|
ReferencesJ. A. Ashton-Miller and J. O. DeLancey,
“On the biomechanics of vaginal birth and common sequelae,”
Annu. Rev. Biomed. Eng., 11 163
–176
(2009). http://dx.doi.org/10.1146/annurev-bioeng-061008-124823 ARBEF7 1523-9829 Google Scholar
J. O. L. DeLancey,
“The hidden epidemic of pelvic floor dysfunction: achievable goals for improved prevention and treatment,”
Am. J. Obstet. Gynecol., 192
(5), 1488
–1495
(2005). http://dx.doi.org/10.1016/j.ajog.2005.02.028 Google Scholar
M. S. Baggish and M. M. Karam, Atlas of Pelvic Anatomy and Gynecologic Surgery, 3rd ed.Elsevier Health, St. Louis
(2006). Google Scholar
J. E. Jelovsek, C. Maher and M. D. Barber,
“Pelvic organ prolapse,”
Lancet, 369 1027
–1038
(2007). http://dx.doi.org/10.1016/S0140-6736(07)60462-0 LANCAO 0140-6736 Google Scholar
S. Swift et al.,
“Pelvic organ support study (POSST): the distribution, clinical definition, and epidemiologic condition of pelvic organ support defects,”
Am. J. Obstet. Gynecol., 192 795
–806
(2005). http://dx.doi.org/10.1016/j.ajog.2004.10.602 Google Scholar
L. Cordozo,
“Prolapse,”
Dewhurse’s Textbook of Obstetrics and Gynaecology for Postgraduates, 642
–652 Blackwell Science, Oxford
(1995). Google Scholar
F. J. Smith et al.,
“Lifetime risk of undergoing surgery for pelvic organ prolapse,”
Obstet. Gynecol., 116
(5), 1096
–1100
(2010). http://dx.doi.org/10.1097/AOG.0b013e3181f73729 Google Scholar
H. P. Dietz and M. J. Bennett,
“The effect of childbirth on pelvic organ mobility,”
Obstet. Gynecol., 102
(2), 223
–228
(2003). Google Scholar
M. Gyhagen et al.,
“Prevalence and risk factors for pelvic organ prolapse 20 years after childbirth: anational cohort study in singleton primiparae after vaginal and caesarean delivery,”
Br. J. Obstet. Gynaecol., 120 152
–160
(2013). http://dx.doi.org/10.1111/1471-0528.12020 Google Scholar
D. R. Bland et al.,
“Use of the pelvic organ prolapse staging system of the international continence society, American urogynecologic society, and society of gynecologic surgeons in perimenopausal women,”
Am. J. Obstet. Gynecol., 181 1324
–1328
(1999). http://dx.doi.org/10.1016/S0002-9378(99)70371-6 Google Scholar
R. C. Bump et al.,
“The standardization of terminology of pelvic organ prolapse and pelvic floor dysfunction,”
Am. J. Obstet. Gynecol., 175 10
–17
(1996). http://dx.doi.org/10.1016/S0002-9378(96)70243-0 AJOGAH 0002-9378 Google Scholar
A. S. Arora et al.,
“Clinical evaluation of a high-fidelity wireless intravaginal pressure sensor,”
Int. Urogynecol. J., 26 243
–249
(2015). http://dx.doi.org/10.1007/s00192-014-2500-0 IUJOEF Google Scholar
J. A. Kruger et al.,
“Design and development of a novel intra-vaginal pressure sensor,”
Int. Urogynecol. J., 24 1715
–1721
(2013). http://dx.doi.org/10.1007/s00192-013-2097-8 IUJOEF Google Scholar
V. Egorov, H. van Raalte and V. Lucente,
“Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging,”
Int. Urogynecol. J., 23 459
–466
(2012). http://dx.doi.org/10.1007/s00192-011-1592-z IUJOEF Google Scholar
V. Egorov, H. Van Raalte and A. P. Sarvazyan,
“Vaginal tactile imaging,”
IEEE Trans. Biomed. Eng., 57
(7), 1736
–1744
(2010). http://dx.doi.org/10.1109/TBME.2010.2045757 IEBEAX 0018-9294 Google Scholar
C. E. Constantinou et al.,
“Evaluation of the dynamic responses of female pelvic floor using a novel vaginal probe,”
Ann. N. Y. Acad. Sci., 1101 297
–315
(2007). http://dx.doi.org/10.1196/annals.1389.020 ANYAA9 0077-8923 Google Scholar
N. M. Guaderrama et al.,
“The vaginal pressure profile,”
Neurol. Urodyn., 24 243
–247
(2005). http://dx.doi.org/10.1002/(ISSN)1520-6777 Google Scholar
J. A. Ashton-Miller et al.,
“Validity and reliability of an instrumented speculum designed to minimize the effect of intra-abdominal pressure on the measurement of pelvic floor muscle strength,”
Clin. Biomech., 29 1146
–1150
(2014). http://dx.doi.org/10.1016/j.clinbiomech.2014.09.011 Google Scholar
D. M. Spahlinger et al.,
“Relationship between intra-abdominal pressure and vaginal wall movements during Valsalva in women with and without pelvic organ prolapse: technique development and early observations,”
Int. Urogynecol. J., 25
(7), 873
–881
(2014). http://dx.doi.org/10.1007/s00192-013-2298-1 IUJOEF Google Scholar
A. Summers et al.,
“The relationship between anterior and apical compartment support,”
Am. J. Obstet. Gynecol., 194
(5), 1438
–1443
(2006). http://dx.doi.org/10.1016/j.ajog.2006.01.057 AJOGAH 0002-9378 Google Scholar
J. W. Arkwright et al.,
“In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders,”
Opt. Express, 17
(6), 4500
–4508
(2009). http://dx.doi.org/10.1364/OE.17.004500 Google Scholar
D. H.-C. Wang et al.,
“An optical fiber Bragg grating force sensor for monitoring sub-bandage pressure during compression therapy,”
Opt. Express, 21
(17), 19799
–19807
(2013). http://dx.doi.org/10.1364/OE.21.019799 Google Scholar
J. W. Arkwright, D. H.-C. Wang and V. Patton,
“An optical fibre tape sensor for monitoring sub-bandage pressures: progress towards an ‘ideal sensor’,”
J. Lymphoedema, 8
(1), 24
–28
(2013). Google Scholar
B. M. Couri et al.,
“Animal models of female pelvic organ prolapse: lessons learned,”
Expert Rev. Obstet. Gynecol., 7
(3), 249
–260
(2012). http://dx.doi.org/10.1586/eog.12.24 Google Scholar
|