In the digital era, sharing pictures on social media has become a common privacy issue. To prevent private images from being eavesdropped on and destroyed, developing secure and efficient image steganography, image cryptography, and image authentication has been difficult. Deep learning provides a solution for digital image security. First, we make an overall conclusion on deep learning applications in image steganography to generate five aspects: the cover image, stego-image, embedding change probabilities, coverless steganography, and steganalysis. Second, we also combine and compare deep learning methods used in six aspects: image cryptography from image compression, image resolution improvement, image object detection and classification, key generation, end-to-end image encryption, and image cryptoanalysis. Third, we collect deep learning methods in image authentication from five perspectives: image forgery detection, watermarked image generation, image watermark extraction and detection, image watermarking attack, and image watermark removal. Finally, we summarize future research directions of deep learning utilization in image steganography, image cryptography, and image authentication. |
CITATIONS
Cited by 5 scholarly publications.
Image encryption
Digital watermarking
Digital imaging
Steganography
Image compression
Image processing
Neural networks