed and run on various shared-memory par-
allel machines. Several tests have ensured the valid-
ity of both the analysis and the computer codes.
Due to the rather high computational demands of
the model, the scattering amplitude only in the
near-forward angular region (@225 deg,125 deg#
around the direction of the incident wave vector)
was calculated. Although this region is the most
important in ektacytometry and of particular inter-
est in flow cytometry, the scattering amplitude in
other scattering angles may be calculated as well. In
that case, however, a substantially larger number of
pivot vectors would be necessary for those scatter-
ing angles and this would result in a very fast in-
crease in computing time. It seems that the use of
distributed-memory parallel machines might fur-
ther improve the efficiency of the model.

Fig. 6 (a) Irradiation geometry of a spheroidal erythrocyte with
volume V590 mm3. (b) Effect of the semiaxes ratio (c/a) to its
near-forward scattering diagram; thin solid line, c/a50.2 (six
pivot vectors were used); dashed line, c/a50.335 (six pivot vec-
tors were used); thick solid line, c/a54 (14 pivot vectors were
used).
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Fig. 7 (a) Irradiation geometry of a spheroidal erythrocyte with
volume V590 mm3. (b) Effect of the semiaxes ratio (c/a) to the
near-forward scattering diagram; thin solid line, c/a50.2;
dashed line, c/a50.335; thick solid line, c/a54. Six pivot vec-
tors were used in all cases.
From a practical point of view, the model might
be used to generate of a database containing the
theoretically predicted scattering diagrams of vari-
ous forms, orientations, and biochemical composi-
tion of a single erythrocyte. The biochemical com-
positions can be taken into account through the
index of refraction. Such a data collection might
serve either as the main or as an additional criterion
of RBC discrimination in flow cytometers. In Addi-
tion, the analysis presented may have some rel-
evance to nonbiomedical fields, such as astrophys-
ics (e.g., light scattering by interstellar dust),
atmospheric physics (e.g., light scattering by aero-
sols), and ocean physics (e.g., light scattering by
plankton).
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