Open Access
23 December 2016 Real-time measurement of the vaginal pressure profile using an optical-fiber-based instrumented speculum
Luke A. Parkinson, Caroline E. Gargett, Natharnia Young, Anna Rosamilia, Aditya V. Vashi, Jerome A. Werkmeister, Anthony W. Papageorgiou, John W. Arkwright
Author Affiliations +
Abstract
Pelvic organ prolapse (POP) occurs when changes to the pelvic organ support structures cause descent or herniation of the pelvic organs into the vagina. Clinical evaluation of POP is a series of manual measurements known as the pelvic organ prolapse quantification (POP-Q) score. However, it fails to identify the mechanism causing POP and relies on the skills of the practitioner. We report on a modified vaginal speculum incorporating a double-helix fiber-Bragg grating structure for distributed pressure measurements along the length of the vagina and include preliminary data in an ovine model of prolapse. Vaginal pressure profiles were recorded at 10 Hz as the speculum was dilated incrementally up to 20 mm. At 10-mm dilation, nulliparous sheep showed higher mean pressures (102±46  mmHg) than parous sheep (39±23  mmHg) (P=0.02), attributable largely to the proximal (cervical) end of the vagina. In addition to overall pressure variations, we observed a difference in the distribution of pressure that related to POP-Q measurements adapted for the ovine anatomy, showing increased tissue laxity in the upper anterior vagina for parous ewes. We demonstrate the utility of the fiber-optic instrumented speculum for rapid distributed measurement of vaginal support.

References

1. 

J. A. Ashton-Miller and J. O. DeLancey, “On the biomechanics of vaginal birth and common sequelae,” Annu. Rev. Biomed. Eng., 11 163 –176 (2009). http://dx.doi.org/10.1146/annurev-bioeng-061008-124823 ARBEF7 1523-9829 Google Scholar

2. 

J. O. L. DeLancey, “The hidden epidemic of pelvic floor dysfunction: achievable goals for improved prevention and treatment,” Am. J. Obstet. Gynecol., 192 (5), 1488 –1495 (2005). http://dx.doi.org/10.1016/j.ajog.2005.02.028 Google Scholar

3. 

M. S. Baggish and M. M. Karam, Atlas of Pelvic Anatomy and Gynecologic Surgery, 3rd ed.Elsevier Health, St. Louis (2006). Google Scholar

4. 

J. E. Jelovsek, C. Maher and M. D. Barber, “Pelvic organ prolapse,” Lancet, 369 1027 –1038 (2007). http://dx.doi.org/10.1016/S0140-6736(07)60462-0 LANCAO 0140-6736 Google Scholar

5. 

S. Swift et al., “Pelvic organ support study (POSST): the distribution, clinical definition, and epidemiologic condition of pelvic organ support defects,” Am. J. Obstet. Gynecol., 192 795 –806 (2005). http://dx.doi.org/10.1016/j.ajog.2004.10.602 Google Scholar

6. 

L. Cordozo, “Prolapse,” Dewhurse’s Textbook of Obstetrics and Gynaecology for Postgraduates, 642 –652 Blackwell Science, Oxford (1995). Google Scholar

7. 

F. J. Smith et al., “Lifetime risk of undergoing surgery for pelvic organ prolapse,” Obstet. Gynecol., 116 (5), 1096 –1100 (2010). http://dx.doi.org/10.1097/AOG.0b013e3181f73729 Google Scholar

8. 

H. P. Dietz and M. J. Bennett, “The effect of childbirth on pelvic organ mobility,” Obstet. Gynecol., 102 (2), 223 –228 (2003). Google Scholar

9. 

M. Gyhagen et al., “Prevalence and risk factors for pelvic organ prolapse 20 years after childbirth: anational cohort study in singleton primiparae after vaginal and caesarean delivery,” Br. J. Obstet. Gynaecol., 120 152 –160 (2013). http://dx.doi.org/10.1111/1471-0528.12020 Google Scholar

10. 

D. R. Bland et al., “Use of the pelvic organ prolapse staging system of the international continence society, American urogynecologic society, and society of gynecologic surgeons in perimenopausal women,” Am. J. Obstet. Gynecol., 181 1324 –1328 (1999). http://dx.doi.org/10.1016/S0002-9378(99)70371-6 Google Scholar

11. 

R. C. Bump et al., “The standardization of terminology of pelvic organ prolapse and pelvic floor dysfunction,” Am. J. Obstet. Gynecol., 175 10 –17 (1996). http://dx.doi.org/10.1016/S0002-9378(96)70243-0 AJOGAH 0002-9378 Google Scholar

12. 

A. S. Arora et al., “Clinical evaluation of a high-fidelity wireless intravaginal pressure sensor,” Int. Urogynecol. J., 26 243 –249 (2015). http://dx.doi.org/10.1007/s00192-014-2500-0 IUJOEF Google Scholar

13. 

J. A. Kruger et al., “Design and development of a novel intra-vaginal pressure sensor,” Int. Urogynecol. J., 24 1715 –1721 (2013). http://dx.doi.org/10.1007/s00192-013-2097-8 IUJOEF Google Scholar

14. 

J. A. Ashton-Miller, J. O. L. DeLancey and D. N. Warwick, “Method and apparatus for measuring properties of the pelvic floor muscles,” U.S. Patent No. # 6,468,232 B1 (2002).

15. 

V. Egorov, H. van Raalte and V. Lucente, “Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging,” Int. Urogynecol. J., 23 459 –466 (2012). http://dx.doi.org/10.1007/s00192-011-1592-z IUJOEF Google Scholar

16. 

V. Egorov, H. Van Raalte and A. P. Sarvazyan, “Vaginal tactile imaging,” IEEE Trans. Biomed. Eng., 57 (7), 1736 –1744 (2010). http://dx.doi.org/10.1109/TBME.2010.2045757 IEBEAX 0018-9294 Google Scholar

17. 

C. E. Constantinou et al., “Evaluation of the dynamic responses of female pelvic floor using a novel vaginal probe,” Ann. N. Y. Acad. Sci., 1101 297 –315 (2007). http://dx.doi.org/10.1196/annals.1389.020 ANYAA9 0077-8923 Google Scholar

18. 

N. M. Guaderrama et al., “The vaginal pressure profile,” Neurol. Urodyn., 24 243 –247 (2005). http://dx.doi.org/10.1002/(ISSN)1520-6777 Google Scholar

19. 

J. A. Ashton-Miller et al., “Validity and reliability of an instrumented speculum designed to minimize the effect of intra-abdominal pressure on the measurement of pelvic floor muscle strength,” Clin. Biomech., 29 1146 –1150 (2014). http://dx.doi.org/10.1016/j.clinbiomech.2014.09.011 Google Scholar

20. 

D. M. Spahlinger et al., “Relationship between intra-abdominal pressure and vaginal wall movements during Valsalva in women with and without pelvic organ prolapse: technique development and early observations,” Int. Urogynecol. J., 25 (7), 873 –881 (2014). http://dx.doi.org/10.1007/s00192-013-2298-1 IUJOEF Google Scholar

21. 

A. Summers et al., “The relationship between anterior and apical compartment support,” Am. J. Obstet. Gynecol., 194 (5), 1438 –1443 (2006). http://dx.doi.org/10.1016/j.ajog.2006.01.057 AJOGAH 0002-9378 Google Scholar

22. 

J. W. Arkwright et al., “In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders,” Opt. Express, 17 (6), 4500 –4508 (2009). http://dx.doi.org/10.1364/OE.17.004500 Google Scholar

23. 

D. H.-C. Wang et al., “An optical fiber Bragg grating force sensor for monitoring sub-bandage pressure during compression therapy,” Opt. Express, 21 (17), 19799 –19807 (2013). http://dx.doi.org/10.1364/OE.21.019799 Google Scholar

24. 

J. W. Arkwright, D. H.-C. Wang and V. Patton, “An optical fibre tape sensor for monitoring sub-bandage pressures: progress towards an ‘ideal sensor’,” J. Lymphoedema, 8 (1), 24 –28 (2013). Google Scholar

25. 

B. M. Couri et al., “Animal models of female pelvic organ prolapse: lessons learned,” Expert Rev. Obstet. Gynecol., 7 (3), 249 –260 (2012). http://dx.doi.org/10.1586/eog.12.24 Google Scholar
© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) 1083-3668/2016/$25.00 © 2016 SPIE
Luke A. Parkinson, Caroline E. Gargett, Natharnia Young, Anna Rosamilia, Aditya V. Vashi, Jerome A. Werkmeister, Anthony W. Papageorgiou, and John W. Arkwright "Real-time measurement of the vaginal pressure profile using an optical-fiber-based instrumented speculum," Journal of Biomedical Optics 21(12), 127008 (23 December 2016). https://doi.org/10.1117/1.JBO.21.12.127008
Received: 11 August 2016; Accepted: 29 November 2016; Published: 23 December 2016
Lens.org Logo
CITATIONS
Cited by 12 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Vagina

Barium

Fiber Bragg gratings

Biomedical optics

Data modeling

Tissues

Back to Top