Open Access
4 August 2015 Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts
Wesley B. Baker, Ashwin B. Parthasarathy, Tiffany S. Ko, David R. Busch, Kenneth Abramson, Shih-Yu Tzeng, Rickson C. Mesquita, Turgut Durduran, Joel H. Greenberg, David K. Kung, Arjun G. Yodh
Author Affiliations +
Abstract
We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm’s ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy.
© 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) 2329-423X/2015/$25.00 © 2015 SPIE
Wesley B. Baker, Ashwin B. Parthasarathy, Tiffany S. Ko, David R. Busch, Kenneth Abramson, Shih-Yu Tzeng, Rickson C. Mesquita, Turgut Durduran, Joel H. Greenberg, David K. Kung, and Arjun G. Yodh "Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts," Neurophotonics 2(3), 035004 (4 August 2015). https://doi.org/10.1117/1.NPh.2.3.035004
Published: 4 August 2015
Lens.org Logo
CITATIONS
Cited by 71 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tissues

Modulation

Absorption

Blood circulation

Cerebral blood flow

Calibration

Head

Back to Top